Ecosystem Health as a Reason for Migration
The Mainframe Case

Vadim Zaytsev
Raincode Labs
Brussels, Belgium

vadim @ grammarware.net

Mainframe is one of the most solid, mature, reliable... and
expensive platforms, initially introduced in 1952 and currently
available for a wide variety of customers. The ecosystem of the
mainframe covers programming languages like COBOL and
PL/I, proprietary fourth generation languages like PACBASE
or COOL:GEN, transaction managers like CICS, IMS or TPF,
database management systems like DB2 and IDMS, scripting
languages like JCL and REXX, and a macro-assembler. Typ-
ical mainframe customers are banks, governments, travel and
logistic agencies, insurance companies, as well as other big
entities with large quantities of data and transaction throughput
demands. It is remarkable that, despite its extreme reliability
and other valuable time-proven properties, there is a tendency
among many companies to migrate away from it to more
mundane platforms/ecosystems. Raincode Labs is a company
successful in this line of business for almost three decades,
being involved in numerous migration projects.

A typical mainframe with 4000 MIPS costs 6-16 million
dollars per year to maintain. However, this is often not the
main and definitely not the only reason for migration. The
way the world has changed over the last couple of decades,
made it so that the companies’ demands to process transactions
and perform underlying queries, are growing at an increasing
rate while at the same time not being linked to any financial
gain. For example, in the pre-mobile era having twice as many
transactions per day would mean having twice as many clients
using your services, or your regular clients using your services
twice as actively, or something similar, which is only positive
in the long run. Nowadays it can mean the same clients
being active in their mobile apps with unprofitable actions like
checking and continually refreshing the status of their account
or delivery. (A natural response to this would be caching the
values being queried too often, but that results in a noticeable
decrease in the quality of service).

Professionals that are familiar with technologies of the
mainframe, are scarce and expensive. Junior developers can be
educated, but are often unwilling, since it limits their future
employment prospects. Being an expert in a technology or a
language that is perceived as legacy, is personally profitable
but somehow carries a uncool stigma. We see many of our
customers deciding to migrate to an active and cool ecosystem
just in order to be able to afford new hires in sufficient
quantities. There are two more reasons intimately linked to
the hiring problem. First is that using a clunky legacy system
to produce software almost automatically means using clunky

legacy development support tools, which is not only less
attractive to developers, but also less efficient for them than
relying on modern advanced interactive IDEs. The other reason
is that operating within the mainframe and exhausting your
technical limits means either having to purchase expensive
commercial packages to cater for new or extended needs, or
having to write such components yourself, both options being
very costly in their own ways. Having the same problem in
the Java ecosystem would mean relying on much cheaper and
much more numerous third party libraries or even tapping into
the vast arsenal of open source software.

Certain ways of dealing with problems on the mainframe,
have consequences for the ecosystem that go way beyond
the traditionally understood and researched technical conse-
quences. As an example, consider how the recompilation is
done on, say, the .NET Framework: each developer has their
own piece of the overall company portfolio checked out on
their laptop, where it can be compiled at any time without any
consequence for the production servers. On the mainframe, the
compilation has to happen on the same mainframe that handles
clients’ transactions. This means that global recompilation of
all available sources can be harmful even when desirable, and
the workload will have to be balanced and distributed over the
course of days and even weeks. This in turn means that such
prophylactic portfolio recompilations are significant company-
wide events that happen very rarely (usually forced by new
compiler releases and similar triggers). As a final consequence,
it is unfortunately way too common to encounter systems
actively being used in production, without their corresponding
source code (since the last compilation of that system hap-
pened 30+ years ago). Even worse than that, it is possible to
have several versions of the source code with different dates
and sources, without the crucial accompanying knowledge of
which one of them is the one currently deployed.

At the SoHeal’19, we would like to discuss software
health at the ecosystem level as a reason of migration from
that ecosystem even if its technical aspects are more than
satisfactory, and to share our experience in migrating from
mainframe to .NET, LLVM, etc. The author’s short biography
is available at http://grammarware.net/is. Many details of the
harsh reality of mainframe migrations, are regularly shared at
https://www.raincode.com/blog.


http://grammarware.net/is
https://www.raincode.com/blog

