
Improving JSON Schema Inference

BENEVOL, Namen, 21 November 2024

Stijn Broekhuis & Vadim Zaytsev

 by Incorporating User Inputs

https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net


Introduction

• Vadim Zaytsev aka @grammarware (  )

• research (   ,   ,     )

• teaching (   )

• industry (        ,              )


• Relevant details:

• grammars [2004"..]

• inference [2014"..]

• by example [GPCE 2017]

2

http:"//grammarware.net "&& http:"//grammarware.github.io 

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://grammarware.net/text/2004/zaytsev-thesis.pdf
https://grammarware.net/edits/index.html#Rosu2014
https://doi.org/10.1145/3136040.3136058
http://grammarware.net
http://grammarware.github.io


3

MSc Computer ScienceFinal Project

Incorporating User Inputs forImproved JSON SchemaInference

S. B. Broekhuiss.b.broekhuis@student.utwente.nl

Supervisor: dr.ir. V. Zaytsev

December, 2023

Department of Computer ScienceFaculty of Electrical Engineering,Mathematics and Computer Science,University of Twente

Improving JSON Schema Inference by Incorporating User
Inputs
Stijn Brian Broekhuis1, Vadim Zaytsev1,21Computer Science, EEMCS, University of Twente, The Netherlands

1Formal Methods & Tools, EEMCS, University of Twente, The Netherlands
Abstract
JSON Schema schemata, as descriptive JSON �les, de�ne the expected structure of other JSON data, serving as a

valuable resource for both developers and (meta)programs. They play a crucial role in data validation, testing,

and maintaining data consistency. Since manually creating schemata for JSON can be challenging, it is common

to derive them from sample data. In this paper, we focus on the introduction of user inputs during the inference

process with the goal of reducing ambiguity and allow an algorithm to make, otherwise inconclusive, speculations

from the sample data. We describe several strategies for utilising JSON Schema features based on sample JSON

�les and how they were implemented into a Kotlin program. We evaluate our tool on �ve distinct real world

sample JSON datasets from which the results showed it is able to infer complex patterns.
Keywords
JSON, inference, JSON Schema, user input, interactivity

1. Introduction
The world needs formats for (semi)structured data that can be
used very easily, without going through expertise-demanding
and labour-intensive process of de�ning grammars, metamod-
els and schemata. XML (eXtensible Markup Language) [1]
occupied this niche for a while, but JSON (JavaScript Object
Notation) [2] certainly seems to be winning.JSON Schema o�ers a means to validate, test, and maintain the consistency of JSON data [3]. It is

meant for projects that mature beyond having purely self-descriptive data chunks, and can be introduced

gradually for semi-structured data, restricting conformance only partially. However, its adoption has ben

rather slow [4]. One of the reasons for that is the time-consuming process of creating and maintaining

such schemata.
The obvious solution is automated schema inference from sample data. However, existing ap-

proaches [5, 6, 7, 6, 8, 9] cause over�tting and tend to produce structures that require further re�nement.

To address this issue, in this paper we introduce user inputs to be incorporated into the inference

process. By doing so, we reduce ambiguity and enable algorithms to make informed speculations that

would otherwise stay inconclusive. We assume that users have a deep understanding of the sample

data, and their knowledge can be leveraged to extract more information and improve the accuracy of

the schema.
In this paper, we present seven interactive strategies for harnessing the capabilities of JSON Schema

schemata, implemented in a Kotlin program, openly available via GitHub under the terms of the MIT

license [10]. We evaluate our tool using �ve real world sample JSON datasets, highlighting its strengths

and limitations.

BENEVOL’24: 23rd Belgium-Netherlands Software Evolution Workshop; 20–22 November 2024, Namen, Belgium

� vadim@grammarware.net (V. Zaytsev)� https://grammarware.net (V. Zaytsev)� 0000-0001-7764-4224 (V. Zaytsev)© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

MSc Computer ScienceResearch Topics

JSON Schemas Inference;Pursuing the use of User Inputand Complex Data Types toimprove the accuracy ofgenerated schemas

S. B. Broekhuiss.b.broekhuis@student.utwente.nl

Supervisor: dr.ir. V. Zaytsev

November, 2023

Department of Computer ScienceFaculty of Electrical Engineering,Mathematics and Computer Science,University of Twente

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755
http://purl.utwente.nl/essays/97755


JSON vs XML
4

https:"//trends.google.com/trends/explore?cat=1227&date=all&q=%2Fm%2F05cntt,%2Fm%2F08745 

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://trends.google.com/trends/explore?cat=1227&date=all&q=%2Fm%2F05cntt,%2Fm%2F08745


2.1.2 JSON

JSON (JavaScript Object Notation) [9] is the file format this study will focus on. It was
based on a subset of JavaScript and therefore commonly used in said language. It was
“discovered” by Douglas Crockford around 2001 [25]. Since then, many standards were
made. In Example 2 a JSON file is shown with data regarding children’s hobbies. Here,
Emma has more than one hobby. Where in Example 1 it was difficult to show multiple
hobbies per child, in JSON it is possible and easy.

Example 2 JSON Hobbies

{

"children" : [

{

"name": "Emma",

"age": 11,

"hobbies": ["football", "drawing"]

},

...

]

}

In this example, a JSON file is shown with the data regarding children’s hobbies.
All data is stored via a key-value method. Here, hobbies is an array of multiple
strings. This allows any number of hobbies per child.

However, what makes JSON particularly versatile is its language-independence, which
allows it to be used seamlessly across a wide array of popular programming languages.
Many popular languages have their own JSON parsing and generation libraries or modules.
For instance, Python provides the ’json’ module and Java has the ’Jackson’ library [5, 17].
This universal adaptability makes JSON a versatile and widely accepted data interchange
format, facilitating seamless communication and data exchange between different systems
and platforms.

In addition to its widespread adoption as a data interchange format in various pro-
gramming languages, JSON has found a significant role in the realm of NoSQL databases.
NoSQL databases are designed to handle large volumes of unstructured or semi-structured
data, making them particularly well-suited for modern, highly dynamic applications. The
flexible and schema-less nature aligns seamlessly with the principles of NoSQL databases,
facilitating the storage and retrieval of complex, nested data structures.

5

JSON in 🥜
5

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/


JSON in 🥜
6

2.2 Schemas

Schemas are formal specifications that define the structure, content, and constraints of a
data model. They provide a standard for describing and validating data, ensuring consis-
tency and accuracy in its representation. Schemas can be used to define the structure and
content of a variety of data formats, including JSON, XML, and others. For this paper,
we will focus on only the data schema for JSON.

Example 3 An unclear JSON file

{

"orderId" : "2022343-34AZEEF",

"userId" : 433,

"reason" : 1

}

This JSON file is unclear as it does not de-
scribe itself. Questions may arise such as;
What is orderId? Is userId required? Why
is reason a number?
A schema would be able to answer these
questions.

In Example 3, an ambiguous JSON file is presented. To describe it, we can utilise a JSON
Schema [9]. A JSON Schema is a JSON file that outlines the characteristics, description,
and data types of each field in the object, along with any additional conditions.

Example 4 A example of a JSON Schema.

{

"$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",

"properties": {

"orderId": {

"description": "Unique identifier of the order", "type": "string"

},

"userId": {

"description": "Unique identifier of the user", "type": "string"

},

"reason": {

"description": "Reason for the return", "type": "string"

}

},

"required": ["orderId","userId","reason"]

}

In Example 4, we see a schema to describe the structure of the file in Example 3. Using
this, it is clear that the reason field is invalid as it is required to be a string. The schema’s
structure is determined by the meta-schema located in the $schema field. Since there are
different versions of the JSON Schema specification, this field is used to specify the version
of the schema.

6

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/


JSON Schema in 🥜
7

2.2 Schemas

Schemas are formal specifications that define the structure, content, and constraints of a
data model. They provide a standard for describing and validating data, ensuring consis-
tency and accuracy in its representation. Schemas can be used to define the structure and
content of a variety of data formats, including JSON, XML, and others. For this paper,
we will focus on only the data schema for JSON.

Example 3 An unclear JSON file

{

"orderId" : "2022343-34AZEEF",

"userId" : 433,

"reason" : 1

}

This JSON file is unclear as it does not de-
scribe itself. Questions may arise such as;
What is orderId? Is userId required? Why
is reason a number?
A schema would be able to answer these
questions.

In Example 3, an ambiguous JSON file is presented. To describe it, we can utilise a JSON
Schema [9]. A JSON Schema is a JSON file that outlines the characteristics, description,
and data types of each field in the object, along with any additional conditions.

Example 4 A example of a JSON Schema.

{

"$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",

"properties": {

"orderId": {

"description": "Unique identifier of the order", "type": "string"

},

"userId": {

"description": "Unique identifier of the user", "type": "integer"

},

"reason": {

"description": "Reason for the return", "type": "string"}

},

"required": ["orderId","userId","reason"]

}

In Example 4, we see a schema to describe the structure of the file in Example 3. Using
this, it is clear that the reason field is invalid as it is required to be a string. The schema’s
structure is determined by the meta-schema located in the $schema field. Since there are
different versions of the JSON Schema specification, this field is used to specify the version
of the schema.

6

2.2 Schemas

Schemas are formal specifications that define the structure, content, and constraints of a
data model. They provide a standard for describing and validating data, ensuring consis-
tency and accuracy in its representation. Schemas can be used to define the structure and
content of a variety of data formats, including JSON, XML, and others. For this paper,
we will focus on only the data schema for JSON.

Example 3 An unclear JSON file

{

"orderId" : "2022343-34AZEEF",

"userId" : 433,

"reason" : 1

}

This JSON file is unclear as it does not de-
scribe itself. Questions may arise such as;
What is orderId? Is userId required? Why
is reason a number?
A schema would be able to answer these
questions.

In Example 3, an ambiguous JSON file is presented. To describe it, we can utilise a JSON
Schema [9]. A JSON Schema is a JSON file that outlines the characteristics, description,
and data types of each field in the object, along with any additional conditions.

Example 4 A example of a JSON Schema.

{

"$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",

"properties": {

"orderId": {

"description": "Unique identifier of the order", "type": "string"

},

"userId": {

"description": "Unique identifier of the user", "type": "string"

},

"reason": {

"description": "Reason for the return", "type": "string"

}

},

"required": ["orderId","userId","reason"]

}

In Example 4, we see a schema to describe the structure of the file in Example 3. Using
this, it is clear that the reason field is invalid as it is required to be a string. The schema’s
structure is determined by the meta-schema located in the $schema field. Since there are
different versions of the JSON Schema specification, this field is used to specify the version
of the schema.

6

incorrect

format

minimum

$ref

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/


Grammar/Schema Inference

• a lot of prior work

• no ultimate solution


• based on

• finite automata

• structure identification graphs

• equivalence relations

• class diagrams


• there are tools for JSON

8

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/


Highlights

• const 

• always has the same value


• enum 

• restricted to a set of possible values


• default 

• semantic equivalent of a missing value


• uniqueItems / multipleOf / anyOf+contains

• restricts structure of a value

9

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/


Evaluation
10

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://www.minecraft.net/en-us/article/around-block--badlands
https://spike.sh/blog/how-to-create-an-npm-package/
https://en.wikipedia.org/wiki/Open_Source_Initiative
https://www.imdb.com/title/tt5108870/mediaviewer/rm3668908033/
https://commons.wikimedia.org/wiki/File:Augustine_volcano_Jan_24_2006_-_Cyrus_Read.jpg


Informational Keys: Main Challenge
11

2.3 Informational Keys

As we have discussed, JSON is flexible due to its lack of structure. Due this flexible struc-
ture, the same information can be presented differently. Informational Keys demonstrate
the significance of this. In a JSON file it is intended that the key is used to uniquely
identify and retrieve a specific value from the data. However, it is possible to use the
key as an identifier, attaching data into it. This often makes a file smaller, but results in
inconsistent keys in the file structure.

Example 5 Informational Keys A

"people" : {

"Alis" : {

"age" : 34, "email" : "alis@example.com"

}

}

...

"people" : [

{

"name": "Alis", "age": 34, "email" : "alis@example.com"

}

]

In this example, two methods are shown to display a list of people. In the first
example, the name of the person is used as an informational key. In the second
example, an array of object are used.

In Example 5 an JSON is shown where information can be stored in the keys of an
object. For a JSON Schema, this means that almost any key is allowed. As a result,
an inference system will have trouble inferring this structure. The basic inference system
would, for the second example, describe the structure of a person once, while for the first
example it would describe it for each individual person. JSON Schema has the functionality
to describe structure for any key that matches a specific pattern, however automating this
is difficult. The system would need to detect the difference between normal keys, and keys
that contain information.

7

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/


Informational Keys: It Gets Worse!
12

Example 6 Informational Keys B

{

"variants": {

"powered=false": {

"model": "minecraft:block/oak_pressure_plate"

},

"powered=true": {

"model": "minecraft:block/oak_pressure_plate_down"

}

}

}

In the given example, we see a JSON configuration file for the "blockstate" speci-
fication for an oak pressure plate within the game Minecraft. This pressure plate
is a block that has a state called powered, which changes when stepped on. The
key powered=true in this situation serves as a condition for what model to display
in the game when stepped on. Note that in Minecraft, blocks can contain various
states, such as directionality, waterlogging, or connections to neighbouring blocks.
These states can be combined by separating them with a ’,’ to create more complex
conditions.

Example 6 shows a more complex real world example of how information can be stored
in keys. A schema inference algorithm would, in this example, need to be able to parse
keys and detect the regex pattern that corresponds to possible structure.

8

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/


Conclusion

• JSON Schema inference from data

• when in doubt, ask the user

• assume propose default values

• more work

• better results


• challenges left

• custom Booleans (none/frozen)

• instrumental keys 

13

Improving JSON Schema Inference by Incorporating User
Inputs
Stijn Brian Broekhuis1, Vadim Zaytsev1,21Computer Science, EEMCS, University of Twente, The Netherlands

1Formal Methods & Tools, EEMCS, University of Twente, The Netherlands
Abstract
JSON Schema schemata, as descriptive JSON �les, de�ne the expected structure of other JSON data, serving as a

valuable resource for both developers and (meta)programs. They play a crucial role in data validation, testing,

and maintaining data consistency. Since manually creating schemata for JSON can be challenging, it is common

to derive them from sample data. In this paper, we focus on the introduction of user inputs during the inference

process with the goal of reducing ambiguity and allow an algorithm to make, otherwise inconclusive, speculations

from the sample data. We describe several strategies for utilising JSON Schema features based on sample JSON

�les and how they were implemented into a Kotlin program. We evaluate our tool on �ve distinct real world

sample JSON datasets from which the results showed it is able to infer complex patterns.
Keywords
JSON, inference, JSON Schema, user input, interactivity

1. Introduction
The world needs formats for (semi)structured data that can be
used very easily, without going through expertise-demanding
and labour-intensive process of de�ning grammars, metamod-
els and schemata. XML (eXtensible Markup Language) [1]
occupied this niche for a while, but JSON (JavaScript Object
Notation) [2] certainly seems to be winning.JSON Schema o�ers a means to validate, test, and maintain the consistency of JSON data [3]. It is

meant for projects that mature beyond having purely self-descriptive data chunks, and can be introduced

gradually for semi-structured data, restricting conformance only partially. However, its adoption has ben

rather slow [4]. One of the reasons for that is the time-consuming process of creating and maintaining

such schemata.
The obvious solution is automated schema inference from sample data. However, existing ap-

proaches [5, 6, 7, 6, 8, 9] cause over�tting and tend to produce structures that require further re�nement.

To address this issue, in this paper we introduce user inputs to be incorporated into the inference

process. By doing so, we reduce ambiguity and enable algorithms to make informed speculations that

would otherwise stay inconclusive. We assume that users have a deep understanding of the sample

data, and their knowledge can be leveraged to extract more information and improve the accuracy of

the schema.
In this paper, we present seven interactive strategies for harnessing the capabilities of JSON Schema

schemata, implemented in a Kotlin program, openly available via GitHub under the terms of the MIT

license [10]. We evaluate our tool using �ve real world sample JSON datasets, highlighting its strengths

and limitations.

BENEVOL’24: 23rd Belgium-Netherlands Software Evolution Workshop; 20–22 November 2024, Namen, Belgium

� vadim@grammarware.net (V. Zaytsev)� https://grammarware.net (V. Zaytsev)� 0000-0001-7764-4224 (V. Zaytsev)© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https:"//github.com/sbroekhuis/InteractiveSchemaInferrer ⚖ MIT

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://github.com/sbroekhuis/InteractiveSchemaInferrer

