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Whitespace

• \_\_   = push

• \_\n\_ = dup

• \_\n\t = swap

• \_\n\n = drop

• \n\_\_ = label

• \n\_\n = jump

• \n\_\t = call

• \n\t\n = return

• \n\n\n = stop
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?
Refactoring

• inspired by factoring in mathematics


• William Opdyke’s PhD thesis?


• Ralph Johnson’s paper?


• Dan Ingalls?


• Forth?

7

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/


Refactoring

• improving the design

• of existing code


• preserve the behaviour

• improve the design

• minimise the risk of errors

• each is “too small to be worth doing”

• cumulatively significant
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Candidate Refactorings

• Composing Methods

• Moving Features between Objects

• Organising Data

• Simplifying Conditional Expressions

• Simplifying Method Calls

• Dealing with Generalisation

• Code Smells
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Candidate Refactorings

• Composing Labels

• Moving Features between Objects

• Organising Data

• Simplifying Conditional Expressions

• Simplifying Label Jumps

• Dealing with Generalisation

• Code Smells
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Refactorings List

• Extract Method

• Inline Method

• Rename Method

• Consolidate Conditional Expression

• Consolidate Duplicate Conditional Fragments

• Remove Dead Code

• Remove Duplicate Methods
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Details in the paper

• Rust 

• https://github.com/
CensoredUsername/whitespace-rs 

• Intermediate Representation

• Focus on size optimisation

• Evaluation is non-trivial

• in general 

• but ok for Whitespace
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Improving Nothingness. Refactoring Whitespace.
(Extended Abstract)
Rutger Witmans, Vadim Zaytsev
University of Twente. Enschede, The Netherlands

Abstract
In this paper we explore the possibilities of refactoring code in Whitespace, a programming language which only recognises

whitespace characters as code, and tolerates textual comments that describe the program. The paper presents a list of possible

refactorings applicable to Whitespace, and describes a tool that automates some of these refactorings. The functionality of

the tool is demonstrated with concrete examples.
Refactoring is a important systematic process of improving code without creating new functionality, improving long-

term properties of the code such as readability, maintainability, changeability, testability, extendability and safety. We argue

that, despite the lack of real-life applications for Whitespace speci�cally, it is bene�cial to apply refactoring methodology to

it, since lessons learnt from esoteric languages can be ported elsewhere — in this case, to assemblers and similarly restrictive

software languages.
Keywords
Whitespace, program refactoring, esoteric languages, second generation languages1. Motivation

There are many ways to classify software languages [10].
One of them is a spectrum from the most mainstream
and widespread languages, to most exotic and esoteric
ones. The mainstream side can be represented by the
TIOBE index [8], the current top ten being Python, C,
Java, C++, C#, Visual Basic, JavaScript, SQL, PHP and
Go. Esoteric1 languages, on the other side, are designed
for one speci�c purpose of local interest: to have the
smallest compiler, as it was the case with ������*�� [5],
to use statements that are as far from all other languages
as possible, as it was with INTERCAL [16], or to provide
a feasibly tiny playground for implementing legacy lan-
guages, as it happened with B���C���� [18]. One of
such languages isW��������� [2], and it was designed
from a driving principle that whitespace — the part of
the source code which is traditionally ignored by the
compiler as insigni�cant — is precisely the only part of
the code which is signi�cant, and the rest of the code
such as visible punctuation, letters and numbers, are in-
signi�cant and skipped by the compiler. The language
was designed by Edwin Brady around 2003 [2], and has
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existence of many implementations and programs to try
software evolution techniques and tools on.Refactoring [11] can be used as a standalone technique,
often applied manually by developers (with automation
support from the IDE) with the original intent — to im-
prove the design of existing code [4]. However, it is also
very useful as a part of composite techniques. For in-
stance, one can apply it as a program transformation
on elements of a test suite, possibly augmenting it with
more test cases with known execution outcomes. In the
past, this is exactly what the second author has tried to
do [6] to augment the labour-intensive process of testing
the Raincode Assembler Compiler [1, 17] with mutative
fuzzing. The endeavour was ultimately unsuccessful:
fuzzing only worked on the level of macros (where it
did contribute somewhat, and found at least one o�-by-
one bug in the compiler), but the original goal of testing
the instruction implementations failed. The main reason
was the di�culty to de�ne any kind of refactoring trans-
formations that make sense: changing even one bit of
the test program had potentially numerous and hardly
predictable e�ects.Several years later, we try a di�erent approach: instead
of codeveloping all the elements of the fuzzing infras-
tructure, we focus only on refactorings; and instead of
facing a gigantic language requiring 1500+ pages of doc-
umentation just to cover the byte-level basics, we focus
on one tiny esoteric language with similar properties —
namely, di�culty of de�ning what constitutes a refactor-
ing within it. If by any chance our results will happen to
help some Whitespace developer to improve readability
of their code, that could only make the world a better
place to live in.
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Conclusion

• There is life research beyond Java

• Even Whitespace can be refactored

• We need more IR/ASM-level refactorings

• Conceptually related:


• BabyCobol [ICSME’23] [SLE’20] [BENEVOL’20]

• Assembler [ECMFA’20] [BENEVOL’20] [MoreVMs’17] [SLE’16]

• 4GLs [SLE’23] [ICTD’19] [PX/17.2]

• CSS [SLE’16] [SATToSE’16] [SATToSE’16] [ICSME’16]

• Python [SLE’21] [‹Programming›’17]


• Let’s talk about refactoring detection!
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Thank you!

• Takeaways:

• There is life research beyond Java

• Even Whitespace can be refactored

• We need more IR/ASM-level refactorings

• Conceptually related:


• BabyCobol [ICSME’23] [SLE’20]

• Assembler [ECMFA’20] [BENEVOL’20] [MoreVMs’17] [SLE’16]

• 4GLs [SLE’23] [ICTD’19] [PX/17.2]

• CSS [SLE’16] [SATToSE’16] [SATToSE’16] [ICSME’16]

• Python [SLE’21] [‹Programming›’17]

20

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1145/3426425.3426933
https://doi.org/10.5381/jot.2020.19.2.a5
http://ceur-ws.org/Vol-2605/18.pdf
file:///Users/grammarware/projects/homepage/text/2017/compilepretation.pdf
https://doi.org/10.1145/2997364.2997387
https://grammarware.net/writes/index.html#4GL-TechDebt2019
https://doi.org/10.1145/3167105
https://doi.org/10.1145/2997364.2997386
http://ceur-ws.org/Vol-1791/paper-06.pdf
http://sattose.wdfiles.com/local--files/2016:alltalks/SATTOSE2016_paper_13.pdf
https://doi.org/10.1109/ICSME.2016.91
https://doi.org/10.1145/3486608.3486909
https://doi.org/10.22152/programming-journal.org/2017/1/11

