
http://grammarware.net

http://grammarware.net

http://grammarware.net

Introduction

• Vadim Zaytsev aka @grammarware

• software evolution ()

• research (, ,)

• teaching ()

• industry (,)

• Interests:

• software language (re)engineering

• not just Java|Haskell|COBOL

4

http://grammarware.net && http://grammarware.github.io

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net
http://grammarware.github.io

Rutger Witmans aka @rwitmans

Dr. Vadim Zaytsev aka @grammarware

SATToSE, 12 June 2023

Improving Nothingness.

Refactoring Whitespace.

http://grammarware.net

Whitespace

• __ = push

• _\n_ = dup

• _\n\t = swap

• _\n\n = drop

• \n__ = label

• \n_\n = jump

• \n_\t = call

• \n\t\n = return

• \n\n\n = stop

6

Edwin Brady

(U of St Andrews)

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

?
Refactoring

• inspired by factoring in mathematics

• William Opdyke’s PhD thesis?

• Ralph Johnson’s paper?

• Dan Ingalls?

• Forth?

7

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Refactoring

• improving the design

• of existing code

• preserve the behaviour

• improve the design

• minimise the risk of errors

• each is “too small to be worth doing”

• cumulatively significant

8

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Candidate Refactorings

• Composing Methods

• Moving Features between Objects

• Organising Data

• Simplifying Conditional Expressions

• Simplifying Method Calls

• Dealing with Generalisation

• Code Smells

9

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Candidate Refactorings

• Composing Methods

• Moving Features between Objects

• Organising Data

• Simplifying Conditional Expressions

• Simplifying Method Calls

• Dealing with Generalisation

• Code Smells

10

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Candidate Refactorings

• Composing Labels

• Moving Features between Objects

• Organising Data

• Simplifying Conditional Expressions

• Simplifying Label Jumps

• Dealing with Generalisation

• Code Smells

11

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Refactorings List

• Extract Method

• Inline Method

• Rename Method

• Consolidate Conditional Expression

• Consolidate Duplicate Conditional Fragments

• Remove Dead Code

• Remove Duplicate Methods

12

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Refactorings List

• Extract Method

• Inline Method

• Rename Method

• Consolidate Conditional Expression

• Consolidate Duplicate Conditional Fragments

• Remove Dead Code

• Remove Duplicate Methods

13

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Details in the paper

• Rust

• https://github.com/
CensoredUsername/whitespace-rs

• Intermediate Representation

• Focus on size optimisation

• Evaluation is non-trivial

• in general

• but ok for Whitespace

14
Improving Nothingness. Refactoring Whitespace.
(Extended Abstract)
Rutger Witmans, Vadim Zaytsev
University of Twente. Enschede, The Netherlands

Abstract
In this paper we explore the possibilities of refactoring code in Whitespace, a programming language which only recognises

whitespace characters as code, and tolerates textual comments that describe the program. The paper presents a list of possible

refactorings applicable to Whitespace, and describes a tool that automates some of these refactorings. The functionality of

the tool is demonstrated with concrete examples.
Refactoring is a important systematic process of improving code without creating new functionality, improving long-

term properties of the code such as readability, maintainability, changeability, testability, extendability and safety. We argue

that, despite the lack of real-life applications for Whitespace speci�cally, it is bene�cial to apply refactoring methodology to

it, since lessons learnt from esoteric languages can be ported elsewhere — in this case, to assemblers and similarly restrictive

software languages.
Keywords
Whitespace, program refactoring, esoteric languages, second generation languages1. Motivation

There are many ways to classify software languages [10].
One of them is a spectrum from the most mainstream
and widespread languages, to most exotic and esoteric
ones. The mainstream side can be represented by the
TIOBE index [8], the current top ten being Python, C,
Java, C++, C#, Visual Basic, JavaScript, SQL, PHP and
Go. Esoteric1 languages, on the other side, are designed
for one speci�c purpose of local interest: to have the
smallest compiler, as it was the case with ������*�� [5],
to use statements that are as far from all other languages
as possible, as it was with INTERCAL [16], or to provide
a feasibly tiny playground for implementing legacy lan-
guages, as it happened with B���C���� [18]. One of
such languages isW��������� [2], and it was designed
from a driving principle that whitespace — the part of
the source code which is traditionally ignored by the
compiler as insigni�cant — is precisely the only part of
the code which is signi�cant, and the rest of the code
such as visible punctuation, letters and numbers, are in-
signi�cant and skipped by the compiler. The language
was designed by Edwin Brady around 2003 [2], and has
enjoyed some attention in the meantime, leading to theSATToSE’23: 15th Seminar on Advanced Techniques and Tools for
Software Evolution, June 12–14, 2023, Salerno, Italy
� r.c.h.witmans@student.utwente.nl (R. Witmans);
vadim@grammarware.net (V. Zaytsev)� http://grammarware.net (V. Zaytsev)� 0000-0001-7764-4224 (V. Zaytsev)© 2023 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
WorkshopProceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)
1“Esoteric — intended for or likely to be understood by only a

small number of people with a specialised knowledge or interest.”
Oxford Languages Dictionary

existence of many implementations and programs to try
software evolution techniques and tools on.Refactoring [11] can be used as a standalone technique,
often applied manually by developers (with automation
support from the IDE) with the original intent — to im-
prove the design of existing code [4]. However, it is also
very useful as a part of composite techniques. For in-
stance, one can apply it as a program transformation
on elements of a test suite, possibly augmenting it with
more test cases with known execution outcomes. In the
past, this is exactly what the second author has tried to
do [6] to augment the labour-intensive process of testing
the Raincode Assembler Compiler [1, 17] with mutative
fuzzing. The endeavour was ultimately unsuccessful:
fuzzing only worked on the level of macros (where it
did contribute somewhat, and found at least one o�-by-
one bug in the compiler), but the original goal of testing
the instruction implementations failed. The main reason
was the di�culty to de�ne any kind of refactoring trans-
formations that make sense: changing even one bit of
the test program had potentially numerous and hardly
predictable e�ects.Several years later, we try a di�erent approach: instead
of codeveloping all the elements of the fuzzing infras-
tructure, we focus only on refactorings; and instead of
facing a gigantic language requiring 1500+ pages of doc-
umentation just to cover the byte-level basics, we focus
on one tiny esoteric language with similar properties —
namely, di�culty of de�ning what constitutes a refactor-
ing within it. If by any chance our results will happen to
help some Whitespace developer to improve readability
of their code, that could only make the world a better
place to live in.

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://github.com/CensoredUsername/whitespace-rs
https://github.com/CensoredUsername/whitespace-rs

Conclusion

• There is life research beyond Java

• Even Whitespace can be refactored

• We need more IR/ASM-level refactorings

• Conceptually related:

• BabyCobol [ICSME’23] [SLE’20] [BENEVOL’20]

• Assembler [ECMFA’20] [BENEVOL’20] [MoreVMs’17] [SLE’16]

• 4GLs [SLE’23] [ICTD’19] [PX/17.2]

• CSS [SLE’16] [SATToSE’16] [SATToSE’16] [ICSME’16]

• Python [SLE’21] [‹Programming›’17]

• Let’s talk about refactoring detection!

15

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1145/3426425.3426933
http://ceur-ws.org/Vol-2605/keynote2.pdf
https://doi.org/10.5381/jot.2020.19.2.a5
http://ceur-ws.org/Vol-2605/18.pdf
file:///Users/grammarware/projects/homepage/text/2017/compilepretation.pdf
https://doi.org/10.1145/2997364.2997387
https://grammarware.net/writes/index.html#4GL-TechDebt2019
https://doi.org/10.1145/3167105
https://doi.org/10.1145/2997364.2997386
http://ceur-ws.org/Vol-1791/paper-06.pdf
http://sattose.wdfiles.com/local--files/2016:alltalks/SATTOSE2016_paper_13.pdf
https://doi.org/10.1109/ICSME.2016.91
https://doi.org/10.1145/3486608.3486909
https://doi.org/10.22152/programming-journal.org/2017/1/11

http://grammarware.net

http://grammarware.net

http://grammarware.net

http://grammarware.net

Thank you!

• Takeaways:

• There is life research beyond Java

• Even Whitespace can be refactored

• We need more IR/ASM-level refactorings

• Conceptually related:

• BabyCobol [ICSME’23] [SLE’20]

• Assembler [ECMFA’20] [BENEVOL’20] [MoreVMs’17] [SLE’16]

• 4GLs [SLE’23] [ICTD’19] [PX/17.2]

• CSS [SLE’16] [SATToSE’16] [SATToSE’16] [ICSME’16]

• Python [SLE’21] [‹Programming›’17]

20

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1145/3426425.3426933
https://doi.org/10.5381/jot.2020.19.2.a5
http://ceur-ws.org/Vol-2605/18.pdf
file:///Users/grammarware/projects/homepage/text/2017/compilepretation.pdf
https://doi.org/10.1145/2997364.2997387
https://grammarware.net/writes/index.html#4GL-TechDebt2019
https://doi.org/10.1145/3167105
https://doi.org/10.1145/2997364.2997386
http://ceur-ws.org/Vol-1791/paper-06.pdf
http://sattose.wdfiles.com/local--files/2016:alltalks/SATTOSE2016_paper_13.pdf
https://doi.org/10.1109/ICSME.2016.91
https://doi.org/10.1145/3486608.3486909
https://doi.org/10.22152/programming-journal.org/2017/1/11

