
Seeing a Language

Dr. Vadim Zaytsev aka @grammarware, University of Twente

SIESTA 2023, 13 September 2023
LANG

UAGE

http://grammarware.net

Introduction
2

http:!"grammarware.net !# http:!"grammarware.github.io

• Vadim Zaytsev aka @grammarware ()

• associate professor

• software evolution

• research (, ,)

• software language engineering

• analysis, modelling, transformation

• teaching ()

• lecturer, coordinator, director

• industry (,)

• analyst/developer

• Chief Science Officer

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net
http://grammarware.github.io

THX/1138 BPL/28699

JMP/18709 BMI/27561

BNE/19606 BVC/29190

BNE/2370 BCC/1877

LDA/24170 BCS/10738

http://grammarware.net
https://youtu.be/ok5eVzYK3_A?t=114

http://grammarware.net

http://grammarware.net

http://grammarware.net

http://grammarware.net

http://grammarware.net
https://twitter.com/shanselman/status/1256521098578980864

http://grammarware.net

http://grammarware.net

http://grammarware.net

http://grammarware.net

How do we know?

http://grammarware.net

How to detect it automatically?

http://grammarware.net

Portfolio/Codebase Analysis
15

IEF (1990-1996) Composer (1996-1997) COOL:GEN (1997-2004)
Advantage Gen (2004-2012) CA Gen (2012-2015) Other

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Identifying by a Classifier
16

[SANER’16]

Table 3.3: Percentage of files classified as a certain language with F1 measure
higher than 0.9

Classified as

C C
#

C
+

+

C
S
S

C
lo

ju
re

G
o

H
T

M
L

H
as

ke
ll

J
av

a

J
av

a
S
cr

ip
t

L
u
a

O
b
je

ct
iv

e-
C

P
H

P

P
er

l

P
y
th

o
n

R R
u
b
y

S
ca

la

S
ch

em
e

X
M

L

C 82 0 15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
C# 0 96 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
C++ 15 1 80 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0
CSS 0 0 0 98 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Clojure 0 0 0 0 97 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
Go 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HTML 0 0 0 0 0 1 93 0 0 4 0 0 1 0 0 0 0 0 0 1
Haskell 0 1 0 1 0 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0
Java 0 0 1 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0
JavaScript 0 1 1 0 0 1 1 0 1 93 0 0 0 0 0 0 1 0 0 0

A
ct

u
al

la
n
gu

ag
e

Lua 0 0 0 0 0 1 0 0 0 1 93 1 0 0 1 0 1 0 1 0
Objective-C 1 0 1 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 0 0
PHP 0 0 0 1 0 0 2 0 0 0 0 0 95 0 0 0 0 0 0 0
Perl 0 0 0 0 0 0 0 0 0 0 0 0 1 98 0 0 0 0 0 0
Python 0 0 0 0 0 0 0 0 0 0 0 0 1 0 96 0 1 0 0 0
R 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 96 0 0 0 0
Ruby 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 95 0 0 0
Scala 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 98 0 0
Scheme 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 96 0
XML 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 93

13

TABLE II
Percentage of files classified as a certain language with F1 measure higher

than 0.9.

C. Best Classifier per Language Combination
More interestingly, we can look into what classifiers that are

best capable of di↵erentiating between two languages, because
there are groups that are particularly easy to mix up, and
distinguishing between, say, C and C++ or HTML and XML
is a realistic application scenario. By only analysing language
identification results for pairs of languages, we rerun the
experiments for each pair of languages, calculated precision
and recall and combined those ranks in Table I.

D. Viability of Reasonable Classifiers
There are a couple of particularly weak classifiers in our

set that blindly classified everything as Java or everything as
Objective C — we exclude them from the final analysis, setting
the threshold at F1 > 0.9. Table II shows the percentages
of files which software language they were able to identify
correctly. As we can see, the results are rather promising
except for C and C++, which are mistaken for each other quite
often (15% of the time). Together with the fact that there were
languages that were never mistaken for one another, this hints
at the existence of families of related software languages.

E. Software Language Families
Table III shows all classifiers with a F1 measure higher than

0.9 and uses the top five languages a file is predicted to belong
to. With this method many possible relationships can be seen:
e.g., Java seems to be related to C#, C++ and Scala. Also
JavaScript is ranked highly among almost every language.

F. Detecting Embedded Software Languages
To detect which piece of code belongs to what software

language within a document, we used the “best classifier per
language combination” to try to find JavaScripts snippets in
HTML files collected from big websites, and checked results
automatically obtained using the Naïve Bayes classifier, with
n-grams of length 1 and the all-symbols lower case tokeniser

Table 3.4: Percentage of files ranking in top 5 as a certain language with F1
measure higher than 0.9

Classified as

C C
#

C
+

+

C
S
S

C
lo

ju
re

G
o

H
T

M
L

H
as

ke
ll

J
av

a

J
av

a
S
cr

ip
t

L
u
a

O
b
je

ct
iv

e-
C

P
H

P

P
er

l

P
y
th

o
n

R R
u
b
y

S
ca

la

S
ch

em
e

X
M

L

C 20 8 20 0 1 3 1 0 10 7 4 16 3 5 1 1 0 1 1 0
C# 5 20 17 1 0 4 1 1 17 10 1 7 1 6 0 0 1 4 0 2
C++ 19 12 20 0 1 3 1 0 10 6 2 14 4 5 0 1 0 1 1 0
CSS 1 4 1 20 1 4 10 2 2 5 4 2 2 1 4 5 9 7 17 1
Clojure 2 8 2 2 20 0 0 18 2 10 6 1 2 15 1 1 8 0 1 0
Go 3 13 6 1 0 20 1 0 6 10 10 2 1 1 3 3 5 14 1 0
HTML 2 5 3 4 1 3 20 1 1 4 7 1 7 3 7 5 9 10 5 0
Haskell 0 2 1 0 2 3 0 20 2 15 12 0 2 18 1 1 2 0 9 9
Java 5 18 14 1 1 2 0 1 20 10 0 6 0 5 0 0 0 15 0 1
JavaScript 3 9 5 1 0 8 1 13 8 20 8 1 3 8 2 2 4 3 1 0

A
ct

u
al

la
n
gu

ag
e

Lua 3 4 3 2 1 9 5 1 1 11 20 2 3 2 12 6 12 3 1 0
Objective-C 13 10 14 0 0 3 1 2 3 13 5 20 4 4 2 0 3 1 0 0
PHP 3 2 5 1 0 1 6 2 1 13 2 2 20 16 4 5 13 1 2 0
Perl 7 2 8 1 1 0 1 8 5 17 3 1 15 20 1 1 3 3 1 1
Python 1 3 1 1 1 4 2 1 1 11 14 3 5 3 20 4 15 10 1 0
R 2 3 2 2 1 7 5 1 2 10 10 0 6 3 8 20 10 8 2 0
Ruby 0 2 1 4 0 2 3 1 1 9 16 2 11 3 13 6 20 4 1 0
Scala 2 9 4 3 1 11 4 1 13 10 2 3 1 1 7 2 7 20 1 1
Scheme 4 3 5 18 2 2 12 2 1 4 4 2 2 2 4 3 3 7 20 0
XML 0 6 2 2 1 1 2 13 5 4 8 3 7 10 6 2 3 3 4 19

14

TABLE III
Percentage of files ranking in top 5 as a certain software language with the

F1 measure higher than 0.9.

(which was the best at di↵erentiating JavaScript and HTML in
subsection III-C). Our preliminary experiment on 3605 lines
of HTML resulted in 3187 lines classified correctly, which
gives an accuracy of 0.88. The actual language of a line was
determined by looking at the tags and the tag its content
in that line. If more than half of the line consisted out of
<script> tags and <script> content, the line was classified
as JavaScript, otherwise the line was classified as HTML.

IV. RelatedWork

Computer scientists have been fascinated by what they can
learn from natural linguistics for a long time [13]. Combining
natural language processing, information retrieval and software
analysis is promising [14], even though still underexplored.

The most usual place to find natural language processing
methods in software engineering is requirements engineering:
there have been uncitably many papers, luckily with some sur-
veys available [15], [16]. Somewhat closer to our topic, there
have been several reports on successful near-clone detection
in natural language artefacts such as defect reports [17], [18].

Blosseville et al. combine natural language analysis and
statistical analysis to design a system of supervised learning
that classifies project descriptions [19]. If our approach is com-
bined with theirs, it could be possible to improve SLI accuracy
further by switching to semi-automation (supervision).

Nakamura et al. propose to facilitate understanding of
graphical software models by annotating them with links to
concepts known from a given vocabulary as well as other
natural language artefacts [20]. Unfortunately they do not
propose any automation strategy which naturally limits the
usefulness of their solution to forward engineering.

SLI can be seen as a very specific form of fact extrac-
tion, recovering only one extremely trivial fact (what is the
language?) yet applied on such an early stage that nothing
else can be achieved until this fact is settled. Thus, we treat

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1109/SANER.2016.92

Identifying by a Classifier
16

[SANER’16]

Table 3.3: Percentage of files classified as a certain language with F1 measure
higher than 0.9

Classified as

C C
#

C
+

+

C
S
S

C
lo

ju
re

G
o

H
T

M
L

H
as

ke
ll

J
av

a

J
av

a
S
cr

ip
t

L
u
a

O
b
je

ct
iv

e-
C

P
H

P

P
er

l

P
y
th

o
n

R R
u
b
y

S
ca

la

S
ch

em
e

X
M

L

C 82 0 15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
C# 0 96 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
C++ 15 1 80 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0
CSS 0 0 0 98 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Clojure 0 0 0 0 97 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
Go 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HTML 0 0 0 0 0 1 93 0 0 4 0 0 1 0 0 0 0 0 0 1
Haskell 0 1 0 1 0 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0
Java 0 0 1 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0
JavaScript 0 1 1 0 0 1 1 0 1 93 0 0 0 0 0 0 1 0 0 0

A
ct

u
al

la
n
gu

ag
e

Lua 0 0 0 0 0 1 0 0 0 1 93 1 0 0 1 0 1 0 1 0
Objective-C 1 0 1 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 0 0
PHP 0 0 0 1 0 0 2 0 0 0 0 0 95 0 0 0 0 0 0 0
Perl 0 0 0 0 0 0 0 0 0 0 0 0 1 98 0 0 0 0 0 0
Python 0 0 0 0 0 0 0 0 0 0 0 0 1 0 96 0 1 0 0 0
R 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 96 0 0 0 0
Ruby 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 95 0 0 0
Scala 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 98 0 0
Scheme 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 96 0
XML 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 93

13

TABLE II
Percentage of files classified as a certain language with F1 measure higher

than 0.9.

C. Best Classifier per Language Combination
More interestingly, we can look into what classifiers that are

best capable of di↵erentiating between two languages, because
there are groups that are particularly easy to mix up, and
distinguishing between, say, C and C++ or HTML and XML
is a realistic application scenario. By only analysing language
identification results for pairs of languages, we rerun the
experiments for each pair of languages, calculated precision
and recall and combined those ranks in Table I.

D. Viability of Reasonable Classifiers
There are a couple of particularly weak classifiers in our

set that blindly classified everything as Java or everything as
Objective C — we exclude them from the final analysis, setting
the threshold at F1 > 0.9. Table II shows the percentages
of files which software language they were able to identify
correctly. As we can see, the results are rather promising
except for C and C++, which are mistaken for each other quite
often (15% of the time). Together with the fact that there were
languages that were never mistaken for one another, this hints
at the existence of families of related software languages.

E. Software Language Families
Table III shows all classifiers with a F1 measure higher than

0.9 and uses the top five languages a file is predicted to belong
to. With this method many possible relationships can be seen:
e.g., Java seems to be related to C#, C++ and Scala. Also
JavaScript is ranked highly among almost every language.

F. Detecting Embedded Software Languages
To detect which piece of code belongs to what software

language within a document, we used the “best classifier per
language combination” to try to find JavaScripts snippets in
HTML files collected from big websites, and checked results
automatically obtained using the Naïve Bayes classifier, with
n-grams of length 1 and the all-symbols lower case tokeniser

Table 3.4: Percentage of files ranking in top 5 as a certain language with F1
measure higher than 0.9

Classified as

C C
#

C
+

+

C
S
S

C
lo

ju
re

G
o

H
T

M
L

H
as

ke
ll

J
av

a

J
av

a
S
cr

ip
t

L
u
a

O
b
je

ct
iv

e-
C

P
H

P

P
er

l

P
y
th

o
n

R R
u
b
y

S
ca

la

S
ch

em
e

X
M

L

C 20 8 20 0 1 3 1 0 10 7 4 16 3 5 1 1 0 1 1 0
C# 5 20 17 1 0 4 1 1 17 10 1 7 1 6 0 0 1 4 0 2
C++ 19 12 20 0 1 3 1 0 10 6 2 14 4 5 0 1 0 1 1 0
CSS 1 4 1 20 1 4 10 2 2 5 4 2 2 1 4 5 9 7 17 1
Clojure 2 8 2 2 20 0 0 18 2 10 6 1 2 15 1 1 8 0 1 0
Go 3 13 6 1 0 20 1 0 6 10 10 2 1 1 3 3 5 14 1 0
HTML 2 5 3 4 1 3 20 1 1 4 7 1 7 3 7 5 9 10 5 0
Haskell 0 2 1 0 2 3 0 20 2 15 12 0 2 18 1 1 2 0 9 9
Java 5 18 14 1 1 2 0 1 20 10 0 6 0 5 0 0 0 15 0 1
JavaScript 3 9 5 1 0 8 1 13 8 20 8 1 3 8 2 2 4 3 1 0

A
ct

u
al

la
n
gu

ag
e

Lua 3 4 3 2 1 9 5 1 1 11 20 2 3 2 12 6 12 3 1 0
Objective-C 13 10 14 0 0 3 1 2 3 13 5 20 4 4 2 0 3 1 0 0
PHP 3 2 5 1 0 1 6 2 1 13 2 2 20 16 4 5 13 1 2 0
Perl 7 2 8 1 1 0 1 8 5 17 3 1 15 20 1 1 3 3 1 1
Python 1 3 1 1 1 4 2 1 1 11 14 3 5 3 20 4 15 10 1 0
R 2 3 2 2 1 7 5 1 2 10 10 0 6 3 8 20 10 8 2 0
Ruby 0 2 1 4 0 2 3 1 1 9 16 2 11 3 13 6 20 4 1 0
Scala 2 9 4 3 1 11 4 1 13 10 2 3 1 1 7 2 7 20 1 1
Scheme 4 3 5 18 2 2 12 2 1 4 4 2 2 2 4 3 3 7 20 0
XML 0 6 2 2 1 1 2 13 5 4 8 3 7 10 6 2 3 3 4 19

14

TABLE III
Percentage of files ranking in top 5 as a certain software language with the

F1 measure higher than 0.9.

(which was the best at di↵erentiating JavaScript and HTML in
subsection III-C). Our preliminary experiment on 3605 lines
of HTML resulted in 3187 lines classified correctly, which
gives an accuracy of 0.88. The actual language of a line was
determined by looking at the tags and the tag its content
in that line. If more than half of the line consisted out of
<script> tags and <script> content, the line was classified
as JavaScript, otherwise the line was classified as HTML.

IV. RelatedWork

Computer scientists have been fascinated by what they can
learn from natural linguistics for a long time [13]. Combining
natural language processing, information retrieval and software
analysis is promising [14], even though still underexplored.

The most usual place to find natural language processing
methods in software engineering is requirements engineering:
there have been uncitably many papers, luckily with some sur-
veys available [15], [16]. Somewhat closer to our topic, there
have been several reports on successful near-clone detection
in natural language artefacts such as defect reports [17], [18].

Blosseville et al. combine natural language analysis and
statistical analysis to design a system of supervised learning
that classifies project descriptions [19]. If our approach is com-
bined with theirs, it could be possible to improve SLI accuracy
further by switching to semi-automation (supervision).

Nakamura et al. propose to facilitate understanding of
graphical software models by annotating them with links to
concepts known from a given vocabulary as well as other
natural language artefacts [20]. Unfortunately they do not
propose any automation strategy which naturally limits the
usefulness of their solution to forward engineering.

SLI can be seen as a very specific form of fact extrac-
tion, recovering only one extremely trivial fact (what is the
language?) yet applied on such an early stage that nothing
else can be achieved until this fact is settled. Thus, we treat

Figure 3.1: F1 Measure of all classifiers

The size of the symbol shows which training set was used: large symbols used the large training set and small symbols the small
training set.

11

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1109/SANER.2016.92

Caveat: Languages ≠ Versions
17

WIP with Lola Solovyeva & Marcus Gerhold

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

What if we make it explicit?

http://grammarware.net

Grammars! (in a broad sense)
19

[ToSEM’05] [MoDELS’14]

String Forest Picture

Tokens Concrete Graph

Lexemes Parse Tree Drawing

Lex Model Abstract Diagram

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1145/1072997.1073000
https://doi.org/10.1007/978-3-319-11653-2_4

Grammars! (in a broad sense)
19

[ToSEM’05] [MoDELS’14]

String Forest Picture

Tokens Concrete Graph

Lexemes Parse Tree Drawing

Lex Model Abstract Diagram

What else?

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1145/1072997.1073000
https://doi.org/10.1007/978-3-319-11653-2_4

http://grammarware.net
https://twitter.com/shanselman/status/1256521098578980864

Conventions and style guides
21

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Conventions and style guides
22

[SLE’16] [SATToSE’17]

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1145/2997364.2997386
http://ceur-ws.org/Vol-1791/paper-06.pdf
https://www.phpied.com/css-coding-conventions/
https://docs.moodle.org/dev/CSS_Coding_Style
https://github.com/CSSLint/csslint/wiki/Rules
https://www.mediawiki.org/wiki/Manual:Coding_conventions/CSS
http://www.realdealmarketing.net/docs/css-coding-style.php
https://wiki.eclipse.org/Orion/Coding_conventions#CSS
https://csswizardry.com/2012/04/my-html-css-coding-style/

What happens if it is not explicit?

http://grammarware.net

Quality problems

• “a good Fortran programmer…”

• does a language fit?

• comprehension

• least surprise, also empirical [CogSci’20]

• inconsistencies

• clones vs reuse

• navigation

• fault localisation

24

[ICSE’22]

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1111/cogs.12921
https://doi.org/10.1145/3510003.3510049

What is “better”?

http://grammarware.net

class HtmlWriter {

 void setXhtmlMode(boolean as_xhtml);

 void write(File f, String txt);

}

class HtmlWriter {

 static void write(File f, String txt, boolean as_xhtml);

}

class HtmlWriter {

 HtmlWriter(File f, String txt, boolean as_xhtml);

 void write();

}

26

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

What is “better”?

http://grammarware.net

Layout conventions
28

while (x !% y) {

 something();

 somethingelse();

}

while (x !% y)

{

 something();

 somethingelse();

}

while (x !% y)

 {

 something();

 somethingelse();

 }

while (x !% y)

 {

 something();

 somethingelse();

 }

while (x !% y) {

 something();

 somethingelse();

 }

while (x !% y)

{ something();

 somethingelse();

}

while (x !% y)

{ something();

 somethingelse(); }

while (x !% y) {

 something();

 somethingelse(); }

?

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Layout conventions
29

while (x !% y) {

 something();

 somethingelse();

}

while (x !% y)

{

 something();

 somethingelse();

}

while (x !% y)

 {

 something();

 somethingelse();

 }

while (x !% y)

 {

 something();

 somethingelse();

 }

can comment
out the
condition

while (x !% y) {

 something();

 somethingelse();

 }

while (x !% y)

{ something();

 somethingelse();

}

while (x !% y)

{ something();

 somethingelse(); }

while (x !% y) {

 something();

 somethingelse(); }

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Layout conventions
30

while (x !% y) {

 something();

 somethingelse();

}

while (x !% y)

{

 something();

 somethingelse();

}

while (x !% y)

 {

 something();

 somethingelse();

 }

while (x !% y)

 {

 something();

 somethingelse();

 }

can cuddle
the else /

catch

while (x !% y) {

 something();

 somethingelse();

 }

while (x !% y)

{ something();

 somethingelse();

}

while (x !% y)

{ something();

 somethingelse(); }

while (x !% y) {

 something();

 somethingelse(); }

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Layout conventions
31

while (x !% y) {

 something();

 somethingelse();

}

while (x !% y)

{

 something();

 somethingelse();

}

while (x !% y)

 {

 something();

 somethingelse();

 }

while (x !% y)

 {

 something();

 somethingelse();

 }

compact
while (x !% y) {

 something();

 somethingelse();

 }

while (x !% y)

{ something();

 somethingelse();

}

while (x !% y)

{ something();

 somethingelse(); }

while (x !% y) {

 something();

 somethingelse(); }

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

What is better for a language?

Wordy or terse?

http://grammarware.net

33
!!& import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one!'and preferably only one!'obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea !' let's do more of those!

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://pycon.blogspot.com/2005/03/tim-peters.html

Is this code pythonic?

print(apple + "s and" + pear + "s")

print("%ss and %ss" % (apple, pear))

print("{0}s and {1}s".format(apple, pear))

print("{ap}s and {pe}s”.format(ap=apple, pe=pear))

print(f"{apple}s and {pear}s")

34

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Idioms

http://grammarware.net

Coding Traditions: Positive

• Idioms

• [x*x for x in X if x < 10]

• Implementation patterns

• caching / memoisation

• Calling conventions

• push/pop

• Naming conventions

• CamelCase, #SIESTA2023

• Formatting conventions

• {}

• Code snippets

• System.out.println();

• Micropatterns

• Box

• Templates
• . . .

36

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Coding Traditions: Negative

• Copy-paste programming

• Cargo cult programming

• Death march

• Shotgun debugging

• Premature optimisation = √evil

• Code smells

37

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Using conventions is a part of

culture

http://grammarware.net
https://www.youtube.com/watch?v=755BDwzxv5c

Adoption Patterns

• Unceasing growth

39

[SLE’21]

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1145/3486608.3486909

Adoption Patterns

• Unceasing growth

• Hype curve

40

[SLE’21]

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1145/3486608.3486909

Adoption Patterns

• Unceasing growth

• Hype curve

• Saturation point

41

[SLE’21]

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1145/3486608.3486909

Give someone a fish…

http://grammarware.net

Coevolution in PHP
43

[SCAM’22] [JSS]

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
https://doi.org/10.1109/SCAM55253.2022.00027

44

Coevolution in Python

[BSc] [BSc] [JSS]

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://purl.utwente.nl/essays/94375
http://purl.utwente.nl/essays/96034

If you gaze long into the language…

…the language also gazes into you.

http://grammarware.net

If you gaze long into the language…

…the language also gazes into you.

http://grammarware.net

