
2 JULY 2020 1

DR. VADIM ZAYTSEV

WORKSHOP ON PROGRAMMING RESEARCH IN MAINSTREAM LANGUAGES

(PRIML @ LICS/ICALP 2020)

Universiteit Twente

HIDDEN MAINSTREAM:

THE MAINFRAME LANGUAGES

DR. VADIM ZAYTSEV AKA @GRAMMARWARE

• Worked in research (CWI, VU, Koblenz)
• software evolution

• software languages (PL+)

• grammars in a broad sense

• Worked in industry (Raincode, Raincode Labs)
• legacy systems

• software migration

• mainframe to cloud native

• http://grammarware.net,
http://twitter.com/grammarware,
…

2

http://grammarware.net/
http://twitter.com/grammarware

IBM S/360

In use since 1964

⇒

4

MAINFRAME LANGUAGES

COBOL

• Language designed by committee
• tech advisor: Grace Murray Hopper

• Based on ideas of Grace Hopper
• and Bob Bemer (COMTRAN)

• Extremely verbose
• looks like English

• surprisingly readable!

• Hard to find empirical fodder
• little open source

• closed source portfolios are huge

• Hard to implement
• large grammar

• complex semantics
5

LANGUAGE GENERATIONS

6

1GL

2GL

3GL .

4GL .

D2 07 14 9C 24 A4

MVC X’49C’(8,1),X’4A4’(2)

MOVE INPUT-PARM OF JCL(1:LL OF

JCL) TO BOOKING-DATE

MAP STD_PARM_V OF ACC_XXX_I TO

CASH_ACT_UPD

7

1960s

http://www.dvq.com/ads/acm/informatics_acm_72.pdf

8

1970s

Computerworld — Aug 17, 1987

9

1980s

James Martin, Applications Development Without Programmers, 1981

Louis Schlueter, User-Designed Computing: The Next Generation, 1988

• 12 pages of COBOL

• 2 pages of Mark IV

• 1 statement in Nomad

10

2020?

STILL
ALIVE

as
CA VISION:BUILDER

STILL
ALIVE

as
IBM VisualAge Pacbase

WHAT ABOUT COBOL?

• 43% of banking systems built on COBOL [Reuters 2017]

• 15% of new applications built in COBOL [Gartner 2003]

• 75% of business data processed by COBOL [Gartner 2003]

• 80% of in-person transactions run COBOL [Reuters 2017]

• 95% ATM swipes rely on COBOL code [Reuters 2017]

• 180–200 billion LOC of COBOL in use [Gartner 2003]
• 220 billion LOC in use [Reuters 2017]

• one codebase up to 250 MLOC [Bankia’20], 343 MLOC [NYMellon’12]

• Replacement costs at $25 per line [Tactical Strategy Group]

• 1 COBOL app costs $5M/year [Micro Focus 2003]
• 4000 MIPS will cost $6–16M/year [Raincode 2020]

11

2 July 2020
https://thenewstack.io/cobol-everywhere-will-maintain/ (2017),

https://beyondparsing.com/interview-with-vadim-zaytsev/ (2020), etc

https://thenewstack.io/cobol-everywhere-will-maintain/
https://beyondparsing.com/interview-with-vadim-zaytsev/

12EXPECTATIONS REALITY

https://commons.wikimedia.org/wiki/File:William_Henry_Duryea_(1827-1903)_tombstone.jpg

COBOL QUOTES:

• “it's only a matter of time before all the existing COBOL
programmers die of old age” [Yourdon 1996]

• “maybe it will all be outsourced to some part of the world where
COBOL maintenance programming is considered a pleasant alternative
to growing rice or raising pigs” [Yourdon 1996]

• “The use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offence.” [Dijkstra 1975]

• However, research on COBOL is not! [Lämmel 2004]

13

2 July 2020cf.: https://www.cs.vu.nl/Cobol/stop-bashing-cobol.pdf

https://www.cs.vu.nl/Cobol/stop-bashing-cobol.pdf

TAKEAWAY #1:

• Legacy languages matter

• Software written in them runs your life

• 2GLs like HLASM

• 3GLs like COBOL, PL/I, CLIST, REXX, RPG, FORTRAN

• 4GLs like Pacbase, AppBuilder, IDEAL, VISION:BUILDER

14

⇒

15

LANGUAGE FEATURES

TO BE AFRAID OF

IN THIS PRESENTATION:

16

INDENTATION

Language features to be afraid of:

FREE FORMATTING

• C

• C++

• C#

• Java

• JavaScript

• …

• https://www.ioccc.org/2019/dogon/prog.c

[Dogon, IOCCC 2019]

17

https://www.ioccc.org/2019/dogon/prog.c

ALIGN HOMOGENEOUS PARTS

• Haskell

• Kotlin

• [Landin 1966]

18

f x = let a = w x
in if cond1 x

then a
else if cond2 x

then g a
else f (h x a)

class Pony(flyer: CanFly, walker: CanWalk) :

CanFly by flyer,

CanWalk by walker

https://doi.org/10.1145/365230.365257

ALIGN ALL BLOCKS

• Python

19

i = 1

while i < 6:

print(i)

i += 1

else:

print("error")

20Arnold Reinhold, CC-BY-SA, 2006,

https://commons.wikimedia.org/wiki/File:FortranCardPROJ039.agr.jpg

https://commons.wikimedia.org/wiki/File:FortranCardPROJ039.agr.jpg

21Rainer Gerhards, CC-BY-SA, 2006,

https://commons.wikimedia.org/wiki/File:Punch-card-cobol.jpg

https://commons.wikimedia.org/wiki/File:Punch-card-cobol.jpg

MACRO

LCLC &KAF

LCLA &COS

LCLA &TZT

&N1 MOVE &T,&F

AIF (T'&T NE T'&F).END

&KAF SETC 'fHUx'.(3)'X'.'th8LFqnqiexQvPD12RwUA'.'7PVUPZABNmQwOCk r'*

(9,13)

&TZT SETA 872+354/469

AIF (T'&T NE 'F').END

&COS SETA &TZT

&N2 ST 2,SAVEAREA

L 2,&F

LCLB &EOT

ST 2,&T

L 2,SAVEAREA

ANOP

.END MEND

LINE CONTINUATIONS IN HLASM

22

|...+.*..1....+....2....+....3....+....4....+....5....+....6....+....7..

000001 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK

- "LLLLLLLLLLMMMMMMMMMM"

000003 N"AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGG"

000005 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK

- "LLLLLLLLLLMMMMMMMMMM"

000010 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"

- "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK"

- "LLLLLLLLLLMMMMMMMMMM"

LINE CONTINUATIONS IN COBOL

23

TAKEAWAY #2:

• Parsing is “solved”

• Indentation is solved ad hoc

• There is no line continuation calculus

• Example @ GPCE 2017 ⇒

24

IN THIS PRESENTATION:

25

INDENTATION NAMING

Language features to be afraid of:

TYPED NAMES — IMPLICIT TYPING IN FORTRAN

26

IMPLICIT REAL (A-Z)

IMPLICIT INTEGER (I-N)

ADJUSTMENT = 1.0E5

NAME = 42

DEFAULT NAME-BASED VALUES & DROP IN REXX

27

hole. = "empty"

hole.9 = "full"

hole.rat = "full"

rat = "cheese"

drop hole.rat

say hole.1 hole.mouse hole.9 hole.rat

empty empty full HOLE.cheese

NAMES ARE NOT UNIQUE IN APPBUILDER

28

MAP A IN A TO A OF A

set
set item

view

field

KEYWORDS AND NOT RESERVED — PL/I

29

IF THEN = ELSE

THEN ELSE = IF

ELSE IF = THEN

END;

CONTRACTIONS IN COBOL

30

MOVE 42 TO X OF Y

IF X > 0 AND = Y OR Z THEN DISPLAY X END.

Y.X

(N.)*Y.(N.)*X

IF X > 0 AND X = Y OR X = Z THEN DISPLAY X END.

IN THIS PRESENTATION:

31

INDENTATION NAMING LEXICAL IMPORTS

Language features to be afraid of:

IMPORTS IN HASKELL

32

import Data.Maybe

import qualifying Data.Maybe

import Data.Maybe hiding maybeToList

IMPORTS IN PYTHON

33

import os.path

import lxml.etree as ET

from library import *

IMPORTS IN COBOL

34

COPY PRIMLLI

REPLACING == STD-FSSHH-I == BY == STD-FSSHH-INIT ==.

COPY PRIMLLI

REPLACING == STD-FSSHH-I == BY == STD-FSSHH-CHKPT ==.

COPY PRIMLLI

REPLACING == STD-FSSHH-I == BY == STD-FSSHH-END ==.

COPY PRIMLLI

REPLACING == STD-FSSHH-I == BY == STD-FSSHH-ROLLBACK ==.

COPY PRIMLLI

REPLACING == STD-FSSHH-I == BY == STD-FSSHH-COMMIT ==.

IN THIS PRESENTATION:

35

INDENTATION NAMING LEXICAL IMPORTS TRANSFER OF CONTROL

Language features to be afraid of:

GO TO CONSIDERED HARMFUL? TRY ALTER!

36

GO TO CONSIDERED HARMFUL? TRY ALTER!

• GO TO and ALTER

• Computed versions of FORTRAN

• EXECUTE in HLASM

37

PROCEDURE DIVISION.

. . .

EXIT-ON-ERROR.

GO TO EXIT-UPDATE-RECORD.

EXIT-UPDATE-RECORD.

. . .

EXIT-ROLLBACK-RECORD.

. . .

GO TO CONSIDERED HARMFUL? TRY ALTER!

• GO TO and ALTER

• Computed versions of FORTRAN

• EXECUTE in HLASM

38

PROCEDURE DIVISION.

ALTER EXIT-ON-ERROR TO EXIT-ROLLBACK-RECORD.

EXIT-ON-ERROR.

GO TO EXIT-UPDATE-RECORD.

EXIT-UPDATE-RECORD.

. . .

EXIT-ROLLBACK-RECORD.

. . .

EXIT-ROLLBACK-RECORD.

WANT MORE?

• Semi-structured transfer of control

• GO TO + ALTER (COBOL)

• GO TO (…), X (FORTRAN)

• EX (HLASM)

• Structured transfer of control

• NEXT SENTENCE (COBOL)

• PERFORM THRU (COBOL)

• DO (AppBuilder)

• SIGNAL (REXX)

39

TAKEAWAY #3:

• Read the documentation carefully!

• Expect the unexpected

• and still be surprised

• More new challenges = good!

• Example @ PX/17.2 ⇒

40

CONCLUSION

• Your life is run by COBOL

• banking, booking, ordering, …

• BabyCobol is a WIP

• http://slebok.github.io/baby

• Mainframe languages are great

• hide many challenges

• Follow @grammarware!

http://slebok.github.io/baby
http://grammarware.net/

