UNVERSTY | [(]

https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net

S
Announcement

)
N
=
g

e
;ohtma
£ Nig
» Wors
Engineers
“age
Laﬂg
are
Softw

1oht-
tNight
oS er
s WO o
ineer tional York,
Lang %€f§§ e New
ence 0. So(\wﬂ‘dmgs ﬂf‘hc(s £ 20
fer 2020- ceel
Acl\"vi2 5 ;mgs f me E“g‘"\,g\
dim D ocee n doi.0! las!
VA P re Langues the
are. it of an-
. mare; Softw s fin:
their ceon the IV jcal
et U en of 1il criti
ing E° Nar i hly
ineer e et 10 din O e and
e enginee ubs du @ e aring £ 163)
e \an%‘;ii o of el 1 Intro gnages L‘;‘na 8 e mufact \OX)BG (#39)
L oftwal e . ility: 1iditys 1a 11 do? fics, ind RPG ne
ract ques SO Schem® | lisal i the Legay ave S e logis desi® 29
Abs Ch“\qubybemgp A e cter . entury d " sur e freshly NG
e o wa, tandin® S cecton s T dern £ sud
Many idation = a S 0 ats des ilital cial s TR o) O echt
seval ch thre & sural s NS *E e p 0 " D e WSS L te
f\‘;“gu Tange2®® vl & one solid 7 - wa . “O::, e COB s r 1O ety making e
on ga s’ essing tary- ge too) frac! 2 tems
f suc? on oy Cob OCET N, gUaE Ly ate all B erat 0 sySer
SCUSYL ed s TO Y P tangl pd el) Y2
s 3 ‘oﬂe ‘;?d ussi ye? ¢ fures ‘“g‘; g“a‘?,es) edc;g“‘a ky 5). OntY 1 benefl ‘C " L T debases
ar ; feal C an s0 and Py g g
Ad ou ala tail S sigh Kol 2P inins x y min
wor s se ex de ks d or nt g wform=
aplify 0 at ges UL gens imal ewor " guages hoice f i pli £ such) lat tion O
s desig! ang! fow min’ in fr frw lan c ces in! a be
e cifically gn ngW esses\‘% - guage “°‘°gcu‘“ 8 larg® 8w enov! iron-
X a \a \an cir x T W
e o T e dweah S e oy oo = e g ing
y P fin g wa g are eer’ estin!
legac allen A deall 1 a was that e ally gl op! s, U
- 1or% e
L, a ch q o s B ob s N e anti: i s, trac!
by 1o 5 elp bl T byC eloper eve! st subs " siilla o fact e dytot 1, such
“;‘ et nap jneeri?® e piler de 4, thir e pitect hat 8 s, tools: B e ges: X g
2! 0 ng) N ne its earct ring ua oW
‘malki ox, apP evers! Z ustrial ¢ seore C“\ptge B“ym,n\ s Lestructl ey \zzns‘é :ﬂ ‘ega;\;
even °1 02 el am ks, o d a
How ring n af Jang D YOgY: O d by . 0se! o
nee ati nt Y ts, P 0S€! Jliarity rop et
engV 1abo! in men! i es P! ilial ing P eas!
i1l no i\ e o o jma Jle i fa e beln oug'
il cally iave \ _, Sp At jmate B0 s -
desi@ atic 0 . ineering sal an kmdi nges with 1 echnid! ‘?eri‘“e“h I; reg\\]‘1 this
N 1) L. le eW ex g it
b“d fouf:\ . evelop! A its el’lgi ~ thr dev \oS am ng\a“gu Eo e for ‘0. WV‘ ding "
ki e At o nee. n- o it ce jon, pa 7O a
i ma) are O ena Yas uag g SOuT ens! by P’ fies
in It oW inte are, 1ang) 4, v 1 S eh il
eficu) sof aB" i she ope! DX ad & emP e
Aiffic: s © 39 g ware acy ST ublis agh for comPr ex NengDs, .
ncep ation Soft leg; ing S .4 eno n o L el Min
ccs C:d a ‘\“:0 s = \a“g"ag’?zn» reach® the f;“(:“‘“ﬂ comp d like [od:‘ “g“:%(e uage \‘\‘ieme\‘{
galized ific R0 i ring ase -ma ng X dge
O fessio in-SPES e mig) jsation ble b b by X Knowledes
pre ds: dom? g, soft deanony™ f°iedvno of 188 a (28): » a treatm\ e
- n . mn 'S,
words® eering avoid " scrip lectio ge nt ap! taile cal
Key’ engin ed 1o work fo desc e col languee rs 102X ing for
ge + chang © s ¥ opie entir acy arch nding ! E
gua onally art o that ¢ o Kle Jeg jc resear’ v a , stal whi
e inent oo — e academi® U op 5‘“§‘NTE?\?AI§;yonyrtomm0“
= ies ¢ | advas P! st a for e P s ble in
Ve R xd €D out ial av® o ful e N mous ceal all
1 vey or bt i O st pogs horl® use! niq e infa nounced gat
ape agl o e e S5 B st 4 e o ike the o Pron’ othin
ke diEN0 o non other™ i ane ated nlike ith N we
jon to M 4 for P ko t o copy o P e f relal 1L U e Wil o hay
jssion 10 oro puted 7L by O i To res PO o obo! uage | ed t
PerR st e med DY 7 1ed ons@ oY Lang Sign
persot & e e ek s Lo s B Bcumpde'_‘ﬁ cally de
o i E i o i ¢
e ?es\’“”n‘en s o v g el o ol fon HENS was SPe
cop’ 0! rac 15O e vi cal
PO Abst TVES st DY Public
for &0 ored. O e, Reauest P)
one POt O e 20, SR o
be P e 2021 o/l
plish 0P) per 202020
TP o Ve e o
iSO Y o dby
P, 152 it el
SLE 2 e
2020 0
02000 $15.0
o ACN N2
oIS ors
TP’

€ Mo Thisgt; Tocess
€renc; g Migrati n Lo
Céline Deknop‘% Johay Fabryz, Kim Mepg! and Vg, Zaytsey2,3
Um'verslre’ (‘atholique Ouvajp uvain-1a~NeuVe, Be]gium
incode L s Brugge s, Belgium
Niversgit, t T te, EuschedeT The Netherlands
Celing, PCuc] va, ®, Johap, Aincoge com,
Q 1. mepg, 1 e, Vadim@gr TWare
N Abstract. Sof: g Srampm; 18 Jap Uages jg no-
torious] ubiquyit, us Compy, SS~Critj 1 Portjong of
codeh, an, Portfy), Se Suages, ike OB y; Ma-
\ tlue, 8ro Cquir, Modeyy, toolip, that |, akes ntenauce ac.
tvitjeg more pg, able, he; , li any f, gene; n /anguaym
(€lel S), 'Ehate 4, E €Ome o}g, €and y Maing, ine, mdmtam
m able, Which, St urge, nd eventy, forceg Mig, ng to Other |, ages,
if the Oftware needs ¢, be kept duc; hl‘paper dissect
2 Softyyy, odemisatl N pro, Orseq d‘ucode L > Utiliseq
m M parje,, to Migrag, twa a4 led PACBA Pure
OB E aving 8rateq Wa f 500 M Prodyctj,, ode tq
O. this pi Ocess, the hag 4 le Tienc, ith this
l Procegg N the], we j entify Some j, Tovem, 1t pojpg, a, Plajn
the tegy, a a p, le solut; d o, mié,rauou log differ..
Q encing, that jg cu ntly ut to the ¢, 5t by code migration
3 " engineers.
Keywords: Oltware mod, ation, leg; Togramy, ing Ianguages, SOftware
Q migration, Software evolutjg, > code diffepe, COBOL, PACBASE, 4G,
1 Introduction
Whey, CORBoy, Was fipgy intro, and p, ed in 19 [6], it Chableq y, tin
software that Teplaceq 1€ map, ! labo of Usandg p. evmus]y pe
Orming Pen-anq. aper b, ki ng or , St may, al and Manjpy,,.
lation, Whep, 4G (fourt ge; tio. Buages) Sta, Merg; they alloweq
developers to wrjg Signif; t] hortey O8ramyg, and engp), d ated 8eney.
ation of dozepg Dages of O. de frop, asingle g, Cent | OWaday
M the ey of in entxonal]y Signed e langy, ©s (18] 4 Ul-specify,.
Suageg 31], ¢ Senes; d brey; Vs appy, t i
testabj); Underg, abjljt. Imultely, labijljt 9]
Ware S to exjgt due ¢, the Vol f
Mateq at Jeast 220 b co

‘O Varjoyg
Formal
i

& Tools

-

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Personal Path

« First paper 1n 2000
« Real life starts in 2010
e ~% in pure research

e« postdoc (@ CWI
e~ in pure education Weare

. Lecturer @ UVA u SPIIES SHREN
e ~% in pure industry

« developer @ Raincode

http://qrammarware.net || qrammarware.qithub.io

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net
http://grammarware.github.io

Dick Grune - Kees van Reeuwijk
Henri E. Bal - Ceriel J.H. Jacobs
Koen Langendoen

Modern Compiler
Design

Second Edition

Convergence: [iFM’'09] [GTTSE’'09] [SQJ'11] [SLE'13] ‘ Fﬂ;;;:'d

& Tool

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Convergence2009
http://grammarware.net/writes/%23LCI2011
http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23Guided2013

Noname manuscript No.
(will be inserted by the editor)

1.BGF

Recovering Grammar Relationships
for the Java Language Specification

Ralf Limmel - Vadim Zaytsev

* Conver\gence eceived: date / Accepted: dat
- errors in Java language spec

automated processing. We include substantial metadata about the convergence process for
the JLS so that the effort becomes reproducible and transparent.

Keywords grammar convergence - grammar transformation - grammar recovery - grammar
extraction - language documentation

-_—

R. Limmel

Software Languages Team

The University of Koblenz-Landau
Germany

E-mail: laemmel @uni-koblenz.de

V. Zaytsev

Software Languages Team

The University of Koblenz-Landau
Germany

i N - e ————————

Formal
Methods

Recovery: [SQJ'11] [arXiv] [LDTA’12] o e

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23MediaWiki2011
http://grammarware.net/writes/%23NPGR2012

1.BGF

- Convergence

 errors 1n Java language spec

« Recovery
e Grammar Zoo

Recovery:

[SQJ’11] [arXiv] [LDTA’12]

Grammar Zoo:
A Corpus of Experimental Grammarware

Vadim Zaytsev

Software Analysis €& Transformation Team (SWAT),
Centrum Wiskunde & Informatica (CWI), The Netherlands;

Universiteit van Amsterdam, The Netherlands

-_—

Abstract

In this paper we describe composition of a corpus of grammars in a broad sense
in order to enable reuse of knowledge accumulated in the field of grammarware
engineering. The Grammar Zoo displays the results of grammar hunting for big
grammars of mainstream languages, as well as collecting grammars of smaller
DSLs and extracting grammatical knowledge from other places. Tt is already
operational and publicly supplies its users with grammars that have been recov-
ered from different sources of grammar knowledge, varying from officia] language
standards to community-created wiki pages.

We summarise recent achievements in the discipline of grammarware engi-
neering, that made the creation of such a corpus possible. We also describe
in detail the technology that is used to build and extend such a corpus. The
current contents of the Grammar Zoo are listed, as well as some possible future
uses for them.

Keywords: grammarware engineering, grammar recovery, experimental
infrastructure, curated corpus

-_—

1. Introduction

This paper contains a description of a method to compose a corpus of gram-
mars in a broad sense. Having such a corpus could be profitable for mining
new properties and patterns from the existing body of grammatical knowledge,
for comparing grammar-based techniques and developing new ones. Formal
grammars are inherently complex software artefacts, and until recently it was
technically unfeasible to create such a large scale €Orpus, so in existing literature
most case studies involve one, two or no more than a handful of grammars, and
many statements about software language design remain statistically unchecked
and empirically unvalidated or even unprovable.

The main contributions of this paper are:

Email address: vadinogrammarware . net (Vadim Zaytsev)

Preprint submitted to Science of Computer Programming October 29, 2014

Formal

Methods
& Tools

20

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23MediaWiki2011
http://grammarware.net/writes/%23NPGR2012

1.BGF)

Cotransforming Grammars with Shared Packed Parse Forests

ECEASST

Vadim Zaytsev

Universiteit van Amsterdam, The Netherlands, vadime grammarware.net

Abstract: SPPF (shared packed parse forest) is the best known graph representa-

C e tion of a parse forest (family of related parse trees) used in parsing with ambigu-

. O n V e r\ g ous/conjunctive grammars. Systematic general purpose transformations of SPPFs
have never been investigated and are considered to be an open problem in software

language engineering. In this Paper, we motivate the necessity of having a transfor-

P r‘ r \ - I I a I l l ' a C mation operator suite for SPPFs and extend the state of the art grammar transforma-
e 0 S l J a V a g tion operator suite to metamodel/mode] (grammar/graph) cotransformations.

Keywords: cotransformation, generalised parsing, parse graphs

1 Motivation

r‘ Classically, parsing consumes a string of characters or tokens, recognises its grammatical struc-
. ture and produces a corresponding parse tree [ASU85]. A more modern perspective is that

parsing recognises structure and expresses it explicitly [ZB14]. In many situations, trees appear

0 switching to graphs or pseudographs [SL13]. The most common scenarios include expressing
[) r\ a m m a r‘ uncertainty (e.g., in generalised parsing), maintaining several structural views (e.g., in the style
° X ssic £ S X : a
of trying to avoid, ignore or report ambiguous cases, they are expressed explicitly in so called
r‘ m a t l 0 n parse forests. Formally, a parse forest is a set of equally grammatically correct parse trees. Some
. r‘ a n of them may be semantically different, which makes such ambiguity significant and usually

undesirable. In practice, such sets usually need to be filtered or ranked in order to make full
use of the available tree-based approaches to program analysis and transformation. In Boolean

grammars [Okh04] and conjunctive grammars [OkhO1], we can use conjunctive clauses in a
200 grammar to explicitly specify several syntactically different yet equally grammatical views of the
. ’ , ’ same input fragment — they can be semantically equivalent [SC15] or one branch strictly more

DPS97, Chl08]. Itis an advanced method with high expressiveness, but it often requires similarly
advanced techniques like multilevel metareasoning [MA03] and demands the use of automated
theorem provers [DFH9Y5, RHBO1]. For now we will focus on the first two cases, since both
kinds of structures defined by those two related approaches conceptually are parse forests.

1/21 Volume 73 (2016)

Formal

Methods

Recovery: [SQJ’11] [arXiv] [LDTA’12] o T O

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23MediaWiki2011
http://grammarware.net/writes/%23NPGR2012

1.BGF

What flave We Done Apout the
WSS Sahy DIVersity of
Notation For Gwtastic Definitons

[SAC'12]

BNF WAS HERE:
What Have We Done About the Unnecessary Diversity of
Notation for Syntactic Definitions’

Vadim Zaytsev
Software Analysis and Transformation Team, Centrum Wiskunde en Informatica,
Amsterdam, The Netherlands
vadim@grammarware.net

ABSTRACT

Reusing existing grammar knowledge residing in standards,
specifications and manuals for programming languages, faces
several challenges. One of the most significant of ther is the
diversity of syntactic notations: without loss of generality,
we can state that every single language document uses ity
own notation, which is more often than not, a dialect of the
(Extended) Backus-Naur Form. In this paper we report on
an approach to solve the diversity problem by providing a
way to quickly and concisely specify all the parameters of o
symtactic notation. The resulting “meta-cbnf” language was
used to recover many from sources
that use different syntactic notations.

Instead of adding another syntactic notation and arguing
about its excellence, we propose to retain the diversity and
to cope with it by formally defining syntactic notations amd
using such definitions to import existing grammars o gram-
mar engincering frameworks and to export (pretty-print) ox.
isting gramumars to any desired syntactic notation. This ro.
sult effectively bridges programming language standards and
parser generators. The conclusions presented in the paper,
were drawn based on analysis of a large corpus of language
documents, as well as on the success of its application o
practice.

Categories and Subject Descriptors

D:3.1 [Programming Languages]: Formal Definitions and
Theory—Syntaz; D.3.1 [Pro ing L J: Pro-

Keywords

EBNF, syntactic notations, metasyntax, grammar recovery,
language documentation

1. INTRODUCTION

In this paper we present a set of constructs and conven-
tions, the combination of which full defines an EBNF liko
syntactic notation to an extent of enabling automated gram-
mar processing. Currently formal grammars in most pro.
gramming languages standards and reference manuals are
specified using a notation specific to that one particular stan-
dard or reference. In fact, all these notations stem from the
same root, namely Backus-Naur Form [2, 16], and are tech.
nically dialects thereof. It has been noted as carly as in 1977
that the diversity of notation for syntax definitions s sme.
essary [26], but as of today little has been done to minjmiss
the diversity and to deal with it effectively. There was an ar.
tempt in 1996 to standardize the notation at 1SO [11], but
It only ended up adding yet another three dialocts o he
chaos.

We have analyzed a corpus of 38 programming language
standards (ANSI, 1S0, IEEE, W3C, etc). 23 grammar con.
{aining publications of other kinds (non-endorsed books, sei.
entific papers, manuals) and 8 derivative grammar sources,
exhibiting in total 42 syntactic notations while defining 77
grammars (from Algol and C++ to SQI and XPath). It
quickly became apparent that a unified fully automated

cessors— Grammarware

General Terms
Design; Do ion;

L Reliabili.

*The title is a homage to an omnipresent. graffiti sticker stat-
ing that “BNE WAS HERE”. The identity of BN remains
unknown, unlike BNF which stands for Backus. Nau Form.
The second part of the title is a direct reference to [26] which
first described the problem we are solving in this paper.

Copyright ACM, 201 1. Thisis the author's version of the work. It is posted
fre by permission of ACM for your personal use. Not for redistritnues.

SAC’12 March 26-30, 201 2, Riva del Garda, Italy.
http://dx.doi. org/10.1145/2245276. 2232090

nar extractor is impossible to construct, since seman-
tic inference is impossible (e.g., “a=b,c” can define a ne 5
sequence of b and ¢ in one notation and assume a terminal
symbol *,* between b and ¢ in another).

Alfter proposing a way to define every specific syntactic
notation explicitly and concisely, we were able to automate
the rest of grammar recovery activities and build & fault (o)
crant extractor which helped us to recover 64 grammars of
industrial size (some of them containing over 300 nonter.
nal symbols and over 700 production rules) with minimm,
effort. This is a drastic improvement on prior work where e
€LY grammar recovery initiative took considerable individual
effort, which could not be ecasily re-used in a similar project.
Encapsulating syntactic notation details in a conciue specifi-
cation allows us to make generalizations and combines sell
With advanced error recovery techniques similar to oney pre-
sented in [19] or [20].

Formal
Methods
& Tools

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23BNF-WAS-HERE2012

1.BGF

Software

Language
Engineerin
Intentional
Rewriting

[SQM’14]

Vadim Zaytsev
Universiteit van Amsterdam
SQM 2014 @ CSMR-WCRE

3 February 2014
CC-BY-SA

E ECEASST

Software Language Engineering by Intentional Rewriting

Vadim Zaytsev

Universiteit van Amsterdam, The Netherlands, vadim @grammarware.net

Abstract: Grammars in a broad sense (specifications of structural commitments)
are complex artefacts that define software languages. Assessing and improving their
quality in an automated, non-idiosyncratic manner is an unsolved problem which
we face in an especially acute form in the case of mass maintenance of hundreds of
heterogeneous grammars (parser specs, ADTs, metamodels, XML schemata, etc) in
the Grammar Zoo. In an attempt to apply software language engineering methods to
solve a software language engineering problem, we design a language for grammar
mutations capable of applying uniform intentional transformations in the scope of
a big grammar or a corpus of grammars. In this paper, we describe a disciplined
process of engineering such a language by systematic reuse of semantic components
of another existing software language. The constructs of the reference language are
analysed and classified by their intent, each category of constructs is then subjected
to rewriting. This process results in a set of constructs that form the new language.

Keywords: term rewriting; intentionality; grammar programming; software lan-
guage engineering; grammar mutation; grammarware.

1 Introduction

Although there have been a lot of expert opinions expressed about designing a software lan-
guage [VW65, Hoa73, Wir74, MHS05, VBD 13], the process often remains far from being
completely controlled, and the correspondence of language design decisions with the successful
uses of the language for intended tasks, remains unproven, Formalising domain knowledge and
expressing it algorithmically is what we see as one of the fundamental challenges that the field
of software language engineering is facing.

Our case study concerns a domain-specific language for manipulating grammars in a broad

of such specifications to inline grammar editing [Lim01la, LZ09, 1.Z] 1]. We have also identi-
fied the need for expressing large scale manipulations — transformation generators [Zay11] or
grammar mutations [Zay12b], cautiously proposing one or two as the practical side dictated.

In this paper, we are determined to construct a full-fledged language for large scale gram-
mar programming, which would implement grammar mutations. If the language for fine-grained
grammar programming had operators like “rename this nonterminal” or “eliminate this unused
nonterminal”, then for the language of large scale grammar programming, we aim to have com-
mands like “rename all nonterminals to lowercase” and “eliminate all unused nonterminals”, In
order to do so, we deconstruct the existing language and intentionally (as in “intentional soft-

1/17 Volume 65 (2014)

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23SLEIR2014

2.Rascal

 Grammar Laboratory
« Grammar Library
e Micropatterns [SLE’"13]
- Smells [SLE"17]
« BOOL [NOOL'17]

« Also used externally [SPE]

[SLE'23] [SLE’17] [NOOL'17] UNIVERSITY
OF TWENTE.

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Micropatterns2013
http://grammarware.net/writes/%23Grammar-Smells2017
http://grammarware.net/writes/%23BOOL2017
https://doi.org/10.1002/spe.2665
http://grammarware.net/writes/%23Micropatterns2013
http://grammarware.net/writes/%23Grammar-Smells2017
http://grammarware.net/writes/%23BOOL2017

3.Engage!

[REBLS’19]

Event-Based Parsing

Vadim Zaytsev
Raincode Labs
Brussels, Belgium
vadim@grammarware.net

Abstract

Event-based parsing is a largely unexplored problem. Despite
several hugely popular event-based parsers like SAX, there
is very little research on the ‘Ways grammar engineers can
be given explicit control over handling input tokens, and the
consequences of exposing this control. Tool support is also
underwhelming, with no language workbenches and very
few libraries to help a parser developer to get started quickly
and efficiently. To explore this paradigm, we have designed
a language for event-based parsing and developed a proto-
type that translates specifications written in that language,
to parsers in C#. We also report on the comparative perfor-
mance of one of the parsers we generated, and a previously
used PEG parser extracted from a real compiler.

CCS Concepts Theory of computation — Parsing; .
Applied computing — Event-driven architectures.

ACM Reference Format:
Vadim Zaytsev. 2019. Event-Based Parsing, In Proceedings of the
6th ACM SIGELAN International Worishop on Reactive and Event.
Based Languages and Systems (REBLS *19), October 21, 2019, Athens,
Greece. ACM, New York, NY, USA, 10 pages. htps://doi.org/10.1145/
3358503.3361275

1 Introduction
Parsing is considered a solved problem [1]. However, in prac-
tice often it is not. Despite having literally hundreds of dif-
ferent parsing techniques at our disposal [9], produced by
the researchers and Practitioners non-stop since 1961 [10],
the compiler experts are commonly faced with challenges
related to inapplicability of existing technol gies to the tasks
of software renovation [2]. the inappropriateness of existing
frameworks in dealing with legacy languages [29] or simply
the lack of developed theories and tools for crucial activities
like regression parsing [28].

In general, parsing in a broad sense [32] is a task of recog-
nising elements of expected structure in the input stream.

REBLS ’19, October 21, 2019, Athens, Greece

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 6th ACM SIGPLAN International Workshop on Reactive
and Event-Based Languages and Systems (REBLS °19), October 21, 2019, Athens,
Greece, https://doi.org/10.1145/3358503.3361275,

There are many flavours of such techniques, forming a spec-
trum from classical text-to-tree parsing techniques [9] to a
family of more approximate and tolerant semiparsing tech-
niques [27] all the way to the simplest tasks of software
analytics [3] and software metrics [5, 19]. On the grand
scheme of things, counting the number of lines in a file
is also some form of “parsing” (more commonly referred to
as “fact extraction”). As an industrial company involved in
writing compilers and migrating legacy software, we rou-
tinely encounter new challenges in parsing. For example,
some notations of legacy languages are position-based [29],
and “parsing” entails counting which position in the line
does a character occur at, and not necessarily paying any
attention to the character per se (and counting the number
of spaces in a line before a non-space symbol has much more
in common with counting lines in a file than with traditional
graph manipulation).

This paper is an attempt to explore a new paradigm in
Pparsing: the event-based parsing. Instead of writing a gram-
mar for the desired language, typically specifying rules like
“a 'b' ¢+, meaning “sequentially apply the rules of the
nonterminal a, then expect an input 'b', and then expect
any number of inputs conforming to the rules of the nonter-
minal ¢”, we could write a reactive specification in the form
of “whenever 'b" is found in the input, expect a to have been
prepared before it, and collect any number of occurrences of
c until the input is exhausted”.

To quote Tudor Girba: “In software ideas do not exist
without a concrete incarnation, The materialization of an
idea is a step that matters and the research is not complete
without it [8]. Contemplating novel paradigms is always
easier with a concrete implementation of them, even though,
of course, we are thus inherently limiting ourselves to the
limitations of the actual implementation at hand. Thus, we
will present Engage! [31] as a small framework supporting
Writing parsing specifications in an event-based style, and
generating code in C# for execution and inspection.

Motivations for choosing the event-based paradigm can
be versatile. At least two possible advantages come to mind
in the context of parsing. First of all, event-based represen-
tations are equally easy to write when precise parsing is
required, as well as when some form of semiparsing (toler-
ant, error-correcting, permissive, fuzzy, etc [27]) is enough.
The state of the art in traditional state-based parsers is that
most effort goes into tool support for precise parsing, and
each language workbench which can already deliver precise

A -
Y

Formal
Methods
& Tools

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Event-Based2019

3.Engage!

namespace AB

types
ABProgram;

Decl;

tokens

StC, D!
number :: Num
string :: Id

handlers
EOF

Num

"del
"enddcl’

";' upon DCL

’

'dec’

"(" upon DEC
l)l

Var, Lit <: Expr;
AV

'dcl', 'enddcl',

Integer, String, Decimal <: Type;

skip
mark
"integer', 'dec' :: word

-> push ABProgram(data,code)
where code := pop# Stmt,
data := pop# Decl
-> push Lit(this)
-> 1ift DCL
-> drop DCL
-> push Decl(v,t)
where t := pop Type,
v := pop Var

"integer' upon DCL -> push Integer

-> push Decimal(n))
upon BCL =>'p = await (Lit upon BRACKET) with DEC,

where x :

n := tear x
-> lift BRACKET
-> drop BRACKET

Event-Based Parsing

Vadim Zaytsev
Raincode Labs
Brussels, Belgium
vadim@grammarware.net

Abstract

Event-based parsing is a largely unexplored problem. Despite
several hugely popular event-based parsers like SAX, there
is very little research on the Ways grammar engineers can
be given explicit control over handling input tokens, and the
consequences of exposing this control. Tool support s also
underwhelming, with no language workbenches and very
few libraries to help a parser developer to get started quickly
and efficiently. To explore this paradigm, we have designed
a language for event-based parsing and developed a proto-
type that translates specifications written in that language,
to parsers in C#. We also report on the comparative perfor-
mance of one of the parsers we generated, and a previously
used PEG parser extracted from a real compiler.

CCS Concepts Theory of computation — Parsing; «
Applied computing — Event-driven architectures.

ACM Reference Format:

Vadim Zaytsev. 2019. Event-Based Parsing, In Proceedings of the
6th ACM SIGPLAN International Workshop on Reactive and Event-
Based Languages and Systems (REBLS 19), October 21, 2019, Athens,
Greece. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3358503.3361275

1 Introduction

Parsing is considered a solved problem [1]. However, in prac-
tice often it is not. Despite having literally hundreds of dif-
ferent parsing techniques at our disposal [9], produced by
the researchers and Practitioners non-stop since 1961 [10],
the compiler experts are commonly faced with challenges
related to i licability of existing technol gies to the tasks
of software renovation [2]. the inappropriateness of existing
frameworks in dealing with legacy languages [29] or simply
the lack of developed theories and tools for crucial activities
like regression parsing [28].

In general, parsing in a broad sense [32] is a task of recog-
nising elements of expected structure in the input stream.

REBLS '19, October 21, 2019, Athens, Greece

2019 Copyright held by the owner/author(s). Publication rights lcensed
to ACM.

This s the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the éth ACM SIGPLAN International Workshop on Ruaetine
and Event-Based Languages and Systems (REBLS 19), October 21, 2019, Athens,
Greece, https://doi.org/10.1145/3358503.3361275,

[REBLS'19]

There are many flavours of such techniques, forming a spec-
trum from classical text-to-tree parsing techniques [9] to a
family of more approximate and tolerant semiparsing tech-
niques [27] all the way to the simplest tasks of software
analytics [3] and software metrics [5, 19]. On the grand
scheme of things, counting the number of lines in a file
is also some form of “parsing” (more commonly referred to
as “fact extraction”). As an industrial company involved in
writing compilers and migrating legacy software, we rou-
tinely encounter new challenges in parsing. For example,
some notations of legacy languages are position-based [29],
and “parsing” entails counting which position in the line
does a character occur at, and not necessarily paying any
attention to the character per se (and counting the number
of spaces in a line before a non-space symbol has much more
in common with counting lines in a file than with traditional
graph manipulation).

This paper is an attempt to explore a new paradigm in
Pparsing: the event-based parsing. Instead of writing a gram-
mar for the desired language, typically specifying rules like
“a 'b' ¢+, meaning “sequentially apply the rules of the
nonterminal a, then expect an input 'b', and then expect
any number of inputs conforming to the rules of the nonter-
minal ¢”, we could write a reactive specification in the form
of “whenever 'b" is found in the input, expect a to have been
prepared before it, and collect any number of occurrences of
c until the input is exhausted”.

To quote Tudor Girba: “In software ideas do not exist
without a concrete incarnation, The materialization of an
idea is a step that matters and the research is not complete
without it [8]. Contemplating novel paradigms is always
easier with a concrete implementation of them, even though,
of course, we are thus inherently limiting ourselves to the
limitations of the actual implementation at hand. Thus, we
will present Engage! [31] as a small framework supporting
Writing parsing specifications in an event-based style, and
generating code in C# for execution and inspection.

Motivations for choosing the event-based paradigm can
be versatile. At least two possible advantages come to mind
in the context of parsing. First of all, event-based represen-
tations are equally easy to write when precise parsing is
required, as well as when some form of semiparsing (toler-
ant, error-correcting, permissive, fuzzy, etc [27]) is enough.
The state of the art in traditional state-based parsers is that
most effort goes into tool support for precise parsing, and
each language workbench which can already deliver precise

10

A -
Y

Formal
Methods
& Tools

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Event-Based2019

4.PAX

[GPCE’17]

Parser
by
I LEGACY

m iiiiSPLASH

VANCOUVER
2017

Parser Generation by Example
for Legacy Pattern Languages

Vadim Zaytsev
Raincode Labs
Brussels, Belgium
vadim@grammarware.net

Abstract

Most modern software languages enjoy relatively free and
relaxed concrete syntax, with significant flexibility of format-
ting of the program/model/sheet text. Yet, in the dark legacy
corners of software engineering there are still languages
with a strict fixed column-based structure—the compromises
of times long gone, attempting to combine some human
readability with some ease of machine processing. In this
Ppaper, we consider an industrial case study for retirement of
alegacy domain-specific language, completed under extreme
circumstances: absolute lack of documentation, varying line
structure, hierarchical blocks within one file, scalability de-
mands for millions of lines of code, performance demands
for ipulating tens of th ds multi byte files, etc.
However, the regularity of the language allowed to infer its
structure from the available examples, automatically, and
produce highly efficient parsers for it.

CCS Concepts + Software and its engineering — Pro-
gr: ing by ple; Transl writing systems and
compiler generators; Parsers; - Theory of computation
— Grammars and context-free languages; Pattern matching;

Keywords parser generation, engineering by example, pat-
tern languages, legacy software, grammar inference, lan-
guage acquisition

ACM Reference Format:

Vadim Zaytsev. 2017. Parser Generation by Example for Legacy
Pattern Languages. In Proceedings of 16th ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Ex-
periences (GPCE'17). ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/31 36040.3136058

GPCE’17, October 23-24, 2017, Vancouver, Canada

© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of 16th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE'17), https://doi.org/10.1145/
3136040.3136058,

1 Problem

When working in legacy analysis and renovation industry,
we come across bizarre file formats with alarming regularity.
It is a world where language identification cannot rely on
file extensions and may require anything up to and includ-
ing machine learning [20], and where dealing with a priori
unknown formats has been elevated from an idle thought
experiment to a routinely used job interview question [36].
In this paper, we will share a success story of handling one
of such file formats, with the pattern language technology
(terminology by Angluin [1]).

Raincode Labs is an independent company providing be-
spoke compiler services. One of our clients in the banking
sector, which, being NDA-bound, we will have to call ¥,
owns a multi-million line codebase, developed over decades
of company growth and containing most of its business rules
and IT assets. Besides COBOL and PL/I which we have learnt
to handle with ease, grace and experience, the codebase con-
tains almost 70k modules in a fourth-generation language we
will call 8. Even though % has over 100 developers actively
creating new software in that language on a daily basis, it
has been classified as a liability for the future and scheduled
for retirement in its current incarnation. We are now in the
process of writing a full-fledged compiler for % targeting
the NET Framework. When the Pproject is completed, it will
allow U to deploy their products on commonplace hardware
or modern platforms such as Azure, to write hand-tweaked
components in modern Programming languages such as C#
and, most importantly, to hire young professionals otherwise
frightened off by the prospect of learning an obscure dying
language as the first job requirement.

The documentation of % is partly non-existent, partly
outdated and ultimately protected legally by an explicit dis-
claimer that only Ppaying customers of B’s current rights
owner are allowed to read it. The source artefacts come in
the form of five different serialisation languages that B's
infrastructure exports them in. These five notations are not
synchronised: only one looks like a programming language,
one more is more of a markup language, another one is syn-
tactically and conceptually close to JSON, another one to
LISP, and finally there is one notation with position-based
strings (think Excel in ASCII, example on Figure 1). We
will call the latter notation €. All five are important for the
healthy functioning of the system, since they define data and

11

A -
Y

Formal
Methods
& Tools

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Pattern2017

4.PAX

$$FILE 06/07/2017 23:59:59

$$F00 ABCD
A 1 00010 00 0000 Y Y N Y NAMEA

F 5 00030 00 0020 Y N N Y NAMEG

$$BAR
A LONGER_NAME_FOR_ENTITY

A ANSWER_TO_THE_ULTIMATE_QUESTION

Y 06/07/2017 23:59:59 XYZ

NAMEB S

C 2 00015 02 0000 Y Y Y Y NAMEDDDD NAME EEE S

NAMEH S

EFGHKLMN Y 06/07/2017 23:59:59 N/A

999 10.0
42 7.5

« Patterns
« Commitments

 Bindings

[GPCE’17]

Parser Generation by Example
for Legacy Pattern Languages

Vadim Zaytsev
Raincode Labs
Brussels, Belgium
vadim@grammarwaranet

Abstract

Most modern software languages enjoy relatively free and
relaxed concrete syntax, with significant flexibility of format-
ting of the program/model/sheet text. Yet, in the dark legacy
corners of software engineering there are still languages
with a strict fixed column-based structure—the compromises
of times long gone, attempting to combine some human
readability with some ease of machine processing. In this
Ppaper, we consider an industrial case study for retirement of
alegacy domain-specific language, completed under extreme
circumstances: absolute lack of documentation, varying line
structure, hierarchical blocks within one file, scalability de-
mands for millions of lines of code, performance demands
for manipulating tens of thousands multi-megabyte files, etc.
However, the regularity of the language allowed to infer jts
structure from the available examples, automatically, and
produce highly efficient parsers for it.

CCS Concepts + Software and its engineering — Pro-
gr ingby ple; Transl writing systems and
compiler generators; Parsers; - Theory of computation
— Grammars and context-free languages; Pattern matching;

Keywords parser generation, engineering by example, pat-
tern languages, legacy software, grammar inference, lan-
guage acquisition

ACM Reference Format:

Vadim Zaytsev. 2017. Parser Generation by Example for Legacy
Pattern Languages. In Proceedings of 16th ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Ex-
periences (GPCE'17). ACM, New York, NY, USA, 7 pages. https:
/doi.org/10.1145/3136040.3136058

GPCE’17, October 23-24, 2017, Vancouver, Canada

© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.

This s the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was. published
in Proceedings of 16th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE'17), https://doi.org/10.1145,
3136040.3136058,

1 Problem

When working in legacy analysis and renovation industry,
we come across bizarre file formats with alarming regularity.
It is a world where language identification cannot rely on
file extensions and may require anything up to and includ-
ing machine learning [20], and where dealing with a priori
unknown formats has been elevated from an idle thought
experiment to a routinely used job interview question [36].
In this paper, we will share a success story of handling one
of such file formats, with the pattern language technology
(terminology by Angluin [1]).

Raincode Labs is an independent company providing be-
spoke compiler services. One of our clients in the banking
sector, which, being NDA-bound, we will have to call ¥,
owns a multi-million line codebase, developed over decades
of company growth and containing most of its business rules
and IT assets. Besides COBOL and PL/I which we have learnt
to handle with ease, grace and experience, the codebase con-
tains almost 70k modules in a fourth-generation language we
will call 8. Even though % has over 100 developers actively
creating new software in that language on a daily basis, it
has been classified as a liability for the future and scheduled
for retirement in its current incarnation. We are now in the
process of writing a full-fledged compiler for % targeting
the NET Framework. When the project is completed, it will
allow % to deploy their products on commonplace hardware
or modern platforms such as Azure, to write hand-tweaked
components in modern Programming languages such as C#
and, most importantly, to hire young professionals otherwise
frightened off by the prospect of learning an obscure dying
language as the first job requirement.

The documentation of % is partly non-existent, partly
outdated and ultimately protected legally by an explicit dis-
claimer that only Ppaying customers of B’s current rights
owner are allowed to read it. The source artefacts come in
the form of five different serialisation languages that %'s
infrastructure exports them in. These five notations are not
synchronised: only one looks like a programming language,
one more is more of a markup language, another one is syn-
tactically and conceptually close to JSON, another one to
LISP, and finally there is one notation with position-based
strings (think Excel in ASCIL, example on Figure 1). We
will call the latter notation €. All five are important for the
healthy functioning of the system, since they define data and

12

T —

Formal
Methods
& Tools

O >

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Pattern2017

13

5. TIALAA

BluePhoenix AppBuilder 2.1.1

« AppBullder 1s a 4GL Rules Language Reference Guids

§
« “Application Development
without Programmers”

 Tech:
« complles to Java & COBOL
« supported by handmade code BLUE PHOFNTX

nnnnnnnnnnnnnnnnnnnnnnnn

e Business case:
« ~200 devs, relmplement in .NET

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

5. TIALAA

e Notations:
e« “Pyles”:

non-declarative
« “sets”: key-value lookup tables

« “views”: models in MVC

 “panels”: windows

« Guesswork
« COBOL & Java

« .NET/WPF

SLE’18] [PX/17.2] [TechDebt’19]

in S-exprs

4.355 Commits

2,625 Vadim Zaytsev
646 Thierry Miceli

567 Sudipta Mukherjee
256 sudiptos0

112 darius

69 EI Marcel

28 Daan Nijs

23 Kelly

10 yannick

9 benoit

6 shipra

4 Carlos Baia

2,625 Commits by Vadim Zaytsev

An Industrial Case Study in Compiler Testing
(Tool Demo)

Vadim Zaytsev

Raincode Labs, Brussels, Belgium, vadim@grammarware.net

Abstract

Compiler construction is one of the oldest areas of software
engineering, yet despite its maturity it has underdeveloped
sides such as compiler testing. There exist many disparate
methods for testing Pparsers, optimisers and other compo-
nents, but no unified methodology that consumable by practi-
tioners from a book to be directly applied to fulfil their needs,

Instead of striving to cover all theoretical aspects of com-
piler testing in one paper, we present a case study for an
ongoing project of a relatively large size for our company (2
years, 3-6 devs, ~500kLOC), a clean room compiler develop-
ment effort in replicating a 4GL. We built a model-based test
data generator, consuming manually written specs and gene-
rating necessary test code in the 4GL, in the host language,
and in auxiliary DSL (batch files, XML project descriptions),
to both the developers’ and the customer’s satisfaction. The
number of specs is 927 at the publication time, while the
number of test cases generated from them, is 6268. All these
tests have been run prior to shipping for the last 49 releases
of the compiler, both to ensure the lack of regression and to
report on the project overall progress. The generated tests
are separated into 11 categories which the paper details in
the hope that the classification will aid in seeking related
work and in pushing this line of research forward.

CCS Concepts + Software and its engineering — Com-
pilers; Software testing and debugging;

Keywords compiler testing, legacy, 4GL

ACM Reference Format:

Vadim Zaytsev. 2018, An Industrial Case Study in Compiler Testing
(Tool Demo). In Proceedings of the 11th ACM SIGPLAN International
Conference on Software Language Engineering (SLE °18), November
5-6, 2018, Boston, MA, USA. ACM, New York, NY, USA, 6 pages.
https:/doi.org/10.1145/3276604.32766 19

1 Introduction

There are two cardinally opposite views on software tes-
ting. One can be defined as Dijkstra’s famous “testing shows

SLE ’18, November 5-6, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

This s the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 11th ACM SIGPLAN International Conference on Software
Language Engineering (SLE °18), November 56, 2018, Boston, MA, USA, https

/doi. org/10.1 145/3276604.32766 19,

the presence, not the absence of bugs” [9, p.21]. The other
one was advocated by Goodenough as “properly structured
tests are capable of demonstrating the absence of errors in a
program” [13], which puts testing on the same level as ve-
rification which has always been viewed as its bigger and
smarter cousin. (‘[If] you have [l been] given the proof of cor-
rectness, [you] can dispense with testing altogether” [28, p.51]).
The three middle ground sweet spots commonly found in
software engineering, are:

© Best effort: especially for certification purposes, it is
important to demonstrate the intent to break claimed
funclionality, even if such attempts ultimately fail. In
Ppractice, however, it is relatively rare to invest in tes-
ting significantly without finding any bugs at all, since
in general an average software system is of imperfect
quality [31, 39, 49).
Coverage-driven: defining some metric of how good a
test suite is, and working towards increasing it up to
some exhaustion point. It has been known for along
time that “tests based solely on the internal structure
of a program are likely to be unreliable” [13]. Instead,
we should focus on conditions that can be observably
violated, and test for all combinations of them.
Refactoring support: test cases can encapsulate ex-
isting or desired behaviour of the system before its
internal structure is about to change, and then used
to ensure that the change did not affect the execution
semantics [12]. This path is commonly taken when
dealing with legacy code [10].

Compiler testing is an interesting subtopic with many
challenges. There is definitely industrial need and demand
for it, but the usual time pressure does not allow for in depth
investigations and methodological explorations. In the rest
of the paper we will explain how such challenges were faced
in one standalone project.

As an example, we take an ongoing project of Raincode
Labs. Its origins and peculiarities will be briefly described
below—for a more extended version the readers are invited
to explore Parser Generation by Example [45, §1]. For legal
reasons we will continue calling our primary client of this
project, . It is a company working in the banking sector,
which owns a multi-million line codebase. It was developed
over decades of company growth and contains most of its
business rules and IT assets. Besides COBOL and PL/I which
are routinely encountered in our line of business, the code-
base contains almost 70k modules in a fourth-generation

14

Formal
Methods
& Tools

A -

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Testing2018
http://grammarware.net/writes/%23Coverage2017
http://grammarware.net/writes/%234GL-TechDebt2019

sj - Microsolt Visual Stuio -P Quick Launch (Ctrl+Q)
file [Edit View Project Build Debug Team Tools Architecture Test CodeMaid Apalyze Window Help
©-0 B-2 W2 - - Debug - AnyCRU - b oState| B _EbnE| =z | cw .
ABCDEFG HpsSource* + X [Rtlile:
=dcl
L_COUNTER integer;@
L_STD_RUN_STATUS char(9);
dsmsgbox object type MessageBox;
enddcl

[

map ‘'XYZ' to USER_INFO_TXT *> will be expanded automatically <*

W o NOU; A WN

[= proc act@
l: caseof EVENT_SOURCE of HPS_EVENT_VIEW
case "INC_NUMB'
map L_COUNTER + 1 to L_COUNTER
map 1 to HPS_WINDOW_STATE of HPS_SET_MINMAX_I
use component HPS_SETLMINMAX
case 'DEC_NUMB'
map L_COUNTER - 1 to L_COUNTER
map 2 to HPS_WINDOW_STATE of HPS_SET_MINMAX_I
use component HPS_SET_MINMAX(E)
case other
print 'Event source "' ++ EVENT_SOURCE of HPS_EVENT_VIEW ++ '" is not supported’
21 | endcase
129% ~ Cohd\angesIOauthors,Ot:hanges 4]

N s sl el o ol
® WO NOODUVHWNRO

Entire Solution - |[€ okrors || 4 00f1Waming | @ 0Messages |[Xr|| Build + Inteliisense Search Error List

¥ Code Description « Project Line S. Y

Formal
Methods
& Tools .

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

6.CSS

« Escape the Java bubble!

 Project examples:
« dead code detection [UvA’15]

- performance [UvA'16] [SATToSE]

- refactoring [UvA’15]
- patterns [UvA'15] [ICSME'16]

« conventions [UvA’15] [SLE'16]

ICSME’'16] [SLE'16]

The A?B*A Pattern: Undoing Style in CSS
and Refactoring Opportunities it Presents

Leonard Punt Sjoerd Visscher Vadim Zaytsev

University of Amsterdam, The Netherlands

University of Amsterdam, The Netherlands

Q42, The Netherlands Q42, The Netherlands Raincode, Belgium

Abstract —Cascading Style Shects (CSS) is a language
widely used in porary web lications for
defining the pr i ics of web do X
Despite its relatively simple syntax, the language has a
number of complex features like inheritance. cascading
and specificity, which make CSS code challenging to
understand and maintain. It has been noted iy prior
research that CSS code is prone to contain code siells
which indicate design weakn, and maintainabili
issues.

In this paper we focus on one of those code smells
called undoing style. It happens when a property is
set to a value A, then overridden to another vaue
B, possibly multiple times, and then set back te the
original value of A. We refer to this pattern ag the
A’BA pattern. We propose a technique that detects
undoing style in CSS code and recommends refactoring

opportunities to elimi t: of undoing style
while preserving the semantics of the web application.
We luate our technique on 41 real 1d web

applications, and outline a proof of correctness for wu
refactoring. Our findings show that undoing style is
quite prominent in CSS code. Additionally, there ar
many refactorings that can be applied while hardly
introducing any errors.

L. INTRODUCTION

Cascading Style Sheets (CSS) [2], [5], [17] is a language
used for defining the presentation semantics of web doc-
uments, like Positioning, sizes, colours and fonts. CSS is
widely used — 96% of web developers use CSS and over
90% consider it a web standard [28), and it is used on 95%
of the websites [39].

Despite the relatively simple syntax of the language,
CSS code is not easily understood and maintained [22
The language has a number of complex features, like
inheritance, cascading and specificity [2], [5], [18]. On top
of that, established design principles and tool support are
missing [21]. Therefore, one of the consequences is that it
is not uncommon for CSS code to contain code smells [12].
A code smell is a Pattern of code that indicates a weakness
in the design. Such a weakness may cause issues in code
understanding and maintenance in the long term [10].
In a recent study, Mazinanian et al. [21] found that on
average 66% of the style declarations are repeated at least
once in a CSS file. Furthermore an 8% size reduction
can be achieved by exploring their detected refactoring
opportunities. More recently, Gharachorlu [12] showed

that CSS smells are widespread in today’s websites; 99.8%
of the websites (i.e., 499 out 500) analysed in that study,
contain at least one type of CSS code smells.

The goal of this work is to detect and come up with
semantic preserving refactoring opportunities for the CSs
code smell undoing style. We have deliberately chosen to
scope the project to focus on one smell and investigate
it in all details it deserves, rather than providing limited
refactoring opportunities for each smell.

The rest of the paper is organised as follows. We briefly
introduce CSS and explain its sophistication in section II.
In section 11T we report previous findings on the code
smells found in CSS, identify their shortcomings and
define the problem we intend to solve. The A?B*A pattern
mentioned in the abstract, is defined and elaborated in
section 1V, followed by the algorithm of its detection in
section V. A detailed realistic example is contained in
section VI. The experiments we ran as validation are
included in section VII, with the discussion of the results
found in section VIII. We sketch the proof of correctness
of our approach in section IX, revisit related work in
section X and conclude the paper with section XI.

II. Tue CSS Lancuace

An example of a CSS sheet would be a specification
that declares that all paragraphs (matching <p> tags)
should have their inner text centered and printed in red,
if hardware permits:

¢
color: red;
text-align: center;

The complete grammar of CSS3 [3] is still under de-
velopment, contains many top and bottom nonterminals,
mixes several notations and utterly fails to satisfy any
quality requirements of proper grammar engineering [19].
We present a manually derived simplified version of it:
Rule* ;

Selector "{" Declaration* "}"

| "@charset” String

| "@font-face” "{" Declaration* "

| "@import” (URL | string) MediaQueryList?
| "@medi

|

Stylesheet
Rule

" MediaQuerylList "{* Rulex "}~
"@page" "{" Declaration* "}
Declaration ::= Property ":" value "limportant"? ";v» ;
see, a style sheet is not g more than
a collection of rules, and each rule binds a selector

16

Formal
Methods
& Tools

O 20

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/edits/index.html%23Adegeest2015
http://grammarware.net/edits/index.html%23Jovanovski2016
http://grammarware.net/writes/index.html%23Critical2016
http://grammarware.net/edits/index.html%23Polet2015
http://grammarware.net/edits/index.html%23Punt2015
http://grammarware.net/writes/index.html%23ABA2016
http://grammarware.net/edits/index.html%23Goncharenko2015
http://grammarware.net/writes/index.html%23CoCo2016
http://grammarware.net/writes/%23ABA2016
http://grammarware.net/writes/%23CoCo2016

7 .HLASM

« IBM HLASM 1s a 2GL

« Non-orthogonal semantics

« Self-modification 1s glorified
 Errors 1n documentation
 Principles of 0Operation: 1902 pp
953 1nstructions 1n the set

« Modelling! Generation!
Supercompilaton!

[SLE’16] [MoreVMs’17] [BENEVOL’20] [ECMFA’20]

Tool Demo: Raincode Assembler Compiler

Volodymyr Blagodarov Ynes Jaradin
Raincode, Belgium
ynes@raincode.com

Raincode, Belgium
vladimir@raincode.com

Abstract

IBM’s High Level Assembler (HLASM) is a low level pro-
gramming language for z/Architecture mainframe comput-
ers. Many legacy codebases contain large subsets written in

Vadim Zaytsev
Raincode, Belgium
vadim@grammarware.net

CLIST) and “fourth generation languages” (4GLs like RPG,
CA Gen, PACBASE, Informix/Aubit, ABAP, CSP, QMF — es-
sentially domain-specific languages for report processing,
database communication, transaction handling, interfaces,

del-based code generation, etc). To name a few concrete

HLASM for various reasons, and such comp s usually
had to be manually rewritten in COBOL or PL/I before mi-
gration to a modern framework could take place. Now, the
Raincode ASM370 compiler for NET supports HIASM syn-
tax and emulates the data types and behaviour of the original
language, allowing one to port, maintain and interactively
debug legacy mainframe assembler code under .NET.

ACM Reference Format:

Volodymyr Blagodarov, Ynes Jaradin, and Vadim Zaytsev. 2016. Tool
Demo: Raincode Assembler Compiler. In Proceedings of Proceedings
of the Ninth ACM SIGPLAN International Conference on Software
Language Engineering (SLE '16). ACM, New York, NY, USA, 7 pages.
https:/doi.org/10.1145/2997364.2997387

1 Background

The assembler language for mainframes exists since 1964
when the Basic Assembler Language (BAL) was introduced
for the IBM System/360. Around 1970 it was enhanced with
macros and extended mnemonics [10] and was shipped on
different architectures under the product names Assembler
D, Assembler E, Assembler F and Assembler XF. Assemb]
H's Version 2 became generally available in 1983 after being
announced to support an extended architecture in 1981. It
was replaced with High Level Assembler in 1992 and subse-
quently retired with the end of service in 1995. High Level
Assembler, or HLASM, survived through six releases: in 1992
(VIR1), 1995 (VIR2), 1998 (V1R3), 2000 (VIR4), 2004 (VIRS),
2013 (VIR6), not counting intermediate updates like adding
64-bit support. It is used in many projects nowadays, mostly
for the same reasons the Intel assembler is used in PC appli-
cations.

On mainframes, alternatives to HLASM (sometimes re-
ferred to as a “second generation language” to set it apart
from raw machine code) include so-called “third genera-
tion languages” (3GLs, typically COBOL, PL/I, REXX o

- 31 Oct=1 Nov, 2016, Amsterdam, The Netherlands
2016 Copyright held by the owner/author(s). Publication righs licensed
to ACM.

This is the author's version of the work. It is posted here for your per-
sonal use. Not for redistribution. The definitive Version of Record ws
published in Proceedings of Proceedings of the Ninth ACM SIGPLAN .
rermational Conference on Software Language Engineering (SLE '16), hitps

doi. 0rg/10.1145/2997364. 2997387.

examples of good reasons for HLASM usage [14]:

 Fine-grained error handling, since it is much easier
to circumvent standard error handling mechanisms
and (re)define Tecovery strategies in HLASM than in
any 3GL or 4GL.

Ad hoc memory management, since HLASM al-
lows to manipulate addressing modes directly, change
them from Pprogram to program on the fly, allocate and
deallocate storage dynamically.

Optimisation for program size and performance, as
well as efficient usage of operating system facilities,
notavailable directly from higher level languages, such
as concurrent and reentrant code,

Interoperation of programs compiled for different
execution or addressing modes, low-level system ac-
cess.

Tailoring of products. Many products can be con-
figured or extended by custom user code. However,
most of the time, the API is only available as assembler
macros.

Additionally, it is not uncommon for a system to be writ-
ten in assembler in order to evade the costs of a 3GL/4GL
compiler, which can be considerable. Such systems are either
gradually rewritten to COBOL or PL/I programs, or become
legacy. In the latter scenario they can be showstoppers in
migration and replatforming projects that can otherwise mi-
grate the remainder of the codebase from mainframe COBOL
to one of the desktop COBOL compilers (such as Raincode
COBOL) with IDE support, version control, debugging, syn-
tax highlighting, etc. This is the primary business case for
developing a compiler for HLASM and the main motivation
for us to support it.

2 Problem Description

HLASM is far from being a trivial assembler language: it is
possible to use it to represent sequences of machine instruc-
tions, but it goes well beyond that. For instance, it helps with
idiosyncrasies of the IBM 370 instruction set. In particular,
all addresses of memory references have to be represented
at the machine level as the content of a register plus a small
offset. The assembler can be instructed about what addresses

Formal
Methods
& Tools

O 20

28

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/index.html%23HLASM2016
http://grammarware.net/writes/index.html%23Compilepretation2017
http://grammarware.net/writes/index.html%23HLASM2019
http://grammarware.net/writes/index.html%23HLASM2020

17

JOURNAL OF OBJECT TECHNOLOGY
Published by AITO — Association Internationale pour les Technologies Objets
http://wuw. jot . fm/

Modelling of
Language Syntax and Semantics:
The Case of the Assembler Compiler

« IBM HLASM 1s a 2GL

a. Raincode Labs, Brussels, Belgium

[]
Abstract Application of software language technologies, whether analyti-
S e m a n cal, transformational, or generational, in an industrial context is usually a
. 0 n — 0 P 0 taxing endeavour, with high demands in qualification levels of developers
involved in it. Yet, if applied succe

fully, in the right places and with the
right amount of effort, they promise high returns in terms of optimisation,
effectiveness, validity and verifiability. In this paper, we report on our

® [J
e hd . R . .
o o experience on writing a compiler for a complex second generation legacy
I S programming language originally intended to be used on a mainframe.

The business for this product deals with companies migrating their
software systems off the mainframe to cloud native or PC, Leveraging the
documentation, available domain knowledge, several sample proj nd
a test suite, as well as several proprietary DS we successfully modelled

L]
syntax and semantics of hundreds of instructions of that language, to
hd I l the point of producing a compiler with a very limited group of compiler
. P P O P S I n O ' developers in limited time. The compiler is currently deployed at some of

our customers and has received a top technology aw

ard from Microsoft.
This report is meant to serve as a sample snapshot of how compilers
can be built in the indust ry with software language engineering techniques.

g 'Y Traditional problems of compiler construction such as parsing or code
Py [] optimisation either did not bresent a noticeable challe, nge or did not
P 1 n C l p e S 0 [) manifest themselves altogether in the course of this project, but MDE

matters such as model transformation, modular design, the use of DSLs
and meta-tools, were a constant concern. The focus of the report is in
truthful representation of the domain as well as the details of the project,
on reflection of the choices that were taken or could have been taken in

Vadim Zaytsev. Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler.

[] t
° b n t h e S e the meantime, and on lessons learnt during the project,
| I U C | I O I l S l Keywords ~ Syntax; semantics; legacy systems; knowledge extraction: expe-
rience report; software language engineering.
L]
o l hd Licensed under Attribution 4.0 International (CC BY 4 0)In Journal of Object Technology, vol. 19,
no. 1, 2020, pages N:1-22. This is the author's own version of the paper. The teaser video of thi paper
[] is also available at https://youtu.be/jQ41mYeWVo. This version will be updated once the official JOT
S 0 m p l a O n page of the paper is online with the proper DOI

Formal
Methods -

[SLE'16] [MoreVMs'’17] [BENEVOL'20] [ECMFA’'20] . s

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/index.html%23HLASM2016
http://grammarware.net/writes/index.html%23Compilepretation2017
http://grammarware.net/writes/index.html%23HLASM2019
http://grammarware.net/writes/index.html%23HLASM2020

7 .HLASM

>[Format Models]J‘

Instruction Set Model

Instruction Synta
_>[Bitness Models B [uetl yntax

Models

I

[Ap.B] Lists of instructions

[Ch.5] Instruction formats

{

[Ch.7—20] 381 text sections

Inlining Semantic
Models

\o /

[Ap.C] Condition codes

\

4

[ECMFA' 20]

Emulator Semantic
Models J

)

>[\ CC Models]]

Macros

DR ——

27

Compiler

Runtime

[Emulator]

Formal
Methods
O & Tools

O

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/index.html%23HLASM2020

28

8.Megal

S
subsetOf / \ subsetOf subsetOf /subsetOf \ subsetOf I subsetOf I

L e e BT

elementOf I elementOf I elementOf I elementOf l elementOf I elementOf I

(—
W Concrete.rsc

W FL.ecore

(—
W Abstract.rsc ¥ FL.ecore W FL.TxI

f— f— —
¥ rscazbgf ¥ ecorezbgf L* tx12bgf

f— (—
¥ Grammars & Grammar9 % Grammarl0 ® Grammarll
~ ~glementOf \ / elementQf. -~
~
elementOf ~ - »” elementOf
elementOf elementOf

UNIVERSITY) [Tl % |

OF TWENTE. [0 50

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

29

8 M e g a L Renarrating Linguistic Architecture: A Case Study
o

Vadim Zaytsev, vadim@grammarware.net
Software Analysis & Transformation Team, Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

ABSTRACT

We study the use of megamodels (models of linguistic archi-
tecture) for presenting software language engineering sce-

[J
n narios. Megamodels and techniques similar to them are fre-
r] I \ I) quently found in situations when a linguistic architecture
. e a a 1 O needs to be understood without the implicit knowledge that W{:{
was originally present, and in situations when such knowl-

edge needs to be Propagated. In this paper we specifi
address the possibility of using one megamodel to tell ¢ domainof

o
' | S eral related stories — that is, to renarrate it. Various re- Language — & Function
n V narrations can address different aspects of the megamodel,
. p I \ 0 ‘ without cluttering the reader’s view with irrelevant details.

Language . Function

hasRange
The renarration method is presented with the case study of a S Function me—— Language

software language engineering technique of guided grammar
[] t 0 P convergence, and Megal as a metamegamodel. *,,,,A,,pl
I n S Categories and Subject Descriptors
ha 4
D.2.11 [Software Engineering]: Software Architectures mppl 2soutput *tgﬁxc!

1 efinition
Ind1la tellers Sv. R—
n Linguistic architecture, megamodelling, renarration
i S e d y realisationOf .
1. INTRODUCTION (T T —

The term “renarratior s used in natural language pro-

L]
L] -
° m cessing and database journalism to describe the process of 'ei_“s“"_°"oi.>
1 n d a t a a S e I converting a collection of facts into a story. Specific to re-

narration is the anticipation of conflicts; while generally the
research on “views” assumes them to be consistent with one
another modulo some hidden or rearranged details, it is nor-
mal and expected of several renarrations to deliver conflicted

messages [1]. The same is often true for big megamodels. W“ JcorrespondsTo
The term “megamodelling” [2, 4] refers to the higher level
e of modelling that specifically addresses relationships between
. a n m U complex entities such as software languages and model trans- w’,ﬂ el ementof O & Function

formations, aids in expressing software technologies and re-
lating technological spaces [8]. Ad hoc megamodelling with
elemento;
less scary = I
. I O m a k (E m O d e l S Figure 1: Core entities in MegaL models in this pa-

per: artefacts, languages, functions and function ap-

correspondsTo
fapgageR| -+ - 0 O ranginge

Copyright ACM, 2012. This is the author’s version of the work., Itis posted plications, and possible relationships between them.
here by permission of ACM for your personal use. Not for redistribution, Italicised labels denote variables, normal font labels
The definitive version was published in the Post-proceedings of MP 2012. always refer to concrete entitios,

MPM 12 October 01 201 2, Innsbruck, Austria
DOI pending; ISBN 978-1 -4503-1805-1.

T ——— —

Formal
Methods
& Tools

[MPM’12] [XM’13] [GEMOC’14] o >O

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/index.html%23Renarration2012
http://grammarware.net/writes/index.html%23Renarration2013
http://grammarware.net/writes/index.html%23Renarration2014

9.DYOL

Design
with
Intent

101 patterns for influencing
behaviour through design

Dan Lockton
with —_— e ——

333? :1(1 :I asrtraI:&: Requisite Variety

[MoDELS’17] http://slebok.github.io/dyol

Language Design with Intent

Vadim Zaytsev (hnp://grammarware.nel), Raincode Labs, Brussels, Belgium

Abstract—Software languages have always been an essential
component of model-driven engineering. Their importance and
Ppopularity has been on the rise thanks to language workbenches,
lang iented develop: and other meth ies that
enable us to quickly and easily create new languages specific for
each domain. Unfortunately, language design is largely a form of
art and has resisted most attempts to turn it into a form of science
or engineering. In this Paper we borrow concepts, techniques and
principles from the domain of persuasive technology, or wider yet,
design with intent — which was developed as a way to influence
users behaviour for social and environmental benefit., Similarly,
we claim, software language designers can make conscious
choices in order to influence the behaviour of language users. The
baper describes a process of extracting design components from
24 books of eight categories (dragon books, parsing techniques,
compiler construction, compiler design, language implementa-
tion, language dq ion, p: ing I: software
languages), as well as from the original set of Design with Intent
cards and papers on DSL design. The resulting language design
card toolkit can be used by DSL designers to cover important
design decisions and make them with more confidence.

L. Motivation

First software languages were used in late 1940s! as an
intermediate step in algorithm design. They allowed pro-
grammers of digital computers to bridge the gap between
mathematical computations and machine codes. (The codes
as such are much older, they were used on punched cards
and rolls since 1725 in weaving looms® and at least since
1842 in pianolas®.) A decade later* people started developing
automated compilers, delegating the task of translating texts
written in these languages, to the machine code, to system
software components. Another decade passed, and new lan-
guages started being developed with specific design aims,
targeting a particular problem domain® or a particular target
audience®. By 1969 there were at least 120 widespread soft-
ware languages [15], [35]. The next two or three decades, the
language landscape was becoming more and more populated
and — some claim — cluttered with numerous languages
designed and implemented for all kinds of goals and purposes.
Eventually we all have arrived at the point where creating a
new language suitable for the problem at hand, ceased being
challenging for engineers. Having, reusing or designing a DSL
has been elevated to just a regular MDE problem solving
recipe. Now we are focused on making software language
creation methods reliable and repeatable [36].

!Since von Neumann and the Goldstines® Flow Diagrams.
*Since Basile Bouchon’s silk centre in Lyon.

ISince Claude Félix Seytre’s French patent no. 8691

“Since Hopper's MATH-MATIC.

3Since Iverson’s APL.

®Since Papert’s LOGO, strengthened later by Perlman’s TORTIS.

In this paper we assume the standpoint of software language
engineering and, whenever possible, make no explicit dis-
tinction between modelling languages and programming ones,
between domain-specific and general-purpose ones, among
generations, paradigms, etc. Thus, whenever possible, we
say “user” or “language user” instead of “programmer” or
“modeller”, and use other kinds of neutral terminology. We
use the word “model” instead of “language instance” to mean
a model, a program, a query, a stylesheet, a spreadsheet, etc.
Other principles behind this project are explained in section II.

Languages are designed for following purposes, a.0.:

« 1o raise the abstraction level (almost universal);

to improve user experience for languages with known
problems but infeasible evolution (C++ for C, Dart for
JavaSeript, Go for C++, Swift for ObjectiveC, Scala for
Java, Hack for PHP, .NET Core for NET Framework);
to give domain experts control over executable systems
(the goal behind most domain-specific languages);

to let non-coders structurally communicate with comput-
ers (emojis and smileys in most social networks, web
forum markup like bbcode, wiki markup, etc);

to open the usage of tools and services for third party
usage (APIs);

to abstract from irrelevant boilerplate (combinator [i-
braries, languages with built-in constructs for concur-
rency, error handling, design patterns, etc);

to explore different ways of human-computer interaction
[¢ dsh lications, most 1 ges de-
veloped in workbenches like MPS or MetaEdit+);

to make expressive and robust interchange and storage
formats (even JSON and XML work with schemata);

to build efficient tools by choosing suitable data structures
(intermediate representations);

to redesign legacy languages (VB.NET aligned with C#,
XHTML as HTML in XML);

to evolve existing languages into new versions (coevolu-
tion of Java and C# since the initial release of the latter);
{o create attractive language dialects (several industrially
applicable extensions of originally educational Pascal,
many vendor-specific COBOL compilers incompatible
among themselves to prevent users from migrating);

to experiment with new paradigms and get to know lim-
its of their expressiveness (bidirectional transformation,
reversible computation and others).

.

However, “language design is largely an art, not a sci-
ence” [11, p.67]. There is no clear separation of where the
language design starts and where it ends. In practice the work
of a software language designer often gets mixed with the

30

Formal
Methods
& Tools

O 20

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Design2017
http://slebok.github.io/dyol

et ST V// \ r <
DB-GD DB-RD DB-PD
Principles of Compilers: Compilers: Definition of
Compiler Design Principles, Principles, Programming

(Aho, Ullman,
1977)

Techniques, and
Tools (Aho, Sethi,
Ullman, 1986)

Techniques, & Tools
(Aho, Lam, Sethi,
Ullman, 2006)

Languages by
Interpreting
Automata
(Ollongren, 1974)

ez
ol | Desig

CC-NW

CD-AH
Compiler Compiler Design in | Advanced Compiler | Modern Compiler
Construction (Wirth, | C (Holub, 1990) Design and Design (Grune, van
2005) Implementation Reeuwijk, Bal,
(Muchnick, 1997) Jacobs,
Langendoen, 2012)
[
8 psscsl
E USER MANUAL

AND REPORT

LD-JW LD-WH PL-WC
Pascal User Manual | Programming in the Principles of Comparative
and Report (Jensen, | .NET Environment Programming Programming

Wirth, 1985) (Watkins, Languages Languages (Wilson,
Hammond, Abrams, ' (Maclennan, 1983) Clark, 1993)
2003)

' PARSING

TECHNIQUES

| Dcxanne |
[o cons

PT-HU PT-GJ
Introduction to
Automata Theory,
Languages, and
Computation

(Hopcroft, Uliman,

CC-WG
Parsing Techniques:
A Practical Guide
(Grune, Jacobs,

2008)

Compiler
Construction for
Digital Computers
(Gries, 1971)

Compiler
Construction (Waite,
Goos, 1984)

A3bIKK

NPOTPAMMWPOBAHUA
PASPASOTKA PEATISALR

LD-ED

A Primer of ALGOL
60 Programming
(Dijkstra, 1962)

LI-PZ

Programming
Languages: Design
and Implementation

(Pratt, Zelkowitz,
2001)

Brinch Hansen on

Pascal Compilers
(Hansen, 1985)

Writing Compilers
and Interpreters: An
Applied Approach
(Mak, 1991)

% Languages

Sy, Seranics,
andeaprogaming

w
! POBEPT Y. CEBECTA

D sprnge

PL-RS SL-RL
Concepts of Structure and Interp Engineering Software Language
Programming retation of Compute Modeling s: Syntax, Semantic
Languages r Programs (Abelso Languages s, and Metaprogra

(Sebesta, 2001) n, Sussman, Sussma

n, 1996)

(Combemale, mming (Ldmmel, 20
France et al, 2017) 18)

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Access Modifier

Annotate components with information about how
others are allowed or not allowed to access them.
Access can be limited by inheritance (protected in C++),
modular structure (infernal in C#), etc. The most
popular modifiers are public (everyone welcome) and
private (fully restricted). Similar modifiers can be used
to manage scope, such as global and nonlocal in
Python.

I, 0B-PD:85, CO-AM:42,

Client/Server

A language may allow one conceptual model to be
split into two intercommunicating components to be
executed in | llel: the server side which has access
10 all the necessary system data and runs in a fully
controlled environment, and the client side which runs
closer to the system user's data and has to survive in
@ much less controllable environment. Client code and
server code can be written in different languages or
compiled to different languages before deployment.

Lozs20,

Comprehension §

List and set are language construct:
resembling the mathematical notation for creating a
set by its characteristic function (“for all numbers from 1
10 10, give me their squared values*), and combine map
and filter classical for functional programming.
Comprehensions as a language construct exist in
Haskell, Python, Rascal, C# and some other
languages.

cocre

Design Chart/Diagram

UML distinguishes between structural (class, package,
object, structure,

and behavioural diagrams (activity, sequence, use
case, state, communication, interaction overview,
timing). The former specify and visualise structure
breakdown, the latter — events and interaction. Some
languages (e.g., syntactic diagrams) are both.

TR, CIEETTIETIY, 08 -GO:79, D8-AD:S, DB-70:20,

LCE AT CO S 00,CD-GR 21, Lkt Lk, P36, PLAS: 12,

Expressivity

There is ultimate of a software |

Alphabet §

The basic alphabet is often taken for granted,
pecially for textual butitis an
design aspect. In some languages (APL being the
extreme) the alphabet is extremely broad, with
specific symbols being used for built-in operators,
which shifts the visual feel of the language closer to
In other are taken
from English, which limits language appeal to some
groups of users (and may lead to reimplementations

with translated keywords),
0BG028,08 192,08-7D:15
Co a3, Lram:ioy

Code Completion

Many IDEs monitor what the language user is typing
and make suggestions based on their knowledge of
the language keywords, constructs allowed in the
context, variables visible from the current namespace,
etc. The list of such suggestions must be short to be
useful, otherwise it does nothing but annoy the users.

Concrete Syntax

The way to describe the concrete representation of
the programs. The concrete syntax is used by humans
to read, write, create and understand sentences of the
language. Usually the only languages that do not
have concrete syntax are those intended for internal
Some have

A computation strategy commenly found in

Assignment Backtracking
Moving a data from one place to another. Some 4GLs
have separate for (byte-

copying) and composite (pattern-matching)
assignments such as Cobol's MOVE CORRESPONDING
which requires unification. In modern languages the
source data structure (and sometimes the target one)

Every choice in the evaluation
path becomes a save point to which the computation
returns in case of failure. All the changes made
between the save point and the point of failure are
undone. Backtracking is common in parsers and logic

can often be created on the fly. Many prog g, and used for error recovery.
combine with trivial (such as y else.

+2).

05.0:50,08 n0:e78, | CD-AH420, CD SM:28,CO-GA270, LTk 7, LLPZ 201,

PRSI e a8 D Ep o e 08.00:7408.10.11, . co-aaas s pz-3m, pLAS 29,

Code Generation

Generation of machine code, intermediate code, a
model in a target language, an output model or a
textual result, is the last phase of a classic compiler
(before or after optimisation). What is typical for code
generation is the richness of the input (generously
annotated intermediate graphs) and a deliberate
limitedness of the output (which is often platform-
specific and/or hardware-specific). In MDE code

is usually hy del
TEtETpos cosin on 0sis on et

CO-AR:485, C-SH:137,CD-GR 313, L BH-ABS, LHPZ: 11
SLASATY SLALTY

Concurrency

Since modern computers and systems are good at
multitasking, a language designer may decide to use
that. An executable model can then be decomposed
into components that are executable in parallel on
different CPU cores or different devices. This can be

more than one.

58778,

[y Arusical Languageluern i Notstor T RN SLEN
1 CO A 108, CO.GR 16 LL B3, L1 PLAS 124 LBl 29,
3 sLaL:

Documentation

There are two equally important kinds of language
manuals: for people learning the language and for its
active users — and sometimes these are two disjoint
sets of documents. Documentation may contain
executable examples and can/should be
automatically checked for internal validity and
consistency. Some documentation elements must be
provided through an IDE, especially if the language is
an APL.

Jowi:serving suggestion L E THES

First Class Citizen

Itis an design point to decide which entities

4sicrase

typically incorporated in answers to questions like "is

it Turing complete?” (i.e., does it have enough constructs

to emulate a Turing machine?), and there is @ much

more important and subtle issue of local expressivity

in vhe sense of how small programs can get without
thei Many

eventually develop shorthand constructs for writing

us tructs shorter
and thus faster.
Input/Output
Most models are not self- ined and

require input data to run and produce results, which
in turn need to be pi ere are

‘within a program have the right to be saved, passed
as mgum.m, transferred through other means, efc.

(to avoid

PLaws1E]

Code Mining

Besides user surveys and expert opinions, there is a
third way to uncover points to improve the language
in its next versions: examining existing models
created in this language. There are many modern
techniques in mining software repositories that can be
helpful here: clustering, vocabulary analysis, statistics
(especially correlations), natural language processing,
information retrieval, machine learning, etc.

Backward Compatibility

In language evolution, introduce new features that
should supercede older ones, but ensure the users
that their existing code will still run. Ideally, this code
should eventually be rewritten and coevolved.

fowiworr resotuonEIETER

Code Ownership

Signing the user's name under a piece of code has the
same effect as signing a person's name on an item:
caring about what happens to the item later.
Comments explaining which dev made which code
changes existed since very early on. In modern

is tracked bya
version control system and can be checked at any
time (git blame).

Constraint Cross-compilation
Besides. which are A piler works on one platform but ultimately

only in terms of constraints (OCL, CLR(R), Oz), there
are many that have them in one form or another. The
most popular form is assertions, a non-invasive form of
exception handling allows language users to explicitly
state (assert) invariants, pre-conditions and post-

rhead, race etc), or
automatically, or use the language user's guidance in
synchronisation of threads, tasks and processes.

D8-p0s1 (CD.SALS71,CD-GR-331,L1P7.483, PLAS:503,

i SL-A5:24

Encapsulation

Most high level language abstract from low level
details like video memory access, memory allocation,
register values, caching, etc. Depending on the
language design and philosophy, these features may
be prohibited or just hard to find for beginners. Data
structures can also be encapsulated by bundling them
into records or classes, and code can be organised in
hierarchical modules and subprograms.

Li-PZ:236, PL-RS:37, PL-WC:104, PLBM:12, 29, LA 15,

Sics

Garbage Collection

Automatic release of memory is impossible for cyclic
data structures. Languages that want to support them,
have a gulbog- collector — @ runtime compiler

Objects?
(ompulutlons? Data streams? Unfilled templates?

1CO-GRa2, L7z, LS 3T PLWC: 151, PO,

o8-AD18,
7 LDWHik10, SLAS:55;

Instruction Set

Instead of freely combinable statements and
low level

marks data structures
that have bc:uml inaccessible and then sweeps them
away, freeing the memory. GC can compromise
language responsiveness and performance.

T, o0-00u0, 0870 0,
PLBit:4kd, L0

)\ CO-GRATS, LLPZAT1, PLAS:11T,

Iteration

There are many looping constructs, ranging from the

languages that are voluvlle ‘with input and output,
those that only work with files, those that wrap 1/0
as a side effect of a menad, etc.

LLSH:ATT, LLAM-31, Li-PZ-223, PL-WC187, PL-BM13, L D-£D

Metaphor

Give your language constructs names that need no
explanation: atom, backtracking, binding, body,
build, cloud, collision, compiler, dangling else,
debugging, desugaring, dictionary, duck typing,
environment, filter, floating point, forest, framework,
garbage collection, go to, heap, inheritance, jump,
library, linking, map, pointer, pruning, rendezvous,
stack, turtle, weaving, window, ...

fow:etaphors}

Parameter Passing

There are several strategies in mapping arguments that
are being passed to a procedure in a call with the
parameters that procedure expects to get: call by value
(expose only the values, safe but inefficient for
composite data), call by result (can return several
values at once), call by value-result (the caller gets
values, updates them, they are passed back), call by
reference (expose pointers to values, efficient but
unsafe), call by name (evaluate pointers when they are
used inside the (ullev), ete..

DB-GD:80, 08-RD:424,

. cosute co.anssn
LranATalLL A, PL R aAR, X

L-AS:24;SLAL1S,

virtual machine etc) have
limited non-extendable instruction sets. Each of the
instructions typically has a mnemonic (name) and a
bit-level encoding. Realistic assemblers had to
introduce macro expansions to make expressivity and
programming experience tolerable.

08.R0:17,08-PD-426, 3 , CD-8M.509, CD-GR.367, 18164,
288, LDWH-A 03, SLAS-427, SLAL144

Module

Large models inevitably outgrow their creators’
capabilities to understand them all at once.
Comprehension can be aided greatly by the language

classics such as a for loop, to the functional
classics such as map, filter and fold (o reduce). It is not
uncommon for languages to support only some of
these constructs. Some older GPLs and 4GLs also have
one iterative construct which can be annotated with
all kinds of conditions and steppers.

D8-GD:282, DB-AD:53, 08-PD:5
cosian cocnsma e AL AT, L FE 358 PLAS 318 PLWC S0{PLSMAT,
, SL-AS:40, SL-AL288

Natural Pattern

Design patterns, implementation patterns and
architecture patterns are used across language

as logic that must
hold. Such assertions can be easily removed before
deploying the system into production.

i constrains TR TELN

Energy Saving

Computationally heavy code requires more CPU or
GPU cycles, which consumes more power, which in
turn makes the applications spend more energy.
Making a compiler of a language especially optimised
towards power reduction may increase its appeal for
users that intend to run their programs on devices
‘with limited power (mobile phones and smaller).
Power reduction and energy saving techniques also
contribute towards global sustainability, and can be
used/chosen for ethical reasons.

JOwi:Assuaging guiti L El)

Generation

| 51-AS:393| SL-AL:400,

targets another. Relying on a cross-compiler allows to
separate the development platform from the one
‘where the programs get deployed to — for instance, a
mobile app developer can work with a proper
keyboard and a big screen. The IDE for a cross-
compiled language may include a virtual machine for
execution, debugging, etc. A compiler capable of
producing code for different targets, is called
retargetable.

DB-G0:24,CD-GRA2

Enumeration Type

An enumeration is a data type that defines a very
limited set of possible values which are, nevertheless,
more comfortably referred to by their names and not
by encoded numbers. The most famous enumeration is
the Boolean (logical) type, which contains only two
values: trve and false. If the domain permits, the
language does not have to support user-defined
‘enumerations.

oB-AD4e, , CO-AN.550,CD. 50128, CO-GR533, LLAM-123 LLPZ213
PLRS.224,PL-WC:56, PLBM:188, LD

Heterogeneous Data

Tedious, repetitive and
tasks can be automated by uslng vemplcles, wizards,
explicit

efc. In many
practical cases the language user is allowed to edit
the result to fine-tune it. The final generation phase is
called code gene:

, CO-GR8, L5126, PL 8IS,

Keyword

Special words in concrete syntax of the language that
carry identical meaning across all possible models in
the same language. Can be made reserved so that
programmers may not redefine them. A language can
get new keywords by evolution.

08.GD:23, DB-AD:S6, DB-PD:121,
L197:90, PLRS:35, PLWC:11; PL-BISZ, LD-IW

 CO-5H:60, L8H:10, L AU,

Numeric Data Type

Often gets overlooked at the early stages of
language design, but could significantly shape the

boundaries, but many domain-specific

providing modules, pack classes,
blocks and other elements to group related code
fragments together. Modern IDEs can analyse code for
cohesion and coupling to help improve
modularisation. Modules are often [one of the
possible] compilation units.

. CD-AH458, CD-GR 32, PL RS:300, PL-WC:113,
fow:Proxiety & grouping]

PLBM267, 120 1432965

Parametrised Type

Some types can be defined partially by the user and
partially by the language designer. For example, the
language designer knows what a list is, and the
language user can select any other type for list
elements — this will change handling of such elements,
but the philosophy behind their collection will stay the
same.

L197:291, PL.AS:448, PLWC: 180, PL-BM2TS

patterns as native language
leton, State,

Visiter, ete

Performance

Performance testing and its variations like profiling
and stress testing are commonly desired nice-to-have
features in IDEs. Languages and their ecosystems
greatly vary in the extent to which this aspect is
recognised and supported.

" DB-AD:567,CD-GR 345, Li-m:278

area of the | There are many
integer types, distinguished by their byte sizes and
therefore value ranges; also decimal types with fixed
scale and precision; and floating point types good for
scientific computations but not for handling finances.

| COR 532,11 00-10, LU, LI P20, LS 21, PLWC 53,
288

PL a5, 10 \ SLA5:80, S1.-L2

Phased Process

Breaking a process into phases is one of the most
used divide-and-conquer principles applied in
language processing. Most compilers are designed to
work in phases, and different competences and skills
are required to implement each phase.

 STTINEITIS 08-Go:6,08-R0:5, 0870
A7y CO AP CO-BM GO R L RUAT]LL P, PL RS AR, PL'B 38
SCare

Some freedom in types
that makes colleﬂlonl :upcue of carrying elements of
varying structure. Examples: variant records in
Modula and Ada, heterogeneous lists in Python,
polytypic functions in Haskell, GADTs in Haskell.
Allowing heterogeneity empowers the language user
but makes the language harder to learn.

\ PLAS:208,) LD-WH:308, SL-AS:98, S1-A1L322.

Labelling

Since most engineers know several languages, some
language manuals directly assume initial familiarity of
their users with other languages. Can refer to
paradigms or families ("this language is strongly fyped”)
or directly to other languages (“inheritance works like in
Java®). Also, by explicitly stating which camp the

Block §

Viewing a list of statements as a specific (compound)
kind of statement is a conceptual eye-opener and
allows to treat composite constructs in a uniform and
orthogonal way (if ... begin ... end and do ... begin ... end
instead of if ... endif and do ... enddo). Languages either
use delimiters (begin/end or curly brackets) or
indentation. Blocks can be seen as

Branching

Forking the computation based on conditions known
at runtime, is a popular construct. Control flow can be
transferred unconditionally (branch, jump, goto), or
conditionally (based on true/false, zero/positive
/negative, explicit condition, exhaustive patterns, etc).
In some languages branching can be done by guarding

and be useful in

IS D5-60:53,08-RD:41,08.P0:82, , CO-AN:S88, CD.SU:STS,
Lraise,it wu L472:356 PLAS08, PLWC 35 P - 106
SUAS:34SL-AL

Collection

Arrays, lists, tuples, sets and multisets are the most
common composite user-defined parametrised types
for collections of elements. It is up to the language
designer to decide which ones are supported and how
they are handled — can elements within one collection
have different types, are they mutable, passed by
name/value/reference, etc.

08-GD:29, 08-RD:552, 08-PD:4
CD.$M:30, CD.GR47S, U sxmzu a2 oz zse pLasri PG 1S, PLoM 0,

Debugging
The activity of finding and fixing sources of incorrect
behaviour is not enjoyed by many language users,
but is used by all of them without exception anyway.
Declarative and constraint languages are the hardest
to debug due to their complex evaluation strategies

efc) and ones
are the easiest since they specify the algorithm most
explicitly. Most modern languages are shipped with a
dedicated debugger or have debugging functionality
|ll the IDE. on-no70,

0w Intecioci]

ranan, ez, LpEss,

CO-AM263,

Esotericism
INTERCAL, Unlambda, Befunge, Malbolge and other
esoteric languages are based on paradigms so
unconventional that writing even one program puts
disproportional strain on the users. This challenging
nature makes people engage and compete in
programming in such languages as a form of
entertainment. LOLCODE, ArnoldC and others are
languages developed based on the memes that are
the

DB-GD:282, 08.AD:4
CDsie38,Co-GR 3¢

L ST L P35 LS 308, PL e Loz,
a5:26, 5181

Comment

are pieces of built directly
into the source of the system. Most IDEs support
visually by them in a
different colour, usually dimmer than the rest of the
model, to focus developers on executable constructs
first. In some languages like BibTeX or INTERCAL
everything uncompilable is a comment. Some
comments like codetags, Javadoc or Documentation
are strictly or semi.

B oot
LS 11y SLCr 2% SLAL

Default

0,4 A3, L1708, PLWC:12,

options,
R o el mweiincl ot e b e leas
examples of situations when a default value must be
used by the compiler. These default values are
decided by the language designer and typically
represent the best option within the paradigm.

owDetsutsl BT owiOpt-out

Event

The first implementations of user interfaces were
turning the entire program into a giant loop waiting
for the user to activate its functionality by choosing
the way to communicate (click, tap, edit, erc). Since
direct implementations of such an event loop are not
green (consume too much energy), event handling can
be built natively into the language and implemented
efficiently by the compiler and hardware. Events are
used for ‘with end users, sensors, threads,

cireulating among sofrware
of them piggybacks entirely on the viral nature of
lenges & targets}Dwi:Make it s meme]

IDE

Integrated Development Environments (IDEs) are used
to support language users in their common tasks:
code building,

refactoring, etc. Can take a form of a dedicated
standalone editor, a website or a plugin for a
universal editor. Needs to have a well-designed Ul.

I LiP7:63,PLAS:SY, SL-CF284, SLAL1S

Lazy Evaluation

A lazy compiler defers evaluation to the latest possible
moment. Lazy languages allow infinite data structures
(as long as they are processed one chunk at a time)
and may have unpredictable outcomes if calculations
are allowed to have side effects (like C's ++). Lazy

etc.

SLASATH SLAL 10

IDE GUI

Most IDEs divide the screen space among areas with
different functionality: for navigating through
adjacent models, for editing the code, for reviewing
the architecture, for watching how values change at
runtime, etc. Advanced IDEs like IntelliJ, Eclipse or
'VS.NET have so many subwindows that the user has
to choose which ones to keep open at each given
time.

TSI, Co-GR:473,PLWC 265, LW

Live Feedback

An advanced IDE running on modern hardware can

Character Type
A family of value types that can be used in a

single special zero-
terminated strings, fixed length strings, variable
length strings, structured strings, etc.

L8 L0221, RS 21, PLWC 7, LBk,

08-GD:43, 3
&D:81{LD0 i Si-as:t

Compilation Error

Modern languages have many means of assessing
validity of the model before it is actually used. Thus,
compilers tend to have a sophisticated error handling
facility and try to provide enough information for the
language user to fix the problems. Some languages
are notoriously known for providing bad error
messages. There are many ways to recover from an
error in order to analyse the rest of the program and
report multiple problems at once. Can be provided as
a live 'eedbu:k

Deployment

Once the model written in a language, has been
checked, compiled, linked and otherwise prepared for
use, it may need to be deployed. This happens directly
by copying it to the machine of the end user, or by
connecting it to the network, or by creating a special
installer, etc. In many cases deployment is not viewed
as a concern of a language designer, but among
practitioners it is perceived as a part of language
design.

Exception Handling

An emergency sibling of branching used for
extraordinary situations — can be slower than the
normal branching, but usually more robust in
handling situations like a cricial failure during the
handling of another failure. A less invasive form of
exception handling are assertions.

(CD-5M-637, CD-GR:600,L1-P7.484, PLRS:38, PLWC:95, PLBM31E, ,sLAL s

Indentation & Whitespace

The two extremes for this aspect are: treat indentation
as something crucial to the program structure (and
thus process constructs differently based on columns
where they start) and discard all possible indentation
(even in the middle of names, as FORTRAN does).
Most languages are somewhere in the middle.
Normalisation of whitespace use is called pretty-
printing.

} DB.RD:54, CDGR-610, L1-8H:33, L1 PZ:100, PL-BM:91, LD-JW:3, SL-CF23,

SCaizro’

Lock-out/Opt-in

Certain combinations of language features may be

utilise its idle cycles to attempt parsing,
dependency analysis and other kinds of checks while
the language user is still typing the model. Errorneous
and suspicious pieces of code are common!

has many from
of code to stream data

language is siding with or which key
figures endorse it, the designer can invoke an
emotional response directly mappable to language's

acceptance and populari
Sereprance end poRulenty 2 osro
A R T F

Operator Overloading

A language designer may decide to reuse the same
symbol for several different operators, usually
conceptually related (such as + for arithmetic addition
«and string concatenation). Using it for torally
unrelated operations is considered harmful for
readability (such as & for pointer referencing and bit
conjunction in C). In some languages (C++, Ada,
Fortran) language users can also redefine their own
operators that complement their own defined types.

DB.PDA81, PLAS 284,

Picture Clause

A data type that saves a specially formatted entity
(usually a float or a date) that can be used directly in
printing statements but also manipulated as data.

CD-GR427,L1P7:345, PLAS:74, PLWC 239, 5L-A5:292

Operator Precedence

To avoid excessive use of parentheses, a language
can provide a default of

with red or yellow squiggly lines familiar
from natural word processors.

Optimisation

It is always easier and less error-prone to generate

constructs with 3+ entities bound by binary operators.
In the usually
follows mathematical laws.

7,08-00:21, 08-PD:88,
U172 333, PRSI PLWC TS, PL O

Platform Lock-in/out

Supporting a great language only for one particular
hardware platform, OS or IDE, implicitly forces people
10 use them. For example, malware practices of Java
installers turned some users agains JVM, which also
deprived them of Scala and Clojure. Another example
is .NET Core, a redesign of the .NET Framework which
allows typically Windows-specific code to run on
Linux.

. CO-AM:819,CD-GHR:168, LRk,

code or machine code with simple and
straightforward patterns and subsequently optimise
the result in a different phase. The effect on the
language users is that they do not need to optimise
their models to the fullest, since their own naive code
will be optimised together with the rest. Small
efficiences are only relevant 3% of the time, for the
rest premature optimisation is considered the root of

all evil.
Secblos!oanoses om0, CO-AM:8ST, CD sak8,
70, L8204, Li-AM:382,L1-PZ:110,SL-AS 497, SL-L-156

Pointer

A popular data type in low level languages,
representing a memory address where the data
structure is stored — which is more efficient to pass
across functions than the structure itself. The type of
the structure needs to be known to decipher itse
contents, since the pointer itself is nothing more than
a number.

T 06-0:34,08 R0
DTG ez s i ;LW 4, L 00
Sont

Co-AH:AS9,

disabled by default, with a possibility of
enabling them explicitly. For example, redefining a
method in a derived class is only allowed in C# when
a specific override keyword is used, which leaves
visual cues to future readers of the piece of code in
question.

Order

Class

A class or a trait represents a template that can be
followed by objects: a particular collection of
properties and methods that can be always rel
A class can be then instantiated with appropriate
parameters to form an object that conforms o the class
definition. Classes are the ultimate form of
encapsulation. They can be inherited from one
another to form subclasses.

d on.

CETETITIIIIT, Co-GR:544, PL-AS:110, PL-WC:107, PL-8M:464, L 5L AS:180

Compilation Warning

When a compiler detects a possibly dangerous
situation with extremely limited applicability, it
displays a warning message and proceeds with the
build process anyway. In many cases there is a
special option for disabling a particular warning for a
particular piece of code. Warnings can be given when
an anomaly or a smell is detected, and may involve
some form of error correction. Can be provided as a
live feedback.

CTFTITIS, DB-GD:382, DB-AD:164,08-PD:161

5 A4, CO-GR:A21] L83, L-AM.TS,

Deprecated Construct

In language evolution, sometimes a no longer desired
construct cannot be simply removed to avoid breaking
backward compatibility. However, it can be marked
explicitly as deprecated to discourage language users
to rely on it.

T sLALs

Execution Error

Errors can happen at compile time, but also at run
time, due to hardware faults, communication
problems, invalid user input or simply bugs that were
left undetected at compile time by static analysis.
Some languages (Erlang) have very welk-designed
strategies for handling execution errors, but all others
also feature some form of partial recovery from them.
The language user controls runtime error handling
‘with exceptions.

Inheritance

An "is-a” relation can be represented by a language
construct when one class, object or function inherits all
the properties of its parent and possibly adds others
exclusive to itself. It is a design consideration which
entities can be derived from which, what are the rules
for inheriting from several parents, etc.

,CD-GR:507, 51.A5:88

CD-GR:545, L-PZ:311, PLURS:453, PL-WC:154, PL-BA:A8S,

Macro

A mechanism commonly found in low level languages
that allow users to define a piece of syntactic sugar to
be expanded into a longer sequence of instructions.
Advanced parametrised macros resemble
subprograms in expressivity but may behave less
reliably due to their lexical nature. In bigger
languages macros are typically handled by a
preprocessor.

IITEZTTRETE, 08-GD:3, 08 AD:16, 08-D:22,
CD-GRAG, L-PET SL-AS.314; SLAL24

Orthogonal Design

coA:t01,

Man; have ordering a variable
must be declared before its use, a function signature
known before its call, etc. Sometimes constructs are
grouped and it is the groups that must follow the
order: e.g., first all declarations, then all functions,
then the rest of the code (COBOL's divisions are the
extreme example of this).

[DB-RD288,CD-GR30, D

Pretty-printing
A language can have a default formatting convention
that is not only accepted by the to improve

features should be controlled by
Related should
look similar and different ones should look different.
Regular rules without exceptions are easier to learn.
The fewer surprises one has while learning
language, the higher the language quality.

ow:(A)eymmetry{Dw: Simiari LB ENILE TE)

Preview

Some features are very useful in general, but

the representation quality of the models, but also
automated and shipped in a form of a tool. Such a
tool can be very configurable, have limited feature
selection or none at all. A pretry-printer that scans the
input and minimises the delimiters in it, is sometimes
called a program compactor. Pretty-printers are
omnipresent in textual languages and may require

I.gzoul strategies, Ikle! l"onr graphical ones.

YLk, PL-BM.2D, SL'AS:15, SLCF-23,
SR

in a way that fails. In this
case, the impact of an application of a feature can be
explicitly examined by the language user before
agreeing to proceed. Common for database queries
and object-oriented refactorings.

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

33

Concurrency

Since modern computers and systems are good at
multitasking, a language designer may decide to use
that. An executable model can then be decomposed
intfo components that are executable in parallel on
different CPU cores or different devices. This can be
completely undesirable (to avoid deadlocks,
overhead, race conditions, etc), or performed
automatically, or use the language user's guidance in

synchronisation of threads, tasks and processes.

DB-PD:51, , CD-SM:571, CD-GR:331, LI-PZ:483, PL-RS:503, :
JSL-AS:254 ‘

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

33

Concurrency

Since modern computers and systems are good at
multitasking, a language designer may decide to use
that. An executable model can then be decomposed
intfo components that are executable in parallel on
different CPU cores or different devices. This can be
completely undesirable (to avoid deadlocks,
overhead, race conditions, etc), or performed
automatically, or use the language user's guidance in

nchromsahon of threads, tasks and rocesses.

COMPILER :‘ DickGrune-Keeswvan Recuwik (L S IS | [Sl
CONSTRUCTION MRR HenriE. Bal - Ceriel .H. Jacobs J S/ 492 KOHUENUMW

William M. Waite
rrrrrrrrr

IIIIIIII
MMMMMMMMMMMMMMMMM

EEEEEEEEEE

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

10.BabyCobol

« Indentation has semantics

« Imports are lexical

« Keywords are not reserved

« Assignments are name-driven

« GO TOs can be ALTERed

« Expressions have contractions

Software Language Engineers’ Worst N ightmare

Vadim Zaytsev
Universiteit Twente
Enschede, The Netherlands
vadim@grammarware.net

Abstract

Many techniques in software language engineering get their
first validation by being prototyped to work on one particular
language such as Java, Scala, Scheme, or ML, or a subset
of such a language. Claims of their generalisability, as well
as discussion on potential threats to their external validity,
are often based on authors’ ad hoc understanding of the
world outside their usual comfort zone. To facilitate and
simplify such discussions by providing a solid measurable
ground, we propose a language called BabyCobol’, which was
specifically designed to contain features that turn processing
legacy programming languages such as COBOL, FORTRAN,
PL/L REXX, CLIST, and 4GLs (fourth generation languages).
into such a challenge. The language is minimal by design so
that it can help to quickly find weaknesses in frameworks
making them inapplicable to dealing with legacy software.
However, applying new techniques of software language
engineering and reverse engineering to such a small language
will not be too tedious and overwhelming. BabyCobol was
designed in collaboration with industrial compiler developers
by systematically traversing features of several second, third
and fourth generation languages to identify the core culprits
in making development of compiler for legacy languages
difficult.

CCS Concepts: « Software and its engineering — Spe-
cialized application I Combpilers; - Social and

professional topics — Software maintenance.

Keywords: domain-specific languages, legacy software, lan-
guage engineering, software migration, teaching SLE

"The name is intentionally changed to avoid deanonymisation during the
paper review period

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org,
SLE 20, 15-20 November 2020, Chieago-Us virtual

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACMISBN $15.00

https://doi.org,

[BENEVOL’19] [PRiML’20] [SLE’20] http://slebok.qithub.io/baby

ACM Reference Format:

Vadim Zaytsev. 2020. Software Language Engineers’ Worst Night-
mare. In Proceedings of Proceedings of the 13th International Confer-
ence on Software Language Engineering (SLE '20). ACM, New York,
NY, USA, 14 pages. https://doi.org,

1 Introduction

Legacy languages designed in the second half of the last
century, are still dominating some domains like the finan-
cial sector, and have ample presence in other highly critical
domains such as insurance, logistics, manufacturing and mili-
tary. Even in the Pprogramming community index TIOBE [63]
languages like COBOL (#27), FORTRAN (#30) and RPG (#38)
are constantly looming next to modern freshly designed
and regularly updated languages like Dart (#26), Scala (#29)
and Kotlin (#35). Only a small fraction of the users of such
languages are happy customers deliberately making this tech-
nological choice for its actual benefits, the rest are forced
by circumstances into maintaining business-critical systems
that are too large and complicated to replace, rewrite or
even re-engineer. Many owners of such legacy codebases
invest substantially into their renovation, be it replatforming,
rearchitecting, reverse engineering, language migration or
anything else that is still a viable option for them_
Developers of compilers, debuggers, development environ-
ments, program restructuring tools, fact extractors, testing
automation frameworks, etc, need to be ready to tackle all
kinds of challenges posed by legacy languages. Yet, such
challenges often remain some sort of sacred knowledge
for developers with intimate familiarity with said legacy
languages. Many new techniques are being proposed and
published, targeting languages for which it is much easier to
find enough open source code for experimenting, enough
documentation for comprehension, and enough freely avail-
able base compilers to extend or compare to. With this
project, we would like to bridge the gap by providing a
description for a lab-made language that exemplifies an
entire collection of issues that make it so challenging to
tackle legacy languages. Inspired by languages like Mini-
Java [4] and Featherweight Java [25], that are extremely
useful for academic researchers to apply their knowledge
and techniques on (see § 2 for a more detailed treatment
of related work), we are proposing a new language called
BabyCobol. Unlike the infamous INTERCAL, standing for
Compiler Language With No Pronounceable Acronym, which
was specifically designed to have “nothing at all in common

Formal
Methods
& Tools

O 20

34

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Elephants2019
http://grammarware.net/talks/index.html%23Hidden2020
http://grammarware.net/writes/%23BabyCOBOL2020
http://slebok.github.io/baby

Conclusion

BGF

PAX

HLASM

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net
http://grammarware.github.io

