
10 Languages in 10 Years

FMT Colloquium 2020-09-24

Dr. Vadim Zaytsev aka @grammarware

https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net

Announcements
2

Software Lang
uage Eng

ineers’ W
orst Nigh

tmare

Vadim Zaytsev

Universit
eit Twent

e

Enschede
, The Net

herlands

vadim@gram
marware.n

et

Abstract

Many techn
iques in software l

anguage e
ngineerin

g get thei
r

first valid
ation by b

eing proto
typed tow

ork on on
e particula

r

language
such as Java, S

cala, Sche
me, or ML, or a subset

of such a languag
e. Claims of their

generalisa
bility, as w

ell

as discuss
ion on potential

threats to
their exte

rnal valid
ity,

are often based on authors’
ad hoc understan

ding of the

world outside their usu
al comfort zone

. To facilitate
and

simplify such discussio
ns by providing

a solid m
easurable

ground,w
e propose

a languag
e calledBa

byCobol
1 ,whichwa

s

specificall
y designe

d to conta
in feature

s that turn
processin

g

legacy programming langu
ages such

as COBOL
, FORTRA

N,

PL/I, REX
X, CLIST,

and 4GLs
(fourth generatio

n languages
),

into such
a challeng

e. The lan
guage is m

inimal by design so

that it can
help to quickly

find weak
nesses in

frameworks

making the
m inapplica

ble to dea
ling with

legacy so
ftware.

However,
applying

new technique
s of softw

are language

engineeri
ng and rev

erse engin
eering to s

uch a small langua
ge

will not b
e too tedi

ous and o
verwhelm

ing. Baby
Cobol wa

s

designed i
n collabor

ationwith
industrial

compiler deve
lopers

by system
atically tr

aversing f
eatures of

several se
cond, thir

d

and fourth
generatio

n languages
to identify

the core c
ulprits

in making developm
ent of co

mpiler for
legacy language

s

difficult.

CCS Concepts
: • Software and its engin

eering ! Spe-

cialized a
pplicatio

n language
s;Compilers; • S

ocial and

professio
nal topic

s! Software
maintenanc

e.

Keywords
: domain-specif

ic languag
es, legacy

software,
lan-

guage eng
ineering,

software
migration, t

eaching S
LE

1The name is inten
tionally changed t

o avoid d
eanonym

isation during th
e

paper rev
iew period.

Permission to make digita
l or hard

copies of
all or par

t of this w
ork for

personal
or classro

om use is granted
without f

ee provided
that copi

es

are not m
ade or dis

tributed for profit
or commercial adv

antage an
d that

copies be
ar this no

tice and the full ci
tation on the first p

age. Copy
rights

for components o
f this wo

rk owned by others th
an the author(s)

must

be honor
ed. Abstr

acting with credit is p
ermitted. To

copy otherwise
, or

republish,
to post on

servers or
to redistri

bute to lis
ts, require

s prior spe
cific

permission and/or a f
ee. Reque

st permissions fro
m permissions@acm.org.

SLE ’20, 15–20
November 2020,

Chicago,
USA virtual

© 2020 Cop
yright he

ld by the owne
r/author(s

). Publica
tion rights lice

nsed

to ACM.

ACM ISBN $15.0
0

https://doi.org/...

ACM Referenc
e Format:

Vadim Zaytsev. 2
020. Softw

are Langu
age Engin

eers’ Worst Nigh
t-

mare. In Proceedin
gs of Proc

eedings of
the 13th Internatio

nal Confe
r-

ence on Software
Language

Engineeri
ng (SLE ’20). ACM

, New York,

NY, USA,
14 pages.

h�ps://do
i.org/...

1 Introduc
tion

Legacy language
s designe

d in the second half of th
e last

century, a
re still do

minating some domains like
the finan

-

cial secto
r, and hav

e ample presen
ce in other high

ly critical

domains such
as insuran

ce, logistic
s, manufactur

ing andm
ili-

tary. Even
in the pro

gramming community inde
x TIOBE [63]

languages
like COBO

L (#27), FOR
TRAN (#30) and

RPG (#38)

are constantl
y looming next to modern freshly designed

and regul
arly updated l

anguages
like Dart

(#26), Sca
la (#29)

and Kotli
n (#35). On

ly a small fractio
n of the use

rs of such

languages
are happy

customers delibe
ratelymaking this

tech-

nological
choice fo

r its actua
l benefits

, the rest
are forced

by circumstances in
to maintaining

business-c
ritical sys

tems

that are too large and complicated to replace, r
ewrite or

even re-engine
er. Many owners o

f such legacy codebase
s

invest sub
stantially

into their
renovatio

n, be it rep
latforming,

rearchitec
ting, reve

rse engin
eering, la

nguage m
igration or

anything
else that i

s still a vi
able optio

n for them.

Develope
rs of compilers, deb

uggers, de
velopment enviro

n-

ments, prog
ram restructur

ing tools,
fact extra

ctors, test
ing

automation frameworks, e
tc, need t

o be read
y to tackl

e all

kinds of
challenge

s posed by legacy language
s. Yet, su

ch

challenge
s often remain some sort of sa

cred knowledg
e

for devel
opers wit

h intimate familiarity with said legacy

language
s. Many new technique

s are bein
g proposed

and

published
, targeting

languages
for which

it is much easier to

find enough open source co
de for exp

erimenting, en
ough

documentation for comprehensio
n, and eno

ugh freely avail-

able base compilers to extend or compare to. With this

project, w
e would like to bridge the gap by providing

a

descriptio
n for a lab-made language

that exem
plifies an

entire collection
of issues

that make it so challengi
ng to

tackle legacy language
s. Inspire

d by language
s like Mini-

Java [4] and Featherw
eight Jav

a [28], that
are extremely

useful for
academic researc

hers to apply their kno
wledge

and technique
s on (see § 2 for a more detailed treatment

of related
work), we

are propo
sing a new language

called

BabyCob
ol. Unlike

the infam
ous INTE

RCAL, sta
nding for

Compiler Lang
uage With No Pronou

nceable A
cronym, which

was speci
fically designed

to have “n
othing at

all in common

1

SL
E’
20 PR
OF
ES
’2
0

Improving a Software Modernisation Process by

Di↵erencing Migration LogsCéline Deknop1,2, Johan Fabry2, Kim Mens1, and Vadim Zaytsev2,3

1
Université catholique de Louvain, Louvain-la-Neuve, Belgium

2
Raincode Labs, Brussels, Belgium

3
Universiteit Twente, Enschede, The Netherlands

celine.deknop@uclouvain.be, johan@raincode.com,

kim.mens@uclouvain.be, vadim@grammarware.net
Abstract. Software written in legacy programming languages is no-

toriously ubiquitous and often comprises business-critical portions of

codebases and portfolios. Some of these languages, like COBOL, ma-

ture, grow, and acquire modern tooling that makes maintenance ac-

tivities more bearable. Others, like many fourth generation languages

(4GLs), stagnate and become obsolete and unmaintained or unmaintain-

able, which first urges and eventually forces migrating to other languages,

if the software needs to be kept in production. In this paper, we dissect

a software modernisation process endorsed by Raincode Labs, utilised

in particular to migrate software from a 4GL called PACBASE, to pure

COBOL. Having migrated upwards of 500 MLOC of production code to

COBOL using this process, the company has ample experience with this

process. Nevertheless, we identify some improvement points and explain

the technical side of a possible solution, based on migration log di↵er-

encing, that is currently being put to the test by Raincode migration

engineers.

Keywords: Software modernisation, legacy programming languages, software

migration, software evolution, code di↵erencing, COBOL, PACBASE, 4GL

1 Introduction
When COBOL was first introduced and published in 1960 [6], it enabled writing

software that replaced the manual labour of thousands of people previously per-

forming pen-and-paper bookkeeping or at best manual data entry and manipu-

lation. When 4GLs (fourth generation languages) started emerging, they allowed

developers to write significantly shorter programs, and enabled automated gener-

ation of dozens pages of COBOL code from a single statement [22,29]. Nowadays,

in the era of intentionally designed software languages [18] and domain-specific

languages [31], conciseness and brevity is appreciated as much as readability,

testability, understandability and ultimately, maintainability [9]. Yet, legacy soft-

ware continues to exist due to the sheer volume of it: just COBOL alone is esti-

mated to have at least 220 billion lines of code worldwide, according to various

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

Personal Path

• First paper in 2000

• Real life starts in 2010

• ~⅓ in pure research

• postdoc @ CWI

• ~⅓ in pure education

• lecturer @ UvA

• ~⅓ in pure industry

• developer @ Raincode

3

http:"#grammarware.net "$ grammarware.github.io

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net
http://grammarware.github.io

1.BGF
4

Convergence: [iFM’09] [GTTSE’09] [SQJ’11] [SLE’13]

antlr dcg

topdown

sdf xsd

concrete

om

abstract

jaxb

java

limit

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Convergence2009
http://grammarware.net/writes/%23LCI2011
http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23Guided2013

1.BGF

• Convergence
• errors in Java language spec

5

Recovery: [SQJ’11] [arXiv] [LDTA’12]

Noname manuscript No.
(will be inserted by the editor)

Recovering Grammar Relationshipsfor the Java Language Specification

Ralf Lämmel · Vadim Zaytsev

Received: date / Accepted: date

Abstract Grammar convergence is a method that helps discovering relationships betweendifferent grammars of the same language or different language versions. The key element ofthe method is the operational, transformation-based representation of those relationships.Given input grammars for convergence, they are transformed until they are structurallyequal. The transformations are composed from primitive operators; properties of these oper-ators and the composed chains provide quantitative and qualitative insight into the relation-ships between the grammars at hand.
We describe a refined method for grammar convergence, and we use it in a major study,where we recover the relationships between all the grammars that occur in the different ver-sions of the Java Language Specification (JLS). The relationships are represented as gram-mar transformation chains that capture all accidental or intended differences between theJLS grammars. This method is mechanized and driven by nominal and structural differencesbetween pairs of grammars that are subject to asymmetric, binary convergence steps.We present the underlying operator suite for grammar transformation in detail, and weillustrate the suite with many examples of transformations on the JLS grammars. We alsodescribe the extraction effort, which was needed to make the JLS grammars amenable toautomated processing. We include substantial metadata about the convergence process forthe JLS so that the effort becomes reproducible and transparent.

Keywords grammar convergence · grammar transformation · grammar recovery · grammarextraction · language documentation

R. Lämmel
Software Languages Team
The University of Koblenz-Landau
Germany
E-mail: laemmel@uni-koblenz.de
V. Zaytsev
Software Languages Team
The University of Koblenz-Landau
Germany
E-mail: zaytsev@uni-koblenz.de

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23MediaWiki2011
http://grammarware.net/writes/%23NPGR2012

1.BGF

• Convergence
• errors in Java language spec

• Recovery
• Grammar Zoo

5

Recovery: [SQJ’11] [arXiv] [LDTA’12]

Grammar Zoo:
A Corpus of Experimental Grammarware

Vadim Zaytsev
Software Analysis & Transformation Team (SWAT),Centrum Wiskunde & Informatica (CWI), The Netherlands;

Universiteit van Amsterdam, The Netherlands

Abstract

In this paper we describe composition of a corpus of grammars in a broad sensein order to enable reuse of knowledge accumulated in the field of grammarwareengineering. The Grammar Zoo displays the results of grammar hunting for biggrammars of mainstream languages, as well as collecting grammars of smallerDSLs and extracting grammatical knowledge from other places. It is alreadyoperational and publicly supplies its users with grammars that have been recov-ered from di↵erent sources of grammar knowledge, varying from o�cial languagestandards to community-created wiki pages.
We summarise recent achievements in the discipline of grammarware engi-neering, that made the creation of such a corpus possible. We also describein detail the technology that is used to build and extend such a corpus. Thecurrent contents of the Grammar Zoo are listed, as well as some possible futureuses for them.

Keywords: grammarware engineering, grammar recovery, experimentalinfrastructure, curated corpus

1. Introduction

This paper contains a description of a method to compose a corpus of gram-mars in a broad sense. Having such a corpus could be profitable for miningnew properties and patterns from the existing body of grammatical knowledge,for comparing grammar-based techniques and developing new ones. Formalgrammars are inherently complex software artefacts, and until recently it wastechnically unfeasible to create such a large scale corpus, so in existing literaturemost case studies involve one, two or no more than a handful of grammars, andmany statements about software language design remain statistically uncheckedand empirically unvalidated or even unprovable.The main contributions of this paper are:

Email address: vadim@grammarware.net (Vadim Zaytsev)

Preprint submitted to Science of Computer Programming October 29, 2014

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23MediaWiki2011
http://grammarware.net/writes/%23NPGR2012

1.BGF

• Convergence

• errors in Java language spec

• Recovery

• Grammar Zoo

• Transformation

• XBGF, SLEIR, GLUE, …

5

Recovery: [SQJ’11] [arXiv] [LDTA’12]

ECEASST

Cotransforming Grammars with Shared Packed Parse Forests

Vadim Zaytsev

Universiteit van Amsterdam, The Netherlands, vadim@grammarware.net

Abstract: SPPF (shared packed parse forest) is the best known graph representa-tion of a parse forest (family of related parse trees) used in parsing with ambigu-ous/conjunctive grammars. Systematic general purpose transformations of SPPFshave never been investigated and are considered to be an open problem in softwarelanguage engineering. In this paper, we motivate the necessity of having a transfor-mation operator suite for SPPFs and extend the state of the art grammar transforma-tion operator suite to metamodel/model (grammar/graph) cotransformations.
Keywords: cotransformation, generalised parsing, parse graphs

1 Motivation

Classically, parsing consumes a string of characters or tokens, recognises its grammatical struc-ture and produces a corresponding parse tree [ASU85]. A more modern perspective is thatparsing recognises structure and expresses it explicitly [ZB14]. In many situations, trees appearto be unsatisfactory target data structures: they can express hierarchy easily, but any other struc-tural commitments require special tricks and encodings, which are much less preferable thanswitching to graphs or pseudographs [SL13]. The most common scenarios include expressinguncertainty (e.g., in generalised parsing), maintaining several structural views (e.g., in the styleof Boolean grammars) or manipulating recursive structures (e.g., with structured graphs).Generalised parsing algorithms (GLR [Tom85], SGLR [Vis97], GLL [SJ10a], RIGLR [SJ05],etc.) differ from their classic counterparts in dealing with ambiguity [BSVV02, BV11]: insteadof trying to avoid, ignore or report ambiguous cases, they are expressed explicitly in so calledparse forests. Formally, a parse forest is a set of equally grammatically correct parse trees. Someof them may be semantically different, which makes such ambiguity significant and usuallyundesirable. In practice, such sets usually need to be filtered or ranked in order to make fulluse of the available tree-based approaches to program analysis and transformation. In Booleangrammars [Okh04] and conjunctive grammars [Okh01], we can use conjunctive clauses in agrammar to explicitly specify several syntactically different yet equally grammatical views of thesame input fragment — they can be semantically equivalent [SC15] or one branch strictly moreexpressive than the other [Zay13]. Parsing techniques can utilise such specifications to createspecial kinds of nodes in a parse tree whose descendant subtrees share leaves [Okh13, Ste15].Shared recursive structures are also facilitated by parametric higher-order abstract syntax [PE88,DPS97, Chl08]. It is an advanced method with high expressiveness, but it often requires similarlyadvanced techniques like multilevel metareasoning [MA03] and demands the use of automatedtheorem provers [DFH95, RHB01]. For now we will focus on the first two cases, since bothkinds of structures defined by those two related approaches conceptually are parse forests.
1 / 21

Volume 73 (2016)

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23MediaWiki2011
http://grammarware.net/writes/%23NPGR2012

1.BGF
6

[SAC'12]

BNF WAS HERE:
What Have We Done About the Unnecessary Diversity ofNotation for Syntactic Definitions

⇤

Vadim ZaytsevSoftware Analysis and Transformation Team, Centrum Wiskunde en Informatica,Amsterdam, The Netherlandsvadim@grammarware.net
ABSTRACT

Reusing existing grammar knowledge residing in standards,specifications and manuals for programming languages, facesseveral challenges. One of the most significant of them is thediversity of syntactic notations: without loss of generality,we can state that every single language document uses itsown notation, which is more often than not, a dialect of the(Extended) Backus-Naur Form. In this paper we report onan approach to solve the diversity problem by providing away to quickly and concisely specify all the parameters of asyntactic notation. The resulting “meta-ebnf” language wasused to successfully recover many grammars from sourcesthat use di↵erent syntactic notations.
Instead of adding another syntactic notation and arguingabout its excellence, we propose to retain the diversity andto cope with it by formally defining syntactic notations andusing such definitions to import existing grammars to gram-mar engineering frameworks and to export (pretty-print) ex-isting grammars to any desired syntactic notation. This re-sult e↵ectively bridges programming language standards andparser generators. The conclusions presented in the paper,were drawn based on analysis of a large corpus of languagedocuments, as well as on the success of its application inpractice.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions andTheory—Syntax ; D.3.4 [Programming Languages]: Pro-cessors—Grammarware

General Terms

Design; Documentation; Languages; Reliability
⇤The title is a homage to an omnipresent gra�ti sticker stat-ing that “BNE WAS HERE”. The identity of BNE remainsunknown, unlike BNF which stands for Backus-Naur Form.The second part of the title is a direct reference to [26] whichfirst described the problem we are solving in this paper.

Copyright ACM, 2011. This is the author’s version of the work. It is postedhere by permission of ACM for your personal use. Not for redistribution.The definitive version was published in the Proceedings of SAC 2012.SAC’12 March 26–30, 2012, Riva del Garda, Italy.http://dx.doi.org/10.1145/2245276.2232090.

Keywords

EBNF, syntactic notations, metasyntax, grammar recovery,language documentation

1. INTRODUCTION
In this paper we present a set of constructs and conven-tions, the combination of which full defines an EBNF-likesyntactic notation to an extent of enabling automated gram-mar processing. Currently formal grammars in most pro-gramming languages standards and reference manuals arespecified using a notation specific to that one particular stan-dard or reference. In fact, all these notations stem from thesame root, namely Backus-Naur Form [2, 16], and are tech-nically dialects thereof. It has been noted as early as in 1977that the diversity of notation for syntax definitions is unnec-essary [26], but as of today little has been done to minimizethe diversity and to deal with it e↵ectively. There was an at-tempt in 1996 to standardize the notation at ISO [11], butit only ended up adding yet another three dialects to thechaos.

We have analyzed a corpus of 38 programming languagestandards (ANSI, ISO, IEEE, W3C, etc), 23 grammar con-taining publications of other kinds (non-endorsed books, sci-entific papers, manuals) and 8 derivative grammar sources,exhibiting in total 42 syntactic notations while defining 77grammars (from Algol and C++ to SQL and XPath). Itquickly became apparent that a unified fully automatedgrammar extractor is impossible to construct, since seman-tic inference is impossible (e.g., “a=b,c” can define a as asequence of b and c in one notation and assume a terminalsymbol "," between b and c in another).
After proposing a way to define every specific syntacticnotation explicitly and concisely, we were able to automatethe rest of grammar recovery activities and build a fault tol-erant extractor which helped us to recover 64 grammars ofindustrial size (some of them containing over 300 nontermi-nal symbols and over 700 production rules) with minimume↵ort. This is a drastic improvement on prior work where ev-ery grammar recovery initiative took considerable individuale↵ort, which could not be easily re-used in a similar project.Encapsulating syntactic notation details in a concise specifi-cation allows us to make generalizations and combines wellwith advanced error recovery techniques similar to ones pre-sented in [19] or [20].

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23BNF-WAS-HERE2012

1.BGF
7

[SQM’14]

ECEASST

Software Language Engineering by Intentional Rewriting
Vadim Zaytsev

Universiteit van Amsterdam, The Netherlands, vadim@grammarware.net

Abstract: Grammars in a broad sense (specifications of structural commitments)are complex artefacts that define software languages. Assessing and improving theirquality in an automated, non-idiosyncratic manner is an unsolved problem whichwe face in an especially acute form in the case of mass maintenance of hundreds ofheterogeneous grammars (parser specs, ADTs, metamodels, XML schemata, etc) inthe Grammar Zoo. In an attempt to apply software language engineering methods tosolve a software language engineering problem, we design a language for grammarmutations capable of applying uniform intentional transformations in the scope ofa big grammar or a corpus of grammars. In this paper, we describe a disciplinedprocess of engineering such a language by systematic reuse of semantic componentsof another existing software language. The constructs of the reference language areanalysed and classified by their intent, each category of constructs is then subjectedto rewriting. This process results in a set of constructs that form the new language.Keywords: term rewriting; intentionality; grammar programming; software lan-guage engineering; grammar mutation; grammarware.

1 Introduction
Although there have been a lot of expert opinions expressed about designing a software lan-guage [vW65, Hoa73, Wir74, MHS05, VBD+13], the process often remains far from beingcompletely controlled, and the correspondence of language design decisions with the successfuluses of the language for intended tasks, remains unproven. Formalising domain knowledge andexpressing it algorithmically is what we see as one of the fundamental challenges that the fieldof software language engineering is facing.

Our case study concerns a domain-specific language for manipulating grammars in a broadsense — in fact, structural contracts like language concrete syntaxes or library interfaces [KLV05].In earlier work, we have been continuously addressing the problem of expressing evolutionarychanges to these structural contracts as transformation steps, showing the superiority of detailof such specifications to inline grammar editing [Läm01a, LZ09, LZ11]. We have also identi-fied the need for expressing large scale manipulations — transformation generators [Zay11] orgrammar mutations [Zay12b], cautiously proposing one or two as the practical side dictated.In this paper, we are determined to construct a full-fledged language for large scale gram-mar programming, which would implement grammar mutations. If the language for fine-grainedgrammar programming had operators like “rename this nonterminal” or “eliminate this unusednonterminal”, then for the language of large scale grammar programming, we aim to have com-mands like “rename all nonterminals to lowercase” and “eliminate all unused nonterminals”. Inorder to do so, we deconstruct the existing language and intentionally (as in “intentional soft-
1 / 17

Volume 65 (2014)

Vadim Zaytsev
Universiteit van Amsterdam

SQM 2014 @ CSMR-WCRE
3 February 2014

CC-BY-SA

Software
Language
Engineering by
Intentional
Rewriting

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23SLEIR2014

2.Rascal

• Grammar Laboratory

• Grammar Library

• Micropatterns [SLE’13]

• Smells [SLE’17]

• BOOL [NOOL’17]

• Also used externally [SPE]

8

[SLE’13] [SLE’17] [NOOL’17]

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Micropatterns2013
http://grammarware.net/writes/%23Grammar-Smells2017
http://grammarware.net/writes/%23BOOL2017
https://doi.org/10.1002/spe.2665
http://grammarware.net/writes/%23Micropatterns2013
http://grammarware.net/writes/%23Grammar-Smells2017
http://grammarware.net/writes/%23BOOL2017

3.Engage!
9

[REBLS’19]

Event-Based Parsing
Vadim Zaytsev
Raincode Labs

Brussels, Belgium
vadim@grammarware.net

Abstract
Event-based parsing is a largely unexplored problem. Despiteseveral hugely popular event-based parsers like SAX, thereis very little research on the ways grammar engineers canbe given explicit control over handling input tokens, and theconsequences of exposing this control. Tool support is alsounderwhelming, with no language workbenches and veryfew libraries to help a parser developer to get started quicklyand e�ciently. To explore this paradigm, we have designeda language for event-based parsing and developed a proto-type that translates speci�cations written in that language,to parsers in C#. We also report on the comparative perfor-mance of one of the parsers we generated, and a previouslyused PEG parser extracted from a real compiler.

CCS Concepts • Theory of computation → Parsing; •Applied computing→ Event-driven architectures.
ACM Reference Format:
Vadim Zaytsev. 2019. Event-Based Parsing. In Proceedings of the6th ACM SIGPLAN International Workshop on Reactive and Event-Based Languages and Systems (REBLS ’19), October 21, 2019, Athens,Greece. ACM, New York, NY, USA, 10 pages. h�ps://doi.org/10.1145/3358503.3361275

1 Introduction
Parsing is considered a solved problem [1]. However, in prac-tice often it is not. Despite having literally hundreds of dif-ferent parsing techniques at our disposal [9], produced bythe researchers and practitioners non-stop since 1961 [10],the compiler experts are commonly faced with challengesrelated to inapplicability of existing technologies to the tasksof software renovation [2], the inappropriateness of existingframeworks in dealing with legacy languages [29] or simplythe lack of developed theories and tools for crucial activitieslike regression parsing [28].
In general, parsing in a broad sense [32] is a task of recog-nising elements of expected structure in the input stream.

REBLS ’19, October 21, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensedto ACM.
This is the author’s version of the work. It is posted here for your personaluse. Not for redistribution. The de�nitive Version of Record was publishedin Proceedings of the 6th ACM SIGPLAN International Workshop on Reactiveand Event-Based Languages and Systems (REBLS ’19), October 21, 2019, Athens,Greece, h�ps://doi.org/10.1145/3358503.3361275.

There are many �avours of such techniques, forming a spec-trum from classical text-to-tree parsing techniques [9] to afamily of more approximate and tolerant semiparsing tech-niques [27] all the way to the simplest tasks of softwareanalytics [3] and software metrics [5, 19]. On the grandscheme of things, counting the number of lines in a �leis also some form of “parsing” (more commonly referred toas “fact extraction”). As an industrial company involved inwriting compilers and migrating legacy software, we rou-tinely encounter new challenges in parsing. For example,some notations of legacy languages are position-based [29],and “parsing” entails counting which position in the linedoes a character occur at, and not necessarily paying anyattention to the character per se (and counting the numberof spaces in a line before a non-space symbol has much morein common with counting lines in a �le than with traditionalgraph manipulation).
This paper is an attempt to explore a new paradigm inparsing: the event-based parsing. Instead of writing a gram-mar for the desired language, typically specifying rules like“a �b� c+”, meaning “sequentially apply the rules of thenonterminal a, then expect an input �b�, and then expectany number of inputs conforming to the rules of the nonter-minal c”, we could write a reactive speci�cation in the formof “whenever �b� is found in the input, expect a to have beenprepared before it, and collect any number of occurrences ofc until the input is exhausted”.
To quote Tudor Gîrba: “In software ideas do not existwithout a concrete incarnation. The materialization of anidea is a step that matters and the research is not completewithout it.” [8]. Contemplating novel paradigms is alwayseasier with a concrete implementation of them, even though,of course, we are thus inherently limiting ourselves to thelimitations of the actual implementation at hand. Thus, wewill present Engage! [31] as a small framework supportingwriting parsing speci�cations in an event-based style, andgenerating code in C# for execution and inspection.Motivations for choosing the event-based paradigm canbe versatile. At least two possible advantages come to mindin the context of parsing. First of all, event-based represen-tations are equally easy to write when precise parsing isrequired, as well as when some form of semiparsing (toler-ant, error-correcting, permissive, fuzzy, etc [27]) is enough.The state of the art in traditional state-based parsers is thatmost e�ort goes into tool support for precise parsing, andeach language workbench which can already deliver precise

1

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Event-Based2019

3.Engage!
10

[REBLS’19]

Event-Based Parsing
Vadim Zaytsev
Raincode Labs

Brussels, Belgium
vadim@grammarware.net

Abstract
Event-based parsing is a largely unexplored problem. Despiteseveral hugely popular event-based parsers like SAX, thereis very little research on the ways grammar engineers canbe given explicit control over handling input tokens, and theconsequences of exposing this control. Tool support is alsounderwhelming, with no language workbenches and veryfew libraries to help a parser developer to get started quicklyand e�ciently. To explore this paradigm, we have designeda language for event-based parsing and developed a proto-type that translates speci�cations written in that language,to parsers in C#. We also report on the comparative perfor-mance of one of the parsers we generated, and a previouslyused PEG parser extracted from a real compiler.

CCS Concepts • Theory of computation → Parsing; •Applied computing→ Event-driven architectures.
ACM Reference Format:
Vadim Zaytsev. 2019. Event-Based Parsing. In Proceedings of the6th ACM SIGPLAN International Workshop on Reactive and Event-Based Languages and Systems (REBLS ’19), October 21, 2019, Athens,Greece. ACM, New York, NY, USA, 10 pages. h�ps://doi.org/10.1145/3358503.3361275

1 Introduction
Parsing is considered a solved problem [1]. However, in prac-tice often it is not. Despite having literally hundreds of dif-ferent parsing techniques at our disposal [9], produced bythe researchers and practitioners non-stop since 1961 [10],the compiler experts are commonly faced with challengesrelated to inapplicability of existing technologies to the tasksof software renovation [2], the inappropriateness of existingframeworks in dealing with legacy languages [29] or simplythe lack of developed theories and tools for crucial activitieslike regression parsing [28].
In general, parsing in a broad sense [32] is a task of recog-nising elements of expected structure in the input stream.

REBLS ’19, October 21, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensedto ACM.
This is the author’s version of the work. It is posted here for your personaluse. Not for redistribution. The de�nitive Version of Record was publishedin Proceedings of the 6th ACM SIGPLAN International Workshop on Reactiveand Event-Based Languages and Systems (REBLS ’19), October 21, 2019, Athens,Greece, h�ps://doi.org/10.1145/3358503.3361275.

There are many �avours of such techniques, forming a spec-trum from classical text-to-tree parsing techniques [9] to afamily of more approximate and tolerant semiparsing tech-niques [27] all the way to the simplest tasks of softwareanalytics [3] and software metrics [5, 19]. On the grandscheme of things, counting the number of lines in a �leis also some form of “parsing” (more commonly referred toas “fact extraction”). As an industrial company involved inwriting compilers and migrating legacy software, we rou-tinely encounter new challenges in parsing. For example,some notations of legacy languages are position-based [29],and “parsing” entails counting which position in the linedoes a character occur at, and not necessarily paying anyattention to the character per se (and counting the numberof spaces in a line before a non-space symbol has much morein common with counting lines in a �le than with traditionalgraph manipulation).
This paper is an attempt to explore a new paradigm inparsing: the event-based parsing. Instead of writing a gram-mar for the desired language, typically specifying rules like“a �b� c+”, meaning “sequentially apply the rules of thenonterminal a, then expect an input �b�, and then expectany number of inputs conforming to the rules of the nonter-minal c”, we could write a reactive speci�cation in the formof “whenever �b� is found in the input, expect a to have beenprepared before it, and collect any number of occurrences ofc until the input is exhausted”.
To quote Tudor Gîrba: “In software ideas do not existwithout a concrete incarnation. The materialization of anidea is a step that matters and the research is not completewithout it.” [8]. Contemplating novel paradigms is alwayseasier with a concrete implementation of them, even though,of course, we are thus inherently limiting ourselves to thelimitations of the actual implementation at hand. Thus, wewill present Engage! [31] as a small framework supportingwriting parsing speci�cations in an event-based style, andgenerating code in C# for execution and inspection.Motivations for choosing the event-based paradigm canbe versatile. At least two possible advantages come to mindin the context of parsing. First of all, event-based represen-tations are equally easy to write when precise parsing isrequired, as well as when some form of semiparsing (toler-ant, error-correcting, permissive, fuzzy, etc [27]) is enough.The state of the art in traditional state-based parsers is thatmost e�ort goes into tool support for precise parsing, andeach language workbench which can already deliver precise

1

REBLS ’19, October 21, 2019, Athens, Greece Vadim Zaytsev

Figure 5. Performance of the Engage! parser (lower line) and the PEG parser for the same language. The input data is generated
test programs with K pairs of a declaration block with N random declarations and a statement block with N random statements,
for N from 0 to 100, for K from 0 to 100, sorted horizontally by the execution time of the Engage! parser to avoid sawtooth
shapes. The vertical axis is in CPU ticks. This experiment took around 50 minutes on the developer’s laptop.

namespace AB
types

ABProgram;
Integer, String, Decimal <: Type;
Decl;
Var, Lit <: Expr;

tokens
� �, �\r�, �\n� :: skip
�;�, �(�, �)� :: mark
�dcl�, �enddcl�, �integer�, �dec� :: word
number :: Num
string :: Id

handlers
EOF -> push ABProgram(data,code)

where code := pop# Stmt,
data := pop# Decl

Num -> push Lit(this)
�dcl� -> lift DCL
�enddcl� -> drop DCL
�;� upon DCL -> push Decl(v,t)

where t := pop Type,
v := pop Var

�integer� upon DCL -> push Integer
�dec� upon DCL -> push Decimal(n)

where x := await (Lit upon BRACKET) with DEC,
n := tear x

�(� upon DEC -> lift BRACKET
�)� -> drop BRACKET

Figure 6. An excerpt from appbuilder.eng [31], an Engage! speci�cation for the rule language of AppBuilder (the language
as it is used in the Raincode TIALAA compiler). One can see four main top-level directives, de�ning the namespace for the
generated data classes as well as the parser class; the data types to be generated and populated, including their subtyping
relations which would otherwise not be visible from the constructors used in the handlers; then the tokens �lling three
prede�ned types and de�ning two user-de�ned types with prede�ned matchers; and �nally some of the handlers parsing some
of the local �eld declarations of AppBuilder.

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Event-Based2019

4.PAX
11

[GPCE’17]

Parser Generation by Examplefor Legacy Pattern Languages
Vadim Zaytsev
Raincode Labs

Brussels, Belgium
vadim@grammarware.net

Abstract
Most modern software languages enjoy relatively free andrelaxed concrete syntax, with signi�cant �exibility of format-ting of the program/model/sheet text. Yet, in the dark legacycorners of software engineering there are still languageswith a strict �xed column-based structure—the compromisesof times long gone, attempting to combine some humanreadability with some ease of machine processing. In thispaper, we consider an industrial case study for retirement ofa legacy domain-speci�c language, completed under extremecircumstances: absolute lack of documentation, varying linestructure, hierarchical blocks within one �le, scalability de-mands for millions of lines of code, performance demandsfor manipulating tens of thousands multi-megabyte �les, etc.However, the regularity of the language allowed to infer itsstructure from the available examples, automatically, andproduce highly e�cient parsers for it.

CCS Concepts • Software and its engineering → Pro-gramming by example;Translatorwriting systems andcompiler generators;Parsers; •Theory of computation→ Grammars and context-free languages; Pattern matching;
Keywords parser generation, engineering by example, pat-tern languages, legacy software, grammar inference, lan-guage acquisition
ACM Reference Format:
Vadim Zaytsev. 2017. Parser Generation by Example for LegacyPattern Languages. In Proceedings of 16th ACM SIGPLAN Interna-tional Conference on Generative Programming: Concepts and Ex-periences (GPCE’17). ACM, New York, NY, USA, 7 pages. h�ps://doi.org/10.1145/3136040.3136058

GPCE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensedto Association for Computing Machinery.This is the author’s version of the work. It is posted here for your personaluse. Not for redistribution. The de�nitive Version of Record was publishedin Proceedings of 16th ACM SIGPLAN International Conference on GenerativeProgramming: Concepts and Experiences (GPCE’17), h�ps://doi.org/10.1145/3136040.3136058.

1 Problem
When working in legacy analysis and renovation industry,we come across bizarre �le formats with alarming regularity.It is a world where language identi�cation cannot rely on�le extensions and may require anything up to and includ-ing machine learning [20], and where dealing with a prioriunknown formats has been elevated from an idle thoughtexperiment to a routinely used job interview question [36].In this paper, we will share a success story of handling oneof such �le formats, with the pattern language technology(terminology by Angluin [1]).
Raincode Labs is an independent company providing be-spoke compiler services. One of our clients in the bankingsector, which, being NDA-bound, we will have to call A,owns a multi-million line codebase, developed over decadesof company growth and containing most of its business rulesand IT assets. Besides COBOL and PL/I which we have learntto handle with ease, grace and experience, the codebase con-tains almost 70k modules in a fourth-generation language wewill call B. Even though A has over 100 developers activelycreating new software in that language on a daily basis, ithas been classi�ed as a liability for the future and scheduledfor retirement in its current incarnation. We are now in theprocess of writing a full-�edged compiler for B targetingthe .NET Framework. When the project is completed, it willallow A to deploy their products on commonplace hardwareor modern platforms such as Azure, to write hand-tweakedcomponents in modern programming languages such as C]

and, most importantly, to hire young professionals otherwisefrightened o� by the prospect of learning an obscure dyinglanguage as the �rst job requirement.
The documentation of B is partly non-existent, partlyoutdated and ultimately protected legally by an explicit dis-claimer that only paying customers of B’s current rightsowner are allowed to read it. The source artefacts come inthe form of �ve di�erent serialisation languages that B’sinfrastructure exports them in. These �ve notations are notsynchronised: only one looks like a programming language,one more is more of a markup language, another one is syn-tactically and conceptually close to JSON, another one toLISP, and �nally there is one notation with position-basedstrings (think Excel in ASCII, example on Figure 1). Wewill call the latter notation C. All �ve are important for thehealthy functioning of the system, since they de�ne data and

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Pattern2017

4.PAX

• Patterns

• Commitments

• Bindings

12

[GPCE’17]

Parser Generation by Examplefor Legacy Pattern Languages
Vadim Zaytsev
Raincode Labs

Brussels, Belgium
vadim@grammarware.net

Abstract
Most modern software languages enjoy relatively free andrelaxed concrete syntax, with signi�cant �exibility of format-ting of the program/model/sheet text. Yet, in the dark legacycorners of software engineering there are still languageswith a strict �xed column-based structure—the compromisesof times long gone, attempting to combine some humanreadability with some ease of machine processing. In thispaper, we consider an industrial case study for retirement ofa legacy domain-speci�c language, completed under extremecircumstances: absolute lack of documentation, varying linestructure, hierarchical blocks within one �le, scalability de-mands for millions of lines of code, performance demandsfor manipulating tens of thousands multi-megabyte �les, etc.However, the regularity of the language allowed to infer itsstructure from the available examples, automatically, andproduce highly e�cient parsers for it.

CCS Concepts • Software and its engineering → Pro-gramming by example;Translatorwriting systems andcompiler generators;Parsers; •Theory of computation→ Grammars and context-free languages; Pattern matching;
Keywords parser generation, engineering by example, pat-tern languages, legacy software, grammar inference, lan-guage acquisition
ACM Reference Format:
Vadim Zaytsev. 2017. Parser Generation by Example for LegacyPattern Languages. In Proceedings of 16th ACM SIGPLAN Interna-tional Conference on Generative Programming: Concepts and Ex-periences (GPCE’17). ACM, New York, NY, USA, 7 pages. h�ps://doi.org/10.1145/3136040.3136058

GPCE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensedto Association for Computing Machinery.This is the author’s version of the work. It is posted here for your personaluse. Not for redistribution. The de�nitive Version of Record was publishedin Proceedings of 16th ACM SIGPLAN International Conference on GenerativeProgramming: Concepts and Experiences (GPCE’17), h�ps://doi.org/10.1145/3136040.3136058.

1 Problem
When working in legacy analysis and renovation industry,we come across bizarre �le formats with alarming regularity.It is a world where language identi�cation cannot rely on�le extensions and may require anything up to and includ-ing machine learning [20], and where dealing with a prioriunknown formats has been elevated from an idle thoughtexperiment to a routinely used job interview question [36].In this paper, we will share a success story of handling oneof such �le formats, with the pattern language technology(terminology by Angluin [1]).
Raincode Labs is an independent company providing be-spoke compiler services. One of our clients in the bankingsector, which, being NDA-bound, we will have to call A,owns a multi-million line codebase, developed over decadesof company growth and containing most of its business rulesand IT assets. Besides COBOL and PL/I which we have learntto handle with ease, grace and experience, the codebase con-tains almost 70k modules in a fourth-generation language wewill call B. Even though A has over 100 developers activelycreating new software in that language on a daily basis, ithas been classi�ed as a liability for the future and scheduledfor retirement in its current incarnation. We are now in theprocess of writing a full-�edged compiler for B targetingthe .NET Framework. When the project is completed, it willallow A to deploy their products on commonplace hardwareor modern platforms such as Azure, to write hand-tweakedcomponents in modern programming languages such as C]

and, most importantly, to hire young professionals otherwisefrightened o� by the prospect of learning an obscure dyinglanguage as the �rst job requirement.
The documentation of B is partly non-existent, partlyoutdated and ultimately protected legally by an explicit dis-claimer that only paying customers of B’s current rightsowner are allowed to read it. The source artefacts come inthe form of �ve di�erent serialisation languages that B’sinfrastructure exports them in. These �ve notations are notsynchronised: only one looks like a programming language,one more is more of a markup language, another one is syn-tactically and conceptually close to JSON, another one toLISP, and �nally there is one notation with position-basedstrings (think Excel in ASCII, example on Figure 1). Wewill call the latter notation C. All �ve are important for thehealthy functioning of the system, since they de�ne data and

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Pattern2017

BluePhoenix AppBuilder 2.1.1

Rules Language Reference Guide

5.TIALAA

• AppBuilder is a 4GL

• “Application Development
 without Programmers”

• Tech:

• compiles to Java & COBOL

• supported by handmade code

• Business case:

• ~200 devs, reimplement in .NET

13

BluePhoenix AppBuilder documentaton

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

An Industrial Case Study in Compiler Testing(Tool Demo)
Vadim ZaytsevRaincode Labs, Brussels, Belgium, vadim@grammarware.netAbstract

Compiler construction is one of the oldest areas of softwareengineering, yet despite its maturity it has underdevelopedsides such as compiler testing. There exist many disparatemethods for testing parsers, optimisers and other compo-nents, but no uni�edmethodology that consumable by practi-tioners from a book to be directly applied to ful�l their needs.Instead of striving to cover all theoretical aspects of com-piler testing in one paper, we present a case study for anongoing project of a relatively large size for our company (2years, 3–6 devs, ⇠500kLOC), a clean room compiler develop-ment e�ort in replicating a 4GL. We built a model-based testdata generator, consuming manually written specs and gene-rating necessary test code in the 4GL, in the host language,and in auxiliary DSLs (batch �les, XML project descriptions),to both the developers’ and the customer’s satisfaction. Thenumber of specs is 927 at the publication time, while thenumber of test cases generated from them, is 6268. All thesetests have been run prior to shipping for the last 49 releasesof the compiler, both to ensure the lack of regression and toreport on the project overall progress. The generated testsare separated into 11 categories which the paper details inthe hope that the classi�cation will aid in seeking relatedwork and in pushing this line of research forward.
CCS Concepts • Software and its engineering→Com-pilers; Software testing and debugging;
Keywords compiler testing, legacy, 4GL
ACM Reference Format:
Vadim Zaytsev. 2018. An Industrial Case Study in Compiler Testing(Tool Demo). In Proceedings of the 11th ACM SIGPLAN InternationalConference on Software Language Engineering (SLE ’18), November5–6, 2018, Boston, MA, USA. ACM, New York, NY, USA, 6 pages.h�ps://doi.org/10.1145/3276604.3276619

1 Introduction
There are two cardinally opposite views on software tes-ting. One can be de�ned as Dijkstra’s famous “testing shows
SLE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensedto ACM.
This is the author’s version of the work. It is posted here for your personaluse. Not for redistribution. The de�nitive Version of Record was published inProceedings of the 11th ACM SIGPLAN International Conference on SoftwareLanguage Engineering (SLE ’18), November 5–6, 2018, Boston, MA, USA, h�ps://doi.org/10.1145/3276604.3276619.

the presence, not the absence of bugs” [9, p.21]. The otherone was advocated by Goodenough as “properly structuredtests are capable of demonstrating the absence of errors in aprogram” [13], which puts testing on the same level as ve-ri�cation which has always been viewed as its bigger andsmarter cousin. (“[If] you have [been] given the proof of cor-rectness, [you] can dispense with testing altogether” [28, p.51]).The three middle ground sweet spots commonly found insoftware engineering, are:
• Best e�ort: especially for certi�cation purposes, it isimportant to demonstrate the intent to break claimedfunctionality, even if such attempts ultimately fail. Inpractice, however, it is relatively rare to invest in tes-ting signi�cantly without �nding any bugs at all, sincein general an average software system is of imperfectquality [31, 39, 49].
• Coverage-driven: de�ning some metric of how good atest suite is, and working towards increasing it up tosome exhaustion point. It has been known for a longtime that “tests based solely on the internal structureof a program are likely to be unreliable” [13]. Instead,we should focus on conditions that can be observablyviolated, and test for all combinations of them.• Refactoring support: test cases can encapsulate ex-isting or desired behaviour of the system before itsinternal structure is about to change, and then usedto ensure that the change did not a�ect the executionsemantics [12]. This path is commonly taken whendealing with legacy code [10].

Compiler testing is an interesting subtopic with manychallenges. There is de�nitely industrial need and demandfor it, but the usual time pressure does not allow for in depthinvestigations and methodological explorations. In the restof the paper we will explain how such challenges were facedin one standalone project.
As an example, we take an ongoing project of RaincodeLabs. Its origins and peculiarities will be brie�y describedbelow—for a more extended version the readers are invitedto explore Parser Generation by Example [45, §1]. For legalreasons we will continue calling our primary client of thisproject, A. It is a company working in the banking sector,which owns a multi-million line codebase. It was developedover decades of company growth and contains most of itsbusiness rules and IT assets. Besides COBOL and PL/I whichare routinely encountered in our line of business, the code-base contains almost 70k modules in a fourth-generation

5.TIALAA

• Notations:

• “rules”: non-declarative

• “sets”: key-value lookup tables

• “views”: models in MVC

• “panels”: windows in S-exprs

• Guesswork

• COBOL & Java

• .NET/WPF

14

[SLE’18] [PX/17.2] [TechDebt’19]

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Testing2018
http://grammarware.net/writes/%23Coverage2017
http://grammarware.net/writes/%234GL-TechDebt2019

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

6.CSS

• Escape the Java bubble!

• Project examples:

• dead code detection [UvA’15]

• performance [UvA’16] [SATToSE]

• refactoring [UvA’15]

• patterns [UvA’15] [ICSME’16]

• conventions [UvA’15] [SLE’16]

16

[ICSME’16] [SLE’16]

h?2 �?"∗� S�ii2`M, lM/QBM; aivH2 BM *aa�M/ _27�+iQ`BM; PTTQ`imMBiB2b Bi S`2b2Mib
G2QM�`/ SmMi

lMBp2`bBiv Q7 �Kbi2`/�K- h?2 L2i?2`H�M/bZ9k- h?2 L2i?2`H�M/b

aDQ2`/ oBbb+?2`

Z9k- h?2 L2i?2`H�M/b

o�/BK w�vib2p
lMBp2`bBiv Q7 �Kbi2`/�K- h?2 L2i?2`H�M/b_�BM+Q/2- "2H;BmK

�#bi`�+iě*�b+�/BM; aivH2 a?22ib U*aaV Bb � H�M;m�;2rB/2Hv mb2/ BM +QMi2KTQ`�`v r2# �TTHB+�iBQMb 7Q`/2}MBM; i?2 T`2b2Mi�iBQM b2K�MiB+b Q7 r2# /Q+mK2MibX.2bTBi2 Bib `2H�iBp2Hv bBKTH2 bvMi�t- i?2 H�M;m�;2 ?�b �MmK#2` Q7 +QKTH2t 72�im`2b HBF2 BM?2`Bi�M+2- +�b+�/BM;�M/ bT2+B}+Biv- r?B+? K�F2 *aa +Q/2 +?�HH2M;BM; iQmM/2`bi�M/ �M/ K�BMi�BMX Ai ?�b #22M MQi2/ BM T`BQ``2b2�`+? i?�i *aa +Q/2 Bb T`QM2 iQ +QMi�BM +Q/2 bK2HHbr?B+? BM/B+�i2 /2bB;M r2�FM2bb2b �M/ K�BMi�BM�#BHBivBbbm2bX
AM i?Bb T�T2` r2 7Q+mb QM QM2 Q7 i?Qb2 +Q/2 bK2HHb+�HH2/ mM/QBM; bivH2X Ai ?�TT2Mb r?2M � T`QT2`iv Bbb2i iQ � p�Hm2 �- i?2M Qp2``B//2M iQ �MQi?2` p�Hm2"- TQbbB#Hv KmHiBTH2 iBK2b- �M/ i?2M b2i #�+F iQ i?2Q`B;BM�H p�Hm2 Q7 �X q2 `272` iQ i?Bb T�ii2`M �b i?2�?"∗� T�ii2`MX q2 T`QTQb2 � i2+?MB[m2 i?�i /2i2+ibmM/QBM; bivH2 BM *aa +Q/2 �M/ `2+QKK2M/b `27�+iQ`BM;QTTQ`imMBiB2b iQ 2HBKBM�i2 BMbi�M+2b Q7 mM/QBM; bivH2r?BH2 T`2b2`pBM; i?2 b2K�MiB+b Q7 i?2 r2# �TTHB+�iBQMXq2 2p�Hm�i2 Qm` i2+?MB[m2 QM 9R `2�H@rQ`H/ r2#�TTHB+�iBQMb- �M/ QmiHBM2 � T`QQ7 Q7 +Q``2+iM2bb 7Q` Qm``27�+iQ`BM;X Pm` }M/BM;b b?Qr i?�i mM/QBM; bivH2 Bb[mBi2 T`QKBM2Mi BM *aa +Q/2X �//BiBQM�HHv- i?2`2 �`2K�Mv `27�+iQ`BM;b i?�i +�M #2 �TTHB2/ r?BH2 ?�`/HvBMi`Q/m+BM; �Mv 2``Q`bX

AX AMi`Q/m+iBQM
*�b+�/BM; aivH2 a?22ib U*aaV (k)- (8)- (Rd) Bb � H�M;m�;2mb2/ 7Q` /2}MBM; i?2 T`2b2Mi�iBQM b2K�MiB+b Q7 r2# /Q+@mK2Mib- HBF2 TQbBiBQMBM;- bBx2b- +QHQm`b �M/ 7QMibX *aa BbrB/2Hv mb2/ ě NeW Q7 r2# /2p2HQT2`b mb2 *aa �M/ Qp2`NyW +QMbB/2` Bi � r2# bi�M/�`/ (k3)- �M/ Bi Bb mb2/ QM N8WQ7 i?2 r2#bBi2b (jN)X
.2bTBi2 i?2 `2H�iBp2Hv bBKTH2 bvMi�t Q7 i?2 H�M;m�;2-*aa +Q/2 Bb MQi 2�bBHv mM/2`biQQ/ �M/ K�BMi�BM2/ (kk)Xh?2 H�M;m�;2 ?�b � MmK#2` Q7 +QKTH2t 72�im`2b- HBF2BM?2`Bi�M+2- +�b+�/BM; �M/ bT2+B}+Biv (k)- (8)- (R3)X PM iQTQ7 i?�i- 2bi�#HBb?2/ /2bB;M T`BM+BTH2b �M/ iQQH bmTTQ`i �`2KBbbBM; (kR)X h?2`27Q`2- QM2 Q7 i?2 +QMb2[m2M+2b Bb i?�i BiBb MQi mM+QKKQM 7Q` *aa +Q/2 iQ +QMi�BM +Q/2 bK2HHb (Rk)X� +Q/2 bK2HH Bb � T�ii2`M Q7 +Q/2 i?�i BM/B+�i2b � r2�FM2bbBM i?2 /2bB;MX am+? � r2�FM2bb K�v +�mb2 Bbbm2b BM +Q/2mM/2`bi�M/BM; �M/ K�BMi2M�M+2 BM i?2 HQM; i2`K (Ry)XAM � `2+2Mi bim/v- J�xBM�MB�M 2i �HX (kR) 7QmM/ i?�i QM�p2`�;2 eeW Q7 i?2 bivH2 /2+H�`�iBQMb �`2 `2T2�i2/ �i H2�biQM+2 BM � *aa }H2X 6m`i?2`KQ`2 �M 3W bBx2 `2/m+iBQM+�M #2 �+?B2p2/ #v 2tTHQ`BM; i?2B` /2i2+i2/ `27�+iQ`BM;QTTQ`imMBiB2bX JQ`2 `2+2MiHv- :?�`�+?Q`Hm (Rk) b?Qr2/

i?�i *aa bK2HHb �`2 rB/2bT`2�/ BM iQ/�vǶb r2#bBi2bc NNX3WQ7 i?2 r2#bBi2b UBX2X- 9NN Qmi 8yyV �M�Hvb2/ BM i?�i bim/v-+QMi�BM �i H2�bi QM2 ivT2 Q7 *aa +Q/2 bK2HHbXh?2 ;Q�H Q7 i?Bb rQ`F Bb iQ /2i2+i �M/ +QK2 mT rBi?b2K�MiB+ T`2b2`pBM; `27�+iQ`BM; QTTQ`imMBiB2b 7Q` i?2 *aa+Q/2 bK2HH mM/QBM; bivH2X q2 ?�p2 /2HB#2`�i2Hv +?Qb2M iQb+QT2 i?2 T`QD2+i iQ 7Q+mb QM QM2 bK2HH �M/ BMp2biB;�i2Bi BM �HH /2i�BHb Bi /2b2`p2b- `�i?2` i?�M T`QpB/BM; HBKBi2/`27�+iQ`BM; QTTQ`imMBiB2b 7Q` 2�+? bK2HHXh?2 `2bi Q7 i?2 T�T2` Bb Q`;�MBb2/ �b 7QHHQrbX q2 #`B2~vBMi`Q/m+2 *aa �M/ 2tTH�BM Bib bQT?BbiB+�iBQM BM b2+iBQM AAXAM b2+iBQM AAA r2 `2TQ`i T`2pBQmb }M/BM;b QM i?2 +Q/2bK2HHb 7QmM/ BM *aa- B/2MiB7v i?2B` b?Q`i+QKBM;b �M//2}M2 i?2 T`Q#H2K r2 BMi2M/ iQ bQHp2X h?2 �?"∗� T�ii2`MK2MiBQM2/ BM i?2 �#bi`�+i- Bb /2}M2/ �M/ 2H�#Q`�i2/ BMb2+iBQM Ao- 7QHHQr2/ #v i?2 �H;Q`Bi?K Q7 Bib /2i2+iBQM BMb2+iBQM oX � /2i�BH2/ `2�HBbiB+ 2t�KTH2 Bb +QMi�BM2/ BMb2+iBQM oAX h?2 2tT2`BK2Mib r2 `�M �b p�HB/�iBQM �`2BM+Hm/2/ BM b2+iBQM oAA- rBi? i?2 /Bb+mbbBQM Q7 i?2 `2bmHib7QmM/ BM b2+iBQM oAAAX q2 bF2i+? i?2 T`QQ7 Q7 +Q``2+iM2bbQ7 Qm` �TT`Q�+? BM b2+iBQM As- `2pBbBi `2H�i2/ rQ`F BMb2+iBQM s �M/ +QM+Hm/2 i?2 T�T2` rBi? b2+iBQM sAX
AAX h?2 *aa G�M;m�;2

�M 2t�KTH2 Q7 � *aa b?22i rQmH/ #2 � bT2+B}+�iBQMi?�i /2+H�`2b i?�i �HH T�`�;`�T?b UK�i+?BM; ʳ�ʴ i�;bVb?QmH/ ?�p2 i?2B` BMM2` i2ti +2Mi2`2/ �M/ T`BMi2/ BM `2/-B7 ?�`/r�`2 T2`KBib,
� Ƈ

�����ś ���Ś
����Ş�����ś ������Ś

ƈ

h?2 +QKTH2i2 ;`�KK�` Q7 *aaj (j) Bb biBHH mM/2` /2@p2HQTK2Mi- +QMi�BMb K�Mv iQT �M/ #QiiQK MQMi2`KBM�Hb-KBt2b b2p2`�H MQi�iBQMb �M/ mii2`Hv 7�BHb iQ b�iBb7v �Mv[m�HBiv `2[mB`2K2Mib Q7 T`QT2` ;`�KK�` 2M;BM22`BM; (RN)Xq2 T`2b2Mi � K�Mm�HHv /2`Bp2/ bBKTHB}2/ p2`bBQM Q7 Bi,���������� śśʰ ����Ƌ Ś
���� śśʰ �������� ɑƇɑ �����������Ƌ ɑƈɑŶ ɑɒ�������ɑ ������

Ŷ ɑɒ����Ş����ɑ ɑƇɑ �����������Ƌ ɑƈɑŶ ɑɒ������ɑ ſ��� Ŷ ������ƀ ��������������ţŶ ɑɒ�����ɑ �������������� ɑƇɑ ����Ƌ ɑƈɑŶ ɑɒ����ɑ ɑƇɑ �����������Ƌ ɑƈɑ Ś����������� śśʰ �������� ɑśɑ ����� ɑŠ���������ɑţ ɑŚɑţ Ś�b r2 +�M b22- � bivH2 b?22i Bb MQi?BM; KQ`2 i?�M� +QHH2+iBQM Q7 `mH2b- �M/ 2�+? `mH2 #BM/b � b2H2+iQ`

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/edits/index.html%23Adegeest2015
http://grammarware.net/edits/index.html%23Jovanovski2016
http://grammarware.net/writes/index.html%23Critical2016
http://grammarware.net/edits/index.html%23Polet2015
http://grammarware.net/edits/index.html%23Punt2015
http://grammarware.net/writes/index.html%23ABA2016
http://grammarware.net/edits/index.html%23Goncharenko2015
http://grammarware.net/writes/index.html%23CoCo2016
http://grammarware.net/writes/%23ABA2016
http://grammarware.net/writes/%23CoCo2016

Tool Demo: Raincode Assembler Compiler
Volodymyr Blagodarov

Raincode, Belgium
vladimir@raincode.com

Ynes Jaradin
Raincode, Belgium
ynes@raincode.com

Vadim Zaytsev
Raincode, Belgium

vadim@grammarware.netAbstract
IBM’s High Level Assembler (HLASM) is a low level pro-gramming language for z/Architecture mainframe comput-ers. Many legacy codebases contain large subsets written inHLASM for various reasons, and such components usuallyhad to be manually rewritten in COBOL or PL/I before mi-gration to a modern framework could take place. Now, theRaincode ASM370 compiler for .NET supports HLASM syn-tax and emulates the data types and behaviour of the originallanguage, allowing one to port, maintain and interactivelydebug legacy mainframe assembler code under .NET.

ACM Reference Format:
Volodymyr Blagodarov, Ynes Jaradin, and VadimZaytsev. 2016. ToolDemo: Raincode Assembler Compiler. In Proceedings of Proceedingsof the Ninth ACM SIGPLAN International Conference on SoftwareLanguage Engineering (SLE ’16). ACM, New York, NY, USA, 7 pages.h�ps://doi.org/10.1145/2997364.2997387

1 Background
The assembler language for mainframes exists since 1964when the Basic Assembler Language (BAL) was introducedfor the IBM System/360. Around 1970 it was enhanced withmacros and extended mnemonics [10] and was shipped ondi�erent architectures under the product names AssemblerD, Assembler E, Assembler F and Assembler XF. AssemblerH’s Version 2 became generally available in 1983 after beingannounced to support an extended architecture in 1981. Itwas replaced with High Level Assembler in 1992 and subse-quently retired with the end of service in 1995. High LevelAssembler, or HLASM, survived through six releases: in 1992(V1R1), 1995 (V1R2), 1998 (V1R3), 2000 (V1R4), 2004 (V1R5),2013 (V1R6), not counting intermediate updates like adding64-bit support. It is used in many projects nowadays, mostlyfor the same reasons the Intel assembler is used in PC appli-cations.
On mainframes, alternatives to HLASM (sometimes re-ferred to as a “second generation language” to set it apartfrom raw machine code) include so-called “third genera-tion languages” (3GLs, typically COBOL, PL/I, REXX or

SLE ’16, 31 Oct–1 Nov, 2016, Amsterdam, The Netherlands© 2016 Copyright held by the owner/author(s). Publication rights licensedto ACM.
This is the author’s version of the work. It is posted here for your per-sonal use. Not for redistribution. The de�nitive Version of Record waspublished in Proceedings of Proceedings of the Ninth ACM SIGPLAN In-ternational Conference on Software Language Engineering (SLE ’16), h�ps://doi.org/10.1145/2997364.2997387.

CLIST) and “fourth generation languages” (4GLs like RPG,CA Gen, PACBASE, Informix/Aubit, ABAP, CSP, QMF — es-sentially domain-speci�c languages for report processing,database communication, transaction handling, interfaces,model-based code generation, etc). To name a few concreteexamples of good reasons for HLASM usage [14]:
• Fine-grained error handling, since it is much easierto circumvent standard error handling mechanismsand (re)de�ne recovery strategies in HLASM than inany 3GL or 4GL.
• Ad hoc memory management, since HLASM al-lows to manipulate addressing modes directly, changethem from program to program on the �y, allocate anddeallocate storage dynamically.• Optimisation for program size and performance, aswell as e�cient usage of operating system facilities,not available directly from higher level languages, suchas concurrent and reentrant code.• Interoperation of programs compiled for di�erentexecution or addressing modes, low-level system ac-cess.
• Tailoring of products. Many products can be con-�gured or extended by custom user code. However,most of the time, the API is only available as assemblermacros.

Additionally, it is not uncommon for a system to be writ-ten in assembler in order to evade the costs of a 3GL/4GLcompiler, which can be considerable. Such systems are eithergradually rewritten to COBOL or PL/I programs, or becomelegacy. In the latter scenario they can be showstoppers inmigration and replatforming projects that can otherwise mi-grate the remainder of the codebase frommainframe COBOLto one of the desktop COBOL compilers (such as RaincodeCOBOL) with IDE support, version control, debugging, syn-tax highlighting, etc. This is the primary business case fordeveloping a compiler for HLASM and the main motivationfor us to support it.

2 Problem Description
HLASM is far from being a trivial assembler language: it ispossible to use it to represent sequences of machine instruc-tions, but it goes well beyond that. For instance, it helps withidiosyncrasies of the IBM 370 instruction set. In particular,all addresses of memory references have to be representedat the machine level as the content of a register plus a smallo�set. The assembler can be instructed about what addresses

7.HLASM

• IBM HLASM is a 2GL

• Non-orthogonal semantics

• Self-modification is glorified

• Errors in documentation

• Principles of Operation: 1902 pp

• 953 instructions in the set

• Modelling! Generation!
Supercompilaton!

28

[SLE’16] [MoreVMs’17] [BENEVOL’20] [ECMFA’20]

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/index.html%23HLASM2016
http://grammarware.net/writes/index.html%23Compilepretation2017
http://grammarware.net/writes/index.html%23HLASM2019
http://grammarware.net/writes/index.html%23HLASM2020

7.HLASM

• IBM HLASM is a 2GL

• Non-orthogonal semantics

• Self-modification is glorified

• Errors in documentation

• Principles of Operation: 1902 pp

• 953 instructions in the set

• Modelling! Generation!
Supercompilaton!

17

[SLE’16] [MoreVMs’17] [BENEVOL’20] [ECMFA’20]

Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Modelling of
Language Syntax and Semantics:

The Case of the Assembler Compiler
Vadim Zaytseva

a. Raincode Labs, Brussels, Belgium

Abstract Application of software language technologies, whether analyti-cal, transformational, or generational, in an industrial context is usually ataxing endeavour, with high demands in qualification levels of developersinvolved in it. Yet, if applied successfully, in the right places and with theright amount of effort, they promise high returns in terms of optimisation,effectiveness, validity and verifiability. In this paper, we report on ourexperience on writing a compiler for a complex second generation legacyprogramming language originally intended to be used on a mainframe.The business case for this product deals with companies migrating theirsoftware systems off the mainframe to cloud native or PC. Leveraging thedocumentation, available domain knowledge, several sample projects anda test suite, as well as several proprietary DSLs, we successfully modelledsyntax and semantics of hundreds of instructions of that language, tothe point of producing a compiler with a very limited group of compilerdevelopers in limited time. The compiler is currently deployed at some ofour customers and has received a top technology award from Microsoft.This report is meant to serve as a sample snapshot of how compilerscan be built in the industry with software language engineering techniques.Traditional problems of compiler construction such as parsing or codeoptimisation either did not present a noticeable challenge or did notmanifest themselves altogether in the course of this project, but MDEmatters such as model transformation, modular design, the use of DSLsand meta-tools, were a constant concern. The focus of the report is intruthful representation of the domain as well as the details of the project,on reflection of the choices that were taken or could have been taken inthe meantime, and on lessons learnt during the project.
Keywords Syntax; semantics; legacy systems; knowledge extraction; expe-rience report; software language engineering.

Vadim Zaytsev. Modelling of Language Syntax and Semantics: The Case of the Assembler Compiler.Licensed under Attribution 4.0 International (CC BY 4.0). In Journal of Object Technology, vol. 19,
no. 1, 2020, pages N:1–22. This is the author’s own version of the paper. The teaser video of this paper
is also available at https://youtu.be/jQ41mYeW9Vo. This version will be updated once the official JOT
page of the paper is online with the proper DOI.

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/index.html%23HLASM2016
http://grammarware.net/writes/index.html%23Compilepretation2017
http://grammarware.net/writes/index.html%23HLASM2019
http://grammarware.net/writes/index.html%23HLASM2020

7.HLASM
27

[ECMFA’20]

Compiler

Runtime

Instruction Set Model

Principles of Operation

[Ch.5] Instruction formats

[Ap.B] Lists of instructions

[Ap.C] Condition codes

Format Models

Emulator Semantic
Models

CC Models

Emulator

Macros

Bitness Models

Inlining Semantic
Models

Instruction Syntax
Models

[Ch.7–20] 381 text sections

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/index.html%23HLASM2020

8.MegaL
28

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

8.MegaL

• Renarration

• process of converting facts
into a story

• Used by Indian storytellers

• also in database journalism

• Can/must be used

• to make models less scary

29

[MPM’12] [XM’13] [GEMOC’14]

Renarrating Linguistic Architecture: A Case Study

Vadim Zaytsev, vadim@grammarware.netSoftware Analysis & Transformation Team, Centrum Wiskunde & InformaticaAmsterdam, The Netherlands

ABSTRACT

We study the use of megamodels (models of linguistic archi-tecture) for presenting software language engineering sce-narios. Megamodels and techniques similar to them are fre-quently found in situations when a linguistic architectureneeds to be understood without the implicit knowledge thatwas originally present, and in situations when such knowl-edge needs to be propagated. In this paper we specificallyaddress the possibility of using one megamodel to tell sev-eral related stories — that is, to renarrate it. Various re-narrations can address di↵erent aspects of the megamodel,without cluttering the reader’s view with irrelevant details.The renarration method is presented with the case study of asoftware language engineering technique of guided grammarconvergence, and MegaL as a metamegamodel.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

Keywords

Linguistic architecture, megamodelling, renarration

1. INTRODUCTION
The term “renarration” is used in natural language pro-cessing and database journalism to describe the process ofconverting a collection of facts into a story. Specific to re-narration is the anticipation of conflicts: while generally theresearch on “views” assumes them to be consistent with oneanother modulo some hidden or rearranged details, it is nor-mal and expected of several renarrations to deliver conflictedmessages [1]. The same is often true for big megamodels.The term “megamodelling” [2, 4] refers to the higher levelof modelling that specifically addresses relationships betweencomplex entities such as software languages and model trans-formations, aids in expressing software technologies and re-lating technological spaces [8]. Ad hoc megamodelling with

Copyright ACM, 2012. This is the author’s version of the work. It is postedhere by permission of ACM for your personal use. Not for redistribution.The definitive version was published in the Post-proceedings of MPM 2012.MPM ’12 October 01 2012, Innsbruck, Austria
DOI pending; ISBN 978-1-4503-1805-1.

Figure 1: Core entities in MegaL models in this pa-per: artefacts, languages, functions and function ap-plications, and possible relationships between them.Italicised labels denote variables, normal font labelsalways refer to concrete entities.

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/index.html%23Renarration2012
http://grammarware.net/writes/index.html%23Renarration2013
http://grammarware.net/writes/index.html%23Renarration2014

9.DYOL
30

[MoDELS’17] http:"#slebok.github.io/dyol

Language Design with Intent
Vadim Zaytsev (http://grammarware.net), Raincode Labs, Brussels, Belgium

Abstract—Software languages have always been an essentialcomponent of model-driven engineering. Their importance andpopularity has been on the rise thanks to language workbenches,language-oriented development and other methodologies thatenable us to quickly and easily create new languages specific foreach domain. Unfortunately, language design is largely a form ofart and has resisted most attempts to turn it into a form of scienceor engineering. In this paper we borrow concepts, techniques andprinciples from the domain of persuasive technology, or wider yet,design with intent — which was developed as a way to influenceusers behaviour for social and environmental benefit. Similarly,we claim, software language designers can make consciouschoices in order to influence the behaviour of language users. Thepaper describes a process of extracting design components from24 books of eight categories (dragon books, parsing techniques,compiler construction, compiler design, language implementa-tion, language documentation, programming languages, softwarelanguages), as well as from the original set of Design with Intentcards and papers on DSL design. The resulting language designcard toolkit can be used by DSL designers to cover importantdesign decisions and make them with more confidence.

I. MOTIVATION
First software languages were used in late 1940s1 as anintermediate step in algorithm design. They allowed pro-grammers of digital computers to bridge the gap betweenmathematical computations and machine codes. (The codesas such are much older, they were used on punched cardsand rolls since 1725 in weaving looms2 and at least since1842 in pianolas3.) A decade later4 people started developingautomated compilers, delegating the task of translating textswritten in these languages, to the machine code, to systemsoftware components. Another decade passed, and new lan-guages started being developed with specific design aims,targeting a particular problem domain5 or a particular targetaudience6. By 1969 there were at least 120 widespread soft-ware languages [15], [35]. The next two or three decades, thelanguage landscape was becoming more and more populatedand — some claim — cluttered with numerous languagesdesigned and implemented for all kinds of goals and purposes.Eventually we all have arrived at the point where creating anew language suitable for the problem at hand, ceased beingchallenging for engineers. Having, reusing or designing a DSLhas been elevated to just a regular MDE problem solvingrecipe. Now we are focused on making software languagecreation methods reliable and repeatable [36].

1Since von Neumann and the Goldstines’ Flow Diagrams.2Since Basile Bouchon’s silk centre in Lyon.3Since Claude Félix Seytre’s French patent no. 8691.4Since Hopper’s MATH-MATIC.5Since Iverson’s APL.
6Since Papert’s LOGO, strengthened later by Perlman’s TORTIS.

In this paper we assume the standpoint of software languageengineering and, whenever possible, make no explicit dis-tinction between modelling languages and programming ones,between domain-specific and general-purpose ones, amonggenerations, paradigms, etc. Thus, whenever possible, wesay “user” or “language user” instead of “programmer” or“modeller”, and use other kinds of neutral terminology. Weuse the word “model” instead of “language instance” to meana model, a program, a query, a stylesheet, a spreadsheet, etc.Other principles behind this project are explained in section II.Languages are designed for following purposes, a.o.:
• to raise the abstraction level (almost universal);• to improve user experience for languages with knownproblems but infeasible evolution (C++ for C, Dart forJavaScript, Go for C++, Swift for ObjectiveC, Scala forJava, Hack for PHP, .NET Core for .NET Framework);• to give domain experts control over executable systems(the goal behind most domain-specific languages);• to let non-coders structurally communicate with comput-ers (emojis and smileys in most social networks, webforum markup like bbcode, wiki markup, etc);• to open the usage of tools and services for third partyusage (APIs);

• to abstract from irrelevant boilerplate (combinator li-braries, languages with built-in constructs for concur-rency, error handling, design patterns, etc);
• to explore different ways of human-computer interaction(numerous spreadsheet applications, most languages de-veloped in workbenches like MPS or MetaEdit+);• to make expressive and robust interchange and storageformats (even JSON and XML work with schemata);• to build efficient tools by choosing suitable data structures(intermediate representations);
• to redesign legacy languages (VB.NET aligned with C#,XHTML as HTML in XML);
• to evolve existing languages into new versions (coevolu-tion of Java and C# since the initial release of the latter);• to create attractive language dialects (several industriallyapplicable extensions of originally educational Pascal,many vendor-specific COBOL compilers incompatibleamong themselves to prevent users from migrating);• to experiment with new paradigms and get to know lim-its of their expressiveness (bidirectional transformation,reversible computation and others).

However, “language design is largely an art, not a sci-ence” [11, p.67]. There is no clear separation of where thelanguage design starts and where it ends. In practice the workof a software language designer often gets mixed with the

Design
 with
 Intent
 101 patterns for influencing
 behaviour through design

1.0
Dan Lockton
with
David Harrison
Neville A. Stanton

& Requisite Variety

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Design2017
http://slebok.github.io/dyol

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

33

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

33

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/

10.BabyCobol

• Indentation has semantics

• Imports are lexical

• Keywords are not reserved

• Assignments are name-driven

• GO TOs can be ALTERed

• Expressions have contractions

• • •

34

[BENEVOL’19] [PRiML’20] [SLE’20] http:"#slebok.github.io/baby

Software Language Engineers’ Worst Nightmare
Vadim Zaytsev
Universiteit Twente

Enschede, The Netherlands
vadim@grammarware.net

Abstract
Many techniques in software language engineering get theirfirst validation by being prototyped towork on one particularlanguage such as Java, Scala, Scheme, or ML, or a subsetof such a language. Claims of their generalisability, as wellas discussion on potential threats to their external validity,are often based on authors’ ad hoc understanding of theworld outside their usual comfort zone. To facilitate andsimplify such discussions by providing a solid measurableground,we propose a language calledBabyCobol1,whichwasspecifically designed to contain features that turn processinglegacy programming languages such as COBOL, FORTRAN,PL/I, REXX, CLIST, and 4GLs (fourth generation languages),into such a challenge. The language is minimal by design sothat it can help to quickly find weaknesses in frameworksmaking them inapplicable to dealing with legacy software.However, applying new techniques of software languageengineering and reverse engineering to such a small languagewill not be too tedious and overwhelming. BabyCobol wasdesigned in collaborationwith industrial compiler developersby systematically traversing features of several second, thirdand fourth generation languages to identify the core culpritsin making development of compiler for legacy languagesdifficult.

CCS Concepts: • Software and its engineering ! Spe-cialized application languages;Compilers; • Social andprofessional topics! Software maintenance.
Keywords: domain-specific languages, legacy software, lan-guage engineering, software migration, teaching SLE

1The name is intentionally changed to avoid deanonymisation during thepaper review period.

Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. Copyrightsfor components of this work owned by others than the author(s) mustbe honored. Abstracting with credit is permitted. To copy otherwise, orrepublish, to post on servers or to redistribute to lists, requires prior specificpermission and/or a fee. Request permissions from permissions@acm.org.SLE ’20, 15–20 November 2020, Chicago, USA virtual© 2020 Copyright held by the owner/author(s). Publication rights licensedto ACM.
ACM ISBN $15.00
https://doi.org/...

ACM Reference Format:
Vadim Zaytsev. 2020. Software Language Engineers’ Worst Night-mare. In Proceedings of Proceedings of the 13th International Confer-ence on Software Language Engineering (SLE ’20). ACM, New York,NY, USA, 14 pages. h�ps://doi.org/...

1 Introduction
Legacy languages designed in the second half of the lastcentury, are still dominating some domains like the finan-cial sector, and have ample presence in other highly criticaldomains such as insurance, logistics, manufacturing andmili-tary. Even in the programming community index TIOBE [63]languages like COBOL (#27), FORTRAN (#30) and RPG (#38)are constantly looming next to modern freshly designedand regularly updated languages like Dart (#26), Scala (#29)and Kotlin (#35). Only a small fraction of the users of suchlanguages are happy customers deliberatelymaking this tech-nological choice for its actual benefits, the rest are forcedby circumstances into maintaining business-critical systemsthat are too large and complicated to replace, rewrite oreven re-engineer. Many owners of such legacy codebasesinvest substantially into their renovation, be it replatforming,rearchitecting, reverse engineering, language migration oranything else that is still a viable option for them.Developers of compilers, debuggers, development environ-ments, program restructuring tools, fact extractors, testingautomation frameworks, etc, need to be ready to tackle allkinds of challenges posed by legacy languages. Yet, suchchallenges often remain some sort of sacred knowledgefor developers with intimate familiarity with said legacylanguages. Many new techniques are being proposed andpublished, targeting languages for which it is much easier tofind enough open source code for experimenting, enoughdocumentation for comprehension, and enough freely avail-able base compilers to extend or compare to. With thisproject, we would like to bridge the gap by providing adescription for a lab-made language that exemplifies anentire collection of issues that make it so challenging totackle legacy languages. Inspired by languages like Mini-Java [4] and Featherweight Java [28], that are extremelyuseful for academic researchers to apply their knowledgeand techniques on (see § 2 for a more detailed treatmentof related work), we are proposing a new language calledBabyCobol. Unlike the infamous INTERCAL, standing forCompiler Language With No Pronounceable Acronym, whichwas specifically designed to have “nothing at all in common1

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net/writes/%23Elephants2019
http://grammarware.net/talks/index.html%23Hidden2020
http://grammarware.net/writes/%23BabyCOBOL2020
http://slebok.github.io/baby

Conclusion
35

http:"#grammarware.net "$ grammarware.github.io

BGF Rascal

PAX

Engage!

CSS

MegaLHLASM

TIALAA

BabyCobol

DYOL

https://www.utwente.nl/
http://grammarware.net
https://www.utwente.nl/en/eemcs/fmt/
http://grammarware.net
http://grammarware.github.io

