
How Do You Test Your Compiler?
Here’s How I Test Mine

LangDev — 9 March 2018

Dr. Vadim Zaytsev aka @grammarware

Dijkstra vs Goodenough

https://doi.org/10.1145/800027.808473
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

RecogniseTest850 R

ParseTest787 P

NormaliseTest70 N

AnalyseTest195 T Test ? E

Test ? F

CompileTest564 S Test ? U

VerifyTest67590 G

Test ? XExecuteTest564 S

PipelineTest16719 G

Testing in Castle

• G-tests: can the compiler handle the customer’s codebase?

• R-tests: can the parser recognise this input?

• F-tests: can the parser rightfully reject this input?

• P-tests: can the parser construct a good tree from this input?

• N-tests: can the normaliser rewrite this tree well?

• E-tests: can this input error be fixed automatically?

• T-tests: can this program be typed correctly?

• A-tests: can this program be rejected by static semantic analysis?

• C-tests: can this program be successfully compiled to produce a DLL?

• V-tests: can this program be compiled to a verified DLL?

• U-tests: can this problem be rightfully rejected during compilation?

• S-tests: can this program successfully execute to produce output?

• X-tests: can this program throw the right exception?

• D-tests: does this runtime library function work?

Conclusion

• Testing a compiler is a lot of work

• No out of the box solution

• No out of the box comprehensive methodology

• Existing papers are scarce and focused

• Follow @grammarware and attend SLEBoK at SPLASH’18

