
Incremental Coverage
of Legacy Software Languages

V. Zaytsev @ PX/17.2 @ SPLASH 2017

The Generation Gap

1GL

2GL

3GL .

4GL .

The Generation Gap

1GL

2GL

3GL .

4GL .

D2 07 14 9C 24 A4

MVC X’49C’(8,1),X’4A4’(2)

MOVE INPUT-PARM OF
JCL(1:LL OF JCL) TO

BOOKING-DATE

MAP STD_PARM_V OF
ACC_XXX_I TO CASH_ACT_UPD

Language Migration

1GL

2GL

3GL .

4GL .

https://doi.org/10.1145/2997364.2997387
https://doi.org/10.1109/52.895180

Language Migration with Generated Code

2GL

3GL .

(modern compiler/IDE/…)

Language Migration with 4GL Code

2GL

3GL .

4GL .

(modern compiler/IDE/…)

Keep in Mind
● No language design, 100% implementation

● Documentation is not (a) given

● Domain experts = language experts/devs

● Many iterations with domain experts

● Months and years of effort, even with advanced tech

● Don’t try this at home!

Challenge: Regression Parsing
● regression parsing in general works well

● also in industrial settings

● great for the nightly build

● sometimes suitable only for weekly builds

● takes too long for continuous processes

● incrementality is ad hoc and limited

Challenge: Test Suite Inference
● first days of the compiler: nothing parses

● first months of the compiler: nothing runs

● customers grow impatient

● need to measure progress

● extensive test suites take tremendous time to create

● need coverage analysis, iterative refinement, etc

Challenge: Grammar Impact Analysis
● grammars are great

● finite specs of complex infinite artefacts

● if one nonterminal changes, what is the impact?

● no readily useful techniques, but no foreseeable showstoppers

● knowing the change impact enables many incremental techniques

Challenge: Grammar/Samples Dependencies
● for some languages, grammar inference is feasible and useful

● cf. “Parser Generation by Example for Legacy Pattern Languages” @ GPCE

● very few studies on incremental grammar inference

● needed both ways: codebase are updated, grammars too

● many opportunities to research and make great tools

Challenge: Neighbour Analysis
● the dark data of compiler construction: near misses

● cannot parse: “totally against expectations” vs “missing comma”

● useful for error tolerance and recovery

● done manually when exploring a new 4GL

● practical parsers often distinguish between success and commit

● differential testing + fuzzing?

https://youtu.be/meOCdyS7ORE

