Incremental Coverage
of LEeGAaCY Software Languages

V. Zaytsev @ PX/17.2 @ SPLASH 2017 E




The Generation Gap




The Generation Gap

MAP STD PARM V OF
ACC XXX I TO CASH ACT UPD

MOVE INPUT-PARM OF
JCL(1:LL OF JCL) TO
BOOKING-DATE

MVC X’49C’ (8,1) ,X’ 4Ad’ (2)

D2 07 14 9C 24 A4




Language Migra

tion

1

Rai d

Full Text: 'Tpor

Authors:  Volodymyr Blagodarov Raincode, Belgium

Yves Jaradin Raincode, Belgium
Vadim Zaytsev Raincode, Belgium
Published in:
v‘ - Proceeding

SLE 2016 Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering
Pages 221-225

Amsterdam, Netherlands — October 31 - November 01, 2016
ACM New York, NY, USA ©2016
1able of contents ISBN: 978-1-4503-4447-0

doi>10.1145/2997364 2997387

@ 2016 Article

—4 Bibliometrics
Citation Count: 0
Downloads (cumulative): 33
Downloads (12 Months): 33
Downloads (6 Weeks): 2

The Realities of L

Authors:  Andrey A. Terekhov
Chris Verhoef

Published in:

- Journal
1EEE Software archive
Volume 17 Issue 6, November 2000
Page 111-124
IEEE Computer Society Press Los Alamitos, CA, USA
table of contents  doi>110.1109/52.895180;

guage Conver

2000 Article
* orig-researt

—d Bibliometrics
Citation Count: 13
Downloads (cumulative): (
Downloads (12 Months): (
Downloads (6 Weeks) 0



https://doi.org/10.1145/2997364.2997387
https://doi.org/10.1109/52.895180

Language Migration with Generated Code




Language Migration with 4GL Code




Keep in Mind

e No language design, 100% implementation

e Documentation is not (a) given

e Domain experts = language experts/devs

e Many iterations with domain experts

e Months and years of effort, even with advanced tech

e Don’t try this at home!



Challenge: Regression Parsing

regression parsing in general works well
also in industrial settings

oreat for the nightly build

sometimes suitable only for weekly builds
takes too long for continuous processes

incrementality is ad hoc and limited



Challenge: Test Suite Inference

e first days of the compiler: nothing parses

e first months of the compiler: nothing runs

e customers grow impatient

e need to measure progress

e extensive test suites take tremendous time to create

e need coverage analysis, iterative refinement, etc



Challenge: Grammar Impact Analysis

e grammars are great

e finite specs of complex infinite artefacts

e if one nonterminal changes, what is the impact?

e no readily useful techniques, but no foreseeable showstoppers

e knowing the change impact enables many incremental techniques



Challenge: Grammar/Samples Dependencies

e for some languages, grammar inference is feasible and useful

o cf. “Parser Generation by Example for Legacy Pattern Languages” @ GPCE
e very few studies on incremental grammar inference

e needed both ways: codebase are updated, grammars too

e many opportunities to research and make great tools



Challenge: Neighbour Analysis

e the dark data of compiler construction: near misses

e cannot parse: “totally against expectations” vs “missing comma”
e useful for error tolerance and recovery

e done manually when exploring a new 4GL

e practical parsers often distinguish between success and commit

o differential testing + fuzzing?





https://youtu.be/meOCdyS7ORE

