
Parsing @ IDE
V. Zaytsev @ Parsing @ SLE @ SPLASH



Grammars in a broad sense



Grammars in a narrow sense
Which one?

● recognise programs in a language
● parse and interpret
● parse and translate
● parse and compile
● semiparse and analyse
● document
● domain model
● verify & validate



Grammars for IDE support

● idea from attending PLDI

● What is specific to grammars used in IDEs?

● What IDE features need grammar support?

● How to provide it better?

● OK to be “in a broad sense”



Main principles

● fast

● partial

● not limited by parsing in a narrow sense



Syntax highlighting

● colour-code tokens

● commonly implemented with regexes

● easy if the tokeniser is precise

● good luck with C++, PL/I, etc

● embryos of common interfaces

● novel solutions possible



Code completion

● complete keywords
● suggest matching tokens
● guide indentation
● name suggestions
● drop down members



Word selection

● select a word, highlight “the same thing”

● “cheap” visualisation

● liked by devs

● not researched at all



Code folding

● blocks in composite statements

○ NOT a solution!

● hierarchical entities

● handful of top constructs?



Visual editing

● let graphs be graphs

● let tables be tables

● let window panels be window panels

● don’t let your dreams be dreams!

● projectional?

https://youtu.be/ZXsQAXx_ao0


Debugging

● only relevant for executable programs

● step over

● step into

● breakpoint

● watch

● cross language boundaries

http://dx.doi.org/10.1145/2997364.2997387


Testing
● discover tests
● running tests

○ live

● analysing tests
○ green and red
○ coverage

● incrementality
● why not advanced features?

○ model-based
○ test generation
○ fuzzing
○ mutants



Coding conventions

● formatting

● pretty-printing

● naming

● calling

● templates

● deprecating language constructs

● satisfying global constraints

● smell detection

https://doi.org/10.1145/2997364.2997386
https://doi.org/10.22152/programming-journal.org/2017/1/11


Refactoring

● recommender systems

● ReSharper, CodeMaid, etc

● grammars are originally rewriting systems

● seldom used for rewriting

● can be insanely complex

● hard to do right

● hard to v&v



Navigating the codebase

● go to definition

● find references

● analyse dependencies

● analyse co-changes



Configuring a build

● compiling

● deploying

● delivering

● versioning

● building in the right order



Helping

● tooltips

● hover infoboxes

● API guidance

● explaining errors

○ recommending fixes



Conclusion

● IDEs are built ad hoc
● IDEs are built with a framework bias
● there is [or can be] a class of IDE-specific grammars
● mostly greenfield research
● way beyond [single] grammars [in a narrow sense]
● vastly different user stories

○ JS: live to the extreme
○ C++: many changes, always incomplete info
○ C#: style and paradigm switching
○ PL/I: cache to the extreme (yesterday’s trees are good enough)

● Please do it (willing to collab)


