Parsing @ IDE

V. Zaytsev @ Parsing @ SLE @ SPLASH

raincode LABS

compller experts

Grammars in a broad sense

@

SIS

</...

Grammars in a narrow sense
Which one?

recognise programs in a language
parse and interpret

parse and translate

parse and compile

semiparse and analyse
document

domain model

verify & validate

Grammars for IDE support

e idea from attending PLDI

e What is specific to grammars used in IDEs?
e What IDE features need grammar support?

e How to provide it better?

e OKtobe“inabroad sense”

Main principles

e fast
e partial

e not limited by parsing in a narrow sense

Syntax highlighting

switch (state)

{
case 1: // start of the flle
colour-code tokens file = new Castlelanguage.Bind.BindFile();
line = line. Padﬁlght(El),
)) if (!line.Begins("$$START "))
commonly implemented with regexes {
Error{l, line:1lnr, pos:"1..8");
state = 2;
easy if the tokeniser is precise : BELG EReR %5
var Bl = line.Substring(8,23);
. trl 2 = line.Substri 31.14);
good luck with C++, PL/I, etc If—-rét::{zs; igimuHis;;gE) }
{
. Error(l, strl 2, line:lnr, pos:"32..45");
embryos of common interfaces return null;
}
var E1 = line.Substring(45,6);
novel solutions possible f CIELTACTARR. =, “HESSAL'Y)

Error{l, E1, line:1nr, pos:"46..51");
return null;

Code completion

complete keywords
suggest matching tokens
guide indentation

name suggestions

drop down members

var Bl = line.Substring(8,23).);
var strl 2 = line.Substring(31 fﬂ_“ ; =
if (strl_2!=" VERS4 HPS541 ") | ¥ |AQQFEEIETE“~> (extension) char [Enumerable<char=.Aggregate<char=(Func<char, char, char> func) (+ 2 generic overloads)
{ @ All<s> Applies an accumulator function over a seguence.
Error{l, strl 2, line:1lnr, 3-{,' Any<>
return null; 5
} W; AsEnumerable<s
var E1 = line.Substring(45,6); @ AsParallel

if (!E1.In("AB38 ", "HPSS31") . Acparallel<s

| -

1 =
Error(1, E1, line:1nr, pos‘ﬂi- AsQueryable
return null; @3 AsQueryable<>
} .
W§ Average<:
state = 2; b 9 ./
break; F 9 9

» P« fF raadv for a bBlock

Word selection

e select a word, highlight “the same thing”
e ‘“cheap” visualisation
e liked by devs

e notresearched at all

res2. Implame = F2.TrimEnd();

var str2 16 = 1inq.5ubstring{128,23);
if (str2_18!=" e
{

Error(3, strz 18, line:lnr, pos:"129..151");

return null;
1
var G2 = line[151];
if (G2=="1"})
res2.Flagl = true;
else if (G2==" ")
res2.Flagl = false;
else
1
Error(3, G2.ToString(), line:lnr, pos
return null;
1
var str2 12 = line[152];
if (str2 121=" ")
1

Error{3, str2 12_ToString(), line:1lnr,

return null;
¥
var H2 = line.Substring(153,6);
if (!Rex1.IsMatch(H2) /* [8-%9A-Z]+ */)
{

gt

Error(3, H2, line:1lnr, pos:"154..158");

return null;

")

T1537);

Code folding

e blocks in composite statements

©) NOT d SOlutlon! namespace cslrc
1

2 references | Vadim Zaytsew, 16 days ago | 2 authors, 23 changes

internal class Program : CommandLineProgram

e hierarchical entities {

private List<string» LoadedViewMames = new List<string>();
private Dictionary<string, List<string>> ViewFields = new Dictionary<string, List<string>>();

Y ha ndful Of top COnStrU Cts? public CastleCompilerOptions Options;

public int ErrorCount = @;

1 reference | Vadim Zaytsev, 51 days ago | 1 author, 2 changes

public Program(string[] args) [..]

0 references | Vadim Zaytsev, 17 days ago | 1 author, 11 changes

private static int Main(string[] args)[..]

1 reference | Vadim Zaytsev, 16 days ago | 1 author, 15 changes

private int run()[_.]
private List<string> RuleFiles = new List<string>();

0 references | Vadim Zaytsev, 16 days ago | 2 authors, 14 changes

protected override void SpecificSuppo#‘t(}E

Visual editing

let graphs be graphs

let tables be tables

let window panels be window panels
don't let your dreams be dreams!

projectional?

https://youtu.be/ZXsQAXx_ao0

Debugging

only relevant for executable programs

step over
step into
breakpoint
watch

cross language boundaries

B Tambes (Debugging) - Micrcsoh Visual Studko Y@ & o lsnch it £ - B X
e ESE Yiem Beet Bedd Debug Temy Jook Tt dguhee Wiedow Hep oes aden - [
0-0|E-tRH[D-- b Contio = | 0,00 MBS Dt R e W W R Appscon g -

Process 100 1624] reinanédaue. = [T Lifecycle Bvents = Theesd: |1 81C) Main Thead - X Stack Frames h

XC ACB(ACBLEN),ACB INIT ACB
SPACE 1
L R1,DCBALIST
[+ L R12,4(,R1)
5T R12,GTFOLE
USING IHADCB,R12
L R15,DCBDCBE
USING DCBE,RLS
MVC DCBEEODA,AEOFGTF
DROP R15
L R12,GTFOCE
TET ((R12),INPUT),MODE=31
™ DCBOFLGS, X'18"
BNO (@805
SPACE 1
L R1,DCBALIST
L R12,12(,R1)
ST R12,XMTRCODCB
HEEL ((R12),0UTRUT),MODE=31
DCBOFLGS, X'18"

Hame: Lang
© TAMBOR Ling 308

http://dx.doi.org/10.1145/2997364.2997387

Testing

discover tests

running tests
o live
analysing tests
o greenandred
o coverage
incrementality

why not advanced features?
model-based

test generation

fuzzing

mutants

O O O O

Test Explorer

S [~ = search

Run All | Run.. ~ | Playlist: All Tests

P _special (2)
P call (6)
P caseof (44)

P cast (38)

P cgdefine (2)

P clear (33)

P CodeGenRegression (43)
I converse (3)

b cursor (1)

b date (17)

P del (59)

P DEC (28)

P do (6)

P Do (36)

b expr (56)

P ftbisws (254)

P if (48)

P integer (2)

P libchar (54)

b libdate (14)

b libdec (196)

P library (22)

P libtime (10)

P libts (18)

P macro (4)

P map (148)

Coding conventions

e formatting

e pretty-printing
e naming

e calling

e templates

e deprecating language constructs
e satisfying global constraints

e smell detection

The Art, Science, and Engineering of Programming

Does Python Smell Like Java? Tool Support
for Design Defect Discovery in Python

8 Nicole Vavrové' and Vadim Zaytsev’
‘The Art, Science, and Engineering of Programming, 2017, Vol. 1, Issue 2, Article 11

Submission date: 2016-12-01
Publication date: 2017-04-01

DOL: https://doi.org/10.22152/ programming-journal org/207/1/11 »
Full text: PDF 7

Abstract

The context of this work is specification, detection and ultimately removal of detectable harmful patterns in source code
that are associated with defects In design and implementation of software. In particular, we investigate five code smells
and four antipatterns previously defined in papers and books. Our inquiry is about detecting those in source code written
in Python programming language, which is substantially different from all prior research, most of which concerns Java o
C-like languages. Our approach was that of software engineers: we have processed existing research literature on the
topic, extracted both the abstract definitions of nine design defects and their concrete implementation specifications,
implemented them all in 2 tool we have programmed and let it loose on a huge test set obtained from open source code
from thousands of GitHub projects. When it comes to knowledge, we have found that more than twice as many methods
in Python can be considered too long (statistically extremely longer than their neighbours within the same project) than
in Java, but long parameter lists are seven times less likely to be found in Python code than in Java code. We have also
found that Functional Decomposition, the way it was defined for Java, is not found in the Python code at all, and
Spaghetti Code and God Classes ly rare there as well. the confidence in these results
‘comes from the fact that we have performed our experiments on 32058823 lines of Python code, which is by far the
largest test set for a freely available Python parser. We have also designed the experiment in such a way that it aligned
with prior research on design efect detection in Java in order to ease the comparison if we treat our own actions as a
replication. Thus, the importance of the work is both in the unique open Python grammar of highest quality, tested on

| millions of lines of code, and in the design defect detection tool which works on something else than Java.

1. vavrova.n@gmail.com, Universiteit van Amsterdam, Netherlands

2. vadim@grammanware.net, Raincode Labs, Belgium

The Art, Science, and Engineering of Programming SSN 2473-7321 / DOI 1022152/programming-journalorg 7 © 2016-2017 AOSA 7

The Journal

About
Purpose and Operation
Boa

Awards
Publisher
Volumes

Issues

Volume 2, Issue 1
Volume 1, Issue 2
Volume 1, Issue 1

For Authors
Call for Papers
Timeline
Submissions
Copyright

Article feed (atom)
Articte feed (RSS)

)AOSA

Language design and implementation for the domain of coding conventions

Full Text: Tlppe

Authors: Boryana Goncharenko University of Amsterdam, Netherlands

@ 2016 Article

Vadim Zavtsev Raincode, Belgium / University of Amsterdam,
Netherands
Fublished:in: . — Bibliometrics
“hraceeding - Citation Count: 0
SLE 2016 Proceedings of the 2016 ACM SIGPLAN International Downloads (cumulative): 89
Conference on Software Language Engineering Downloads (12 Months): 89
Pages 90-104 Downloads (6 Weeks): 5

Amsterdam, Netherlands — October 31 - November 01, 2016
ACM New York, NY, USA ©2016
1able of conients ISBN: 978-1-4503-4447-0

doi>10 1145/2097364 2997386

https://doi.org/10.1145/2997364.2997386
https://doi.org/10.22152/programming-journal.org/2017/1/11

Refactoring

e recommender systems

e ReSharper, CodeMaid, etc

e grammars are originally rewriting systems

e seldom used for rewriting
e can beinsanely complex

e hard to do right

e hardto v&v

7 references | Vadim Zaytsev, 10 days ago | 1

thor, 1 c
public CastleType ExpectedType

1 Replace 'ExpectedType’ with methods »

set => _ExpectedType -

i public CastleType

3 references | Vadim Zaytsev, 46 days ag
public CastleNode()

public CastleType ExpectedType
GetExpectedType()

{ ublic void SetExpectedType{CastleType value)|

Type = AbstractTypes.q {
H

references | Vadim Zaytsey, 46 day ¥
publlc CastleNode(CastleN ikl

' s;';t: = _zaqseutmsma’%i_

{ Preview changes

if (proto == null)

Navigating the codebase

go to definition

find references

analyse dependencies

analyse co-changes

Lo B~ T

4 csirc\FrontEnd\visitors\Typelnferencer.cs (7)
98 : expr.Params[0].ExpectedType = Algebra.LiftToDecimal(expr.Params[0].Type);
% 101 : expr.Params[1].ExpectedType = Types.Integer;
@ 104 : expr.Type = expr.Params[0].ExpectedType;
@ 118 : expr.Params[0].ExpectedType = Types.Date;
9 258 : expr.Params[l].ExpectedType = TypesInteger;
@ 268 : expr.Params[1].ExpectedType = Types.Integer;
Show on Code Map | Collapse All

7 references | Vadim Zaytsev, 10 days ago | 1 author, 1 change
public CastleType ExpectedType
{

get =» _ExpectedType ?? Type;

set => _ExpectedType = value;

»

M ° ° b S Properties
Configuring a build ! s
& Analyzers
=8 CastleLanguage
e =8 CastleRuntime
[] com p | I | ng =8 Microsoft.CSharp
=8 rccorlib
=8 System
. =8 System.Core
o d e p | Oyl ng =8 System.Data
*8 System.Data.DataSetExtensions
Application Confiauation |NIA =8 System.Xml
R - =8 System.Xml.Ling

® d e | |Ve rl ng e _ =8 XmlBooster

Build Events Pre-build event command line:

"$(SolutionDir)lib\StandaloneGenerator.exe" "$(ProjectDir)FrontEnd\HpsSourc &
. . "$(SolutionDir)lib\pax.exe" -Input=${ProjectDir)FrontEnd\HpsBindFile\bindfile
® Versioning Resources "$(SolutionDir)lib\XmIb2.exe" -CFG="$(SolutionDinlib\Xmlbcfgxml" -TARGE]

Services

Debug

. . . . Settings

e building in the right order Reterence Paths
Signing
Security
Publish
Code Analysis

Edit Pre-build ...

Helping

e tooltips

e hover infoboxes
e API guidance

o explalnlng errors file.Members. Add({block);

. . ¢ {local variable) BindMember block
o recommending fixes

x.Substring();

A ? of 2 ¥ string string.Substring(int startIlndex, int length)
Retrieves a substring from this instance. The substring starts at a specified character position and has a specified length.
startindex: The zero-based starting character position of a substring tn this instance.

Conclusion

IDEs are built ad hoc

IDEs are built with a framework bias

there is [or can be] a class of IDE-specific grammars
mostly greenfield research

way beyond [single] grammars [in a narrow sense]

vastly different user stories
o JS: live to the extreme
o C++: many changes, always incomplete info
o C#: style and paradigm switching
o PL/IL: cache to the extreme (yesterday’s trees are good enough)

Please do it (willing to collab)

