SANER ERA 2016

Software Language ldentification
with NL Classifiers

Software Language Identification
with Natural Language Classifiers

Juriaan Kennedy van Dam (juriaankennedy @ gmail.
University of Amsterdam, The Netherlands

Al Software technigues are ap-
plicable to many situitions from universal IDE support (o legacy
ciede analysis. Most widely used hewristics are based on software
artefact metadata such as file extensions or on grammar-hased
text analysis such a5 keyword search. In this paper we propose
o use statistical language mudels from the nllurul Innguuge
processing ficld such as n-g marve
Bayes and normalised mmplushn dlﬁlanee Our preliminary
experiments show that some of these models wsed as classifiers
can achieve high precision and recall and can be used to
properly identify language families, languages and even deal with
embedded code fragments.

I IstronucTion

Software language identification is a problem of determin-
ing correctly which software language was a source code frag-
ment written in. (We use “code” to deliberately limit ourselves
o textual sequential representations of software artefacts. If
they happen to be purely graphical, some parsing in a broad
sense [26] in the form of imagejobject recognition [2]. [12]
must happen first to lift their perception to the structural
level, at which point we can use canonical or even ad hoc
representation of such “parsed” structures).

These are some example scenarios of software language
identification application:
Syntax highlighting in the IDE properly matching the
used software language — this usually entails assigning
differing colours to keywords and special symbols.
Code interaction as the developer-aricfact interface can
be affected by the language, determining simple things
like what should happen when an Enter key is pressed,
as well as more global issues like aiding code nav:
IDE support can be offered beyond syntax hlg'h'llghtmg
and direct interaction: build scripts, deployment environ-
ments, code completion, quick fix refactoring. It is not
uncommon for one IDE to offer such support for several
different languages, and language identification can help
choosing which environment variant 1o use,
Reverse engineering a legacy code base, written in an
unknown language or a collection of languages, h.n at
some point o step up beyond s le language-a
methods to heavyweight reverse engineering activitics,
most of which are fundamentally language-specific.
Accumulative software analytics can be performed as
a part of software portfolio analysis or as an additional
visnalisation of a project. In particular, language ratio has
become quite a common guest on project pages of GitHub
and OpenHub,

com) and Vadim Zaytsev (vadim@ grammarware.net)

+ Code search in unstructured data suc
documentation. email archives, blogospliere,
hoards, wiki-wehsites, can be optimised if code fragments
are reliahly identified and classified into languages.

Following ¢'s law, heuristics that use software lan-
guage identification for the purpose of ke; word highlighting
often are implemented as thresholded st ical keyword coun-
ters; file storing versioning system managers focus on file
ioms; and gramm based approaches rarely step he-
pts 1o parse everything available with anything that
fits, Some of these heuristics are computationally heavy, others
ure unreliably imprecise, and none ever work on small em-
bedded code fragments. In this paper, we investigate whether
nutural language identification techniques are applicable 1w
software language identification,

MNatural language identification is a large and well explared
field of natural language processing with many different
approaches [3], [9]. In the next section we present a set
of software language identification methods which are used
against one another in the section after that. With the dataset
collected, the question which classification method is the best
for classifying source code, can be answered. We also look
at what other information can be gained from this data and
find clusters in software languages, which can show which
languages are alike and may belong to the same family,
The dataset can also determine what method is the best at
identifying a specific language. It can also be used to find
the best method between two specific languages, which could
be very helpful if we are in a domain that only has those
languages — like web pages, which uvsually only contain
HTML, C38 and JavaSeript. Finally, we try to determine if
it is possible to correctly classify a piece of embedded code
(e.g.. HTML within PHP or CS8 within HTML). This is all
done by making use of the dataset, through which we can
determine the best clussifying method between two languages.

Instead of comparing all natural language identification
methods, we will lock at the most commonly wsed ones
that do not require any specific knowledge of features of the
languages. This means that these methods work with only the
training data and mo addinonal information. This is a very
ng requirement since many gains can be obained from
comment information, indentation, alphabets, quoting mules,
escaping policies. etc. We also leave out particulary complex
and heavy computational methods like Support Vector Ma-
chines (SVM). since they are usually highly customisable and
require substantial research on good feature selection,

p.624-628

If You Want to Know What is in the Paper

. SRR s | S S S o Wy TS e — T e W el
e e T v e SRES v . S — T G
i

2 Ghes wmam o1 Tesr

T -,

AINT NIIB(lIIY GOT TIME I’IIII

|mgfl|p comi

APER CONTENTS?.
S

THAT!

Natural Language Classifiers

Features?

Multinomial Naive Bayes
= fight naiveté with n-grams & skip-grams
= smooth zero-probability n-grams

= skip or hack unknown tokens

= implement with SRILM

Vary n, tokenisers, smoothers, ...

Train on 10000 files of 5-10kb in 20 languages

= C, C++, C#, Closure, CSS, Go, Haskell, HTML, Java,
JS, Lua, ObjC, Perl, PHP, Python, R, Ruby, Scala,

Scheme, XML

Run experiment on 200 files in 20 languages

Classify lines in mixed files

/p)
S
Q
=
/p)
(/p)
AL
O
)
@)
(]
-
@)
-
©
)
(C
S
-
e’
©
2

w
£
-
o]
8=
z
ks
O

TINX

Sl EI I
B[edqg
Aqny

o

uoyiAg
[1od

dHd
D-eA1300[qQ
en
jduogeae[
eaer
[[°3S¥H
"TINLH

oD
amlor)H
S50

++D

#0

®)

1

0 4 2 0 5 2 1

1

1
1
1

16 7 0 2

2

1
1

I 0 0

8 2 0 8

3 4 0 3

0O 5 2 0 6 2 0 1

2

1

5 0 3 1
1 1
2 2 0
2
4

0O 0 4 2 1

1
2

0

2 3

1
1
1
1

0 10 2 0

1

1

1 0 O
4 4 0 0

6 3 0

1
1

1

5 9 6

1

2 4 0 0

0 0

1

5 10 3 1

1

1

1
1

2 2.7 3

0

1

1
1

1

2

1 4 5 4 0 2 4

0 3 6 6 0

0O 0 2 0 0 8

1
1
1
1
1

1

2 6 2 0 0

1
2

1
1

5 4
3 7
1

2 12 2
1

3 1
2 2 1
1

1
1
4

0O 4 6 6 0 2
1 4 4 4 1 2
2 0 2

1

4

0
0

1

0

1
1

1
1

9
6 4 0

1

1 10 1
2

2
1

4 3 3 4 2

210 3 3 0 0 5 2 1 6 3 0

1 1

2

C

C#
C++
CSS
& Clojure
‘3 Go

gﬂTML
— Haskell

L]

@
= Java
-
]

pt

JavaScri

< Lua

Objective-C| 4 2 3 6 0 3

PHP
Perl

Python
R

Ruby

Scala
Scheme
XML

TNX |2 oo coco~00o0o00 cocoo
Sl)i pI =T e e R T B R I cCocoo . =]
5] o T [e e e B i o e e i o e e e eNoNoNo) - fele
Ay |9 @eococococoo = =0 o oEyc oo
J|oocooooooooooO o ScoccCc o
uoylg [ccoococooco -0 o cocococo
[| @O cccocoo0oCO (o cocc oo
dHd | cocococoo—~ococooc oy~ —~cooco~
%_Olmkwmuowm.ﬁ_o — o N oo o o o oo N oo O o0 o o o
g5 BN [O coc o o000 o opPJoc oo o ~o0O
=
m duogesaep [0000 o F oo eNoNoloNoNoNoNoRe!
7)) O vAR[|[O - " OO0 Ccoo~cococococo o0
= [[¥sel |2 oo oo oo eoNoNoloNoNoR NoleNoNo)
e MNILH |90 —~—=© HOOMNOOO~—m—mMm
(X]
G on | o oo ool —HOoOO0OO0000COCO
(X] -
S omlfo]n) |2 ooy cco0oocoCOoOCHO
S SSD 000%0001 esNoNeB T NoleoNoloelNeNolNe!
lna ++D C—fcccco~~c—w0ococococoo
C #H |2 —oo0oCcCo~NONCcCOO0OCO0COCOO
e o) oclf¥cococoocococo—~ococococococoo
) 2
B 0
r —_—
@ wn o Q m
- tnE F2¥swE S-S BIcZ
7 p o = — L = —
$+m S o222 S 5855 =285 2
(@) VOVOTVEESSA0RAAERE B ® X
n ogendue| [enjoy
[

overview.pdf:
overview.png:
paper.bib:
paper.tex:
presentation.pptx:
README .md:
tablel.pdf:
table2.pdf:
table3.pdf:

/c/repositories/acceptware/nlp/eral6 (master)

ASCII text, with CRLF line terminators

makefile script, ASCII text, with CRLF line terminators

PDF document, version 1.3

PNG image data, 1628 x 937, 8-bit/color RGBA, non-interlaced
BibTeX text file, UTF-8 Unicode text, with CRLF line terminator
LaTeX 2e document, ASCII text, with CRLF line terminators
Microsoft PowerPoint 2007+

ASCII text, with CRLF line terminators
PDF document, Vv '

PDF document, version 1.3

PDF document, version 1.3 MarkDown: not in POSIX

/c/repositories/acceptware/nlp/eral6 (master)

REILES

P
2

U

-
==
=
—

|

COBOL'[RL/IRI

o{

g '(

¢/

State Why the Problem is a Problem

= Legacy IT Portfolio Assessment
= 10k+ files
= 50M+ LOC
= pames like “WMGCLP9M”
= no extensions
= State of the art
= file, grep, ...
= vocabulary

= parsing/resolution attempts

= SLI can provide clustering

#TODO #afterSANER16

Find falsely classified files by

= file and other lexical classification programs
= GitHub, SearchCode and other services

= SyntaxHighlighter.js and other libraries

= Jooking at reactions to polyglots & quines

Validate by realistic case studies
= COBOL+PL/I+REXX+JCL+...
= HTML+JS+CSS+PHP+...

Compare to related methods of telling code from non-code

Explain the lack of evidence for language families

= and all other peculiarities

Software Language ldentification

= SLlis athing.
= basic fact extractor

= pnot all methods work

= Practice is full with imperfection
= deal with it

= Swimming with the data code

= unstructured data code
= Read the paper.

* Follow @grammarware!

Photo in public domain, source: http://loc.gov/pictures/resource/cph.3c11157/

http://grammarware.net/
http://loc.gov/pictures/resource/cph.3c11157/

