
Software Language Identification
with NL Classifiers

SANER ERA 2016

Juriaan Kennedy van Dam and Vadim Zaytsev

If You Want to Know What is in the Paper

papers/1855a624.pdf

p.624-628

Natural Language Classifiers

 Features?

 Multinomial Naïve Bayes

 fight naïveté with n-grams & skip-grams

 smooth zero-probability n-grams

 skip or hack unknown tokens

 implement with SRILM

 Vary n, tokenisers, smoothers, …

 Train on 10000 files of 5-10kb in 20 languages

 C, C++, C#, Closure, CSS, Go, Haskell, HTML, Java,

JS, Lua, ObjC, Perl, PHP, Python, R, Ruby, Scala,

Scheme, XML

 Run experiment on 200 files in 20 languages

 Classify lines in mixed files

Natural Language Classifiers

Natural Language Classifiers

file

LaTeX: in POSIX

MarkDown: not in POSIX

State Why the Problem is a Problem

 Legacy IT Portfolio Assessment

 10k+ files

 50M+ LOC

 names like “WMGCLP9M”

 no extensions

 State of the art

 file, grep, …

 vocabulary

 parsing/resolution attempts

 SLI can provide clustering

…

#TODO #afterSANER16

 Find falsely classified files by

 file and other lexical classification programs

 GitHub, SearchCode and other services

 SyntaxHighlighter.js and other libraries

 looking at reactions to polyglots & quines

 Validate by realistic case studies

 COBOL+PL/I+REXX+JCL+…

 HTML+JS+CSS+PHP+…

 Compare to related methods of telling code from non-code

 Explain the lack of evidence for language families

 and all other peculiarities

Software Language Identification

 SLI is a thing.

 basic fact extractor

 not all methods work

 Practice is full with imperfection

 deal with it

 Swimming with the data code

 unstructured data code

 Read the paper.

 Follow @grammarware!

Photo in public domain, source: http://loc.gov/pictures/resource/cph.3c11157/

http://grammarware.net/
http://loc.gov/pictures/resource/cph.3c11157/

