
Patterns in M
odel Engineering at STAF 2015

One data fragment has several alternative 
structural representations tailored toward 
specific data manipulation approaches.  

Vadim Zaytsev

Foreword by Eugene Syriani 
Richard Paige 

Steffen Zschaler 
Huseyin Ergin

2015



Two-Faced Data
Motivation

1.5 Objectives of This Paper

The use of visual notations in SE has a long history, from
program flowcharts in the early days of computing (now
largely extinct) to UML in the present. However, after more
than half a century, the practice of designing SE visual
notations lacks a scientific foundation. Currently, in
evaluating, comparing, and constructing visual notations,
we have little to go on but intuition and rule of thumb: We
have neither theory nor a systematic body of empirical
evidence to guide us.

This corresponds to what Alexander [1] calls an unself-
conscious design culture: one that is not based on explicit
design principles but on instinct, imitation, and tradition.
One characteristic of such cultures is that designers are
unable to explain their designs. Another is a lack of variety of
different forms: Designers repeat the same patterns over and
over again because they lack an understanding of the
principles required to generate new ones. This may explain
why SE visual notations look so similar to one another and
change so little over time. For example, ER models as used in
practice today look remarkably similar to Data Structure
Diagrams, the first notation ever used to visualize database
structures [3], [54]. Without knowledge of the underlying
principles of graphic design, notation designers are unable to
access the almost unlimited possibilities in the design space,
and perpetuate the same (often flawed) ideas over time.

For visual notation design to progress from a “craft” to a
design discipline (a self-conscious design culture), we need
to define explicit principles for evaluating, comparing, and
constructing visual notations [1]. There is a wealth of theory
and empirical evidence that could be used to produce such
principles, though mainly outside the SE field. One reason
for the lack of progress in establishing a science of visual
notation design may be the strong Not Invented Here
(NIH) effect in SE research, which draws on research from
other fields to only a minimal extent (it has a self-
referencing rate of 98.1 percent [34]).

The goal of this paper is to establish the foundations for
a science of visual notation design. It defines a theory of
how visual notations communicate (Section 3) and based on
this, a set of principles for designing cognitively effective
visual notations (Section 4). A secondary goal is to raise
awareness about the importance of visual representation
issues in notation design, which have historically received
very little attention.

2 RELATED RESEARCH

2.1 Ontological Analysis

Ontological analysis has become widely accepted as a way
of evaluating SE notations [33], [120]. The leading ontology
used for this purpose is the Bunge-Wand-Weber (BWW)
ontology, originally published in this journal [140]. Many
ontological analyses have been conducted on different SE
notations, e.g., [41], [99], [143]. Ontological analysis involves
a two-way mapping between a modeling notation and an
ontology. The interpretation mapping describes the map-
ping from the notation to the ontology, while the
representation mapping describes the inverse mapping
[33]. According to the theory, there should be a one-to-one
correspondence between the concepts in the ontology and
constructs in the notation. If not, one or more of the
following anomalies will occur (Fig. 4):

. Construct deficit exists when there is no construct in
the notation corresponding to a particular ontologi-
cal concept.

. Construct overload exists when a single notation
construct can represent multiple ontological concepts.

. Construct redundancy exists when multiple nota-
tion constructs can be used to represent a single
ontological concept.

. Construct excess exists when a notation construct
does not correspond to any ontological concept.

If construct deficit exists, the notation is said to be
ontologically incomplete; if any of the other three
anomalies exist, it is ontologically unclear. The BWW
ontology predicts that ontologically clear and complete
notations will be more effective. In Gregor’s taxonomy of
theory types (Fig. 5), this represents a Type IV theory: a
theory for explaining and predicting. Extensive empirical
research has been conducted to validate the predictions of
the theory, e.g., [13], [118].

Ontological analysis provides a way of evaluating the
semantics of notations but specifically excludes visual
representation aspects: It focuses on content rather than
form. If two notations have the same semantics but different
syntax (e.g., Fig. 2), ontological analysis cannot distinguish
between them. Clearly, it would be desirable to have a
comparable theory at the syntactic level so that visual
syntax can also be evaluated in a sound manner.

MOODY: THE “PHYSICS” OF NOTATIONS: TOWARD A SCIENTIFIC BASIS FOR CONSTRUCTING VISUAL NOTATIONS IN SOFTWARE... 759

Fig. 4. Ontological analysis: There should be a 1:1 mapping between
ontological concepts and notation constructs.

Fig. 5. Taxonomy of theory types [45]: The theory types represent a
progression of evolutionary forms.

D. L. Moody, The “Physics” of Notations, IEEE TSE 35:6, 2009

Str

(string)

Tok

(tokens)

TTk

(typed tokens)

Lex

(lexical model)

For

(parse forest)

Ptr

(parse tree)

Cst

(concrete syntax tree)

Ast

(abstract syntax tree)

Pic

(rasterised picture)

Dra

(vector drawing)

Gra

(graph model)

Dia

(diagram)

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

d
i
s
a
m
b
i
g
u
a
t
e

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

structural editing

m

2

m

t

r

a

n

s

f

o

r

m

a

t

i

o

n

r

e

f

a

c

t

o

r

i

n

g

c

o

d

e

t

r

a

n

s

f

o

r

m

a

t

i

o

n

fi

l

t

e

r

i

n

g

d

r

a

w

i

n

g

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Bidirectional megamodel of parsing. Dotted lines denote mappings that rely on
either lexical or syntactic definitions; solid lines denote universally defined mappings.
The loops are examples of transformations.

4 Artefacts and Mappings

Let us first introduce the kinds of artefacts we will use for the remainder of the
paper:
• Str — a string.
• Tok — a finite sequence of strings (called tokens) which, when concatenated,

yields Str. Includes spaces, line breaks, comments, etc — collectively, layout.
• TTk — a finite sequence of typed tokens, with layout removed, some classified

as numbers of strings, etc.
• Lex — a lexical source model [16,36] that addes grouping to typing; in fact a

possibly incomplete tree connecting most tokens together in one structure.
• For — a forest of parse trees, a parse graph or an ambiguous parse tree

with sharing; a tree-like structure that models Str according to a syntactic
definition.

5

V. Zaytsev, A.-H. Bagge, Parsing in a Broad Sense, MoDELS, 2014



Two-Faced Data
Applicability

✓ software language processing 
✓ language definition 

✓multiple syntaxes 
✓ visual and textual 

✓ (un)serialisation 
✓ lossless 

✓ data-specific algorithms 
✓multiple views 

✓multiple tools 
✓ interoperability & comfort 

✓FORBIDDEN EXAMPLE



Two-Faced Data
Structure



Two-Faced Data
Participants

✓Language 
✓ Instance 
✓Left side 
✓Model 
✓Metamodel 
✓Mapping 

✓Right side 
✓Model 
✓Metamodel 
✓Mapping



Two-Faced Data
Collaborations

✓ I is an instanceOf L 
✓ elementOf 

✓Mx models I 
✓ correspondsTo 

✓MMx models L 
✓ representationOf 

✓Fx maps Mx 
✓ inputOf 

✓ if Mx is updatable, need BX 
✓ can have more than two faces



Two-Faced Data
Sample Code

data A = foo(bool) 
       | bar(list[A] xs) 
       ;

syntax A = “foo”? 
         | “bar” “(“ A+ “)”;

T = implode(parse(#A, input)

visit(T) 
{ 
  foo(True) : cx += 1 
  bar([]) => foo(False) 
}



Two-Faced Data
Implementation Multi-Language Modelling with Higher Order

Intensions

Vadim Zaytsev

Universiteit van Amsterdam, The Netherlands, vadim@grammarware.net

Abstract. In the last decade, there have been several fundamental ad-
vances in the field of ontological and linguistic metamodelling. They
proposed the use of megamodels to link abstract, digital and physical
systems with a particular set of useful relations; the distinction between
ontological and linguistic layers, identification and separation of them;
even formalised the act of modelling and the sense and denotation of a
language. In this paper, we propose second order intensions and exten-
sions to more closely model linguistical and ontological conformance and
mapping.

1 Formal modelling of languages

In the classic theory of formal languages, a language L is defined as a set of
sequences of alphabet symbols: L ✓ ⌃

⇤ [8]. This definition is easily applica-
ble to textual languages (traditionally associated with programming) and visual
languages (traditionally associated with modelling). It is also almost trivially
generalisable to graph languages by substituting the reflexive transitive closure
in the definition by another operation that (usually recursively) constructs all
possible valid language instances from symbols of the alphabet. Even then, all
manipulations with the language are done as if it were a set of language instances.
For example, a parser is generally considered a mapping from the textual lan-
guage to the tree language in that it assigns a valid parse tree to each valid
textual input [17]. Hence, the only relation that is needed to formally describe
such processes is an element of (2 or ") relation with rare exceptions like gener-
alised parsers [15] that associate one textual input with a set of several possibly
valid parse trees. Since in practice such mapping usually gets implemented to
output a representation of a set instead of the actual set itself, such cases are
more sidesteps than real exceptions: the range of a general parser is a set of parse
forests, and each output in an element of this set.

Traditional metamodelling abandons the concept of a language in favour of
a modelling layer [13,14]. The formal arsenal is expanded to a strict hierarchical
structure: the lowest layer is too close to real life to formally decompose and
study (e.g., raw data, real life objects, concrete systems), the highest layer is
so abstract that it is self-descriptive, and the middle layers Mi contain entities
that model entities from the layer below (Mi�1) and are expressed in languages
defined by entities from the layer above (Mi+1). Thus, user data is expressed

L
� - ^L

_L

�

?
� "

H

�

6

� -

◆

�

^H

_H

�

?
� "

P

�

6
◆

�

P
µ�! a particular Haskell program

H
µ�! the Haskell language

_H
µ�! set of all valid Haskell programs

^H
µ�! constraints imposed on a Haskell program

L
µ�! a programming language

_L
µ�! set of all programming languages

^L
µ�! properties that make up a language

Fig. 3. Two tiles on the left diagram show how an abstract system (a language) H
or L is decomposed into an intensional part ^X and an extensional part _X. Haskell
(H) is a programming language (L), so it is an instance (◆) of a language. This means
it conforms (�) to the intension of being a language (^L) and is an element (") in the
set of all programming languages (_L). Similarly, P is a program in Haskell, so it is an
instance of H, it conforms to ^H and is an element of _H. (The example is ported to
a more fitting technological space from [6, Fig.7]).

2 The role of a grammar

In the domain of programming languages, one often speaks of a conformance of
a program to the grammar of the language in which the program was written in.
Is such a grammar the same as the intensional part of the language? (G = ^

L?)
The answer given by the formal language theory is yes — however, this

theory has a slightly different megamodel of the situation: since a language is
equated with its extensional part, the “instance of” relation is equated with the
“element of” relation. Furthermore, instead of the language being decomposed
into two parts, its intension is treated as a model of its extension (which is
typically infinite, so it helps to have a finite model of it). The result is depicted
on Figure 4 in the same style we have used so far. As an example we can consider
the technological space of XML: then P is an XML document, G is a DTD or an
XML Schema definition, the validator uses G to check P

��! G and programs
in XSLT, XQuery, JavaScript and other languages can be written to work on
elements of L.

In a more general case, the role of a grammar is the G

µ�! L chain is called
generative or derivational and is used in most proofs in the theory of formal
languages and automata. Its role in the P

��! G chain is called analytical and
is often utilised by using it prescriptively [7] and generating a parser out of it.
What does such a parser do? In the simplest case, it analyses the text of the
program and constructs a term that aligns tokens (lexemes) of the input with
its understanding of how the structure of any program should look like. This
already does not fit our picture at all, and we lack means to express that not
only the grammar serves in at least two different roles, but also the language
apparently at the same time is a language of strings (that are acceptable inputs

4

L
� - G

L

�

?
� "

µ

�
P

�

6

µ - JP K

Fig. 4. The formal language theory view on relating languages and instances: the
program P is an encoding of a solution JP K, which is an element of the formal language
L and conforms to the grammar G. The grammar G is also a finite model of a (typically
infinite) language instance set L. The conceptual language L is implicit and utterly
intangible.

for a parser) and a language of terms or trees (that are outputs of a parser).
An attempt to fit this transformational megapattern into our view is shown on
Figure 5: a grammar G serves a model of both two languages (textual and tree
language) and the mapping between two representations of the same program
(the text and the parse tree). However, since LC and LT are implicit, we cannot
make any statement about the relation between LT and LC , which makes the
megamodel a bit less useful.

This multipurposefulness of grammars in a broad sense is unfortunate from
the modelling point of view, but it explains their omnipresence in software engi-
neering [9]. In terms of modelling modelling1, G µ X for all megamodel elements
X related to G: they share some intention and can be partially represented by
one another [12]. We will explore this intersection in the next section and make
it explicit.

In practical software language processing, grammars try to balance in be-
tween all these roles, with a varying degree of success. In certain cases, people
separate some constraints (traditionally called static semantic rules) that are
too hard to express in the chosen grammar formalism and are purely related to
G

µ�! L and P

��! G; in other cases (in particular related to mapping between
already structured concrete syntax and an improved abstract syntax) there could
be several grammars defining separate languages, with G

µ�! ⌧ included in one
of them or shipped as a third separate artefact.

Interestingly, the role of a language in modelware engineering is slightly dif-
ferent yet also not perfect. Consider the following statement [12]:

F

µ�! L

µ�!
n

M |M µ�! S

o

What is stated here is that the formal system F truthfully models a language
L which in turn models a set of models M such that they all model the system S.

1 NB: the original MoDELS 2009 paper used “ |µ ” for shared intention instead, we use
a much more fitting notation from the extended journal version.

5

LT
� - G � �

LC

LT

�

?
� "

µ

�
PT

⌧ -

�

-

µ
?

PC
" -

�

�

LC

�

?

µ

-

JP K

µ

�

µ

-

Fig. 5. The formal language theory view on relating languages and instances: the
program P is an encoding of a solution JP K, which is an element of the formal language
L and conforms to the grammar G. The grammar G is also a finite model of a (typically
infinite) language instance set L. The conceptual language L is implicit and utterly
intangible.

L � µ
F

_L

µ

?
� "

M
µ - S

Fig. 6. Modelling modelling modelling: all models M that model a system S, are
collected in a set _L. The language L is considered to be a model of its extension, and is
in turn modelled by a formal system F which is conceptually its intension which remains
disconnected from the model M . (This example is a diagrammatic representation of
[12, Fig.17]).

If represented diagrammatically on Figure 6, we see the main differences between
our approach and the method of Muller et al: instead of being decomposed into
an intension and an extension, the language is considered to be a model of its
extension, and its intension (grammar in a broad sense, some kind of formal
model by requirements) is considered to be its model. Furthermore, there is no
explicit consideration for the conformance between the models and this formal
definition.

3 Higher order to the rescue

As we have seen, the grammar of a software language is its intensional part
(or approximates it very closely). Let us deconstruct it further. For ^

Collie,
Gašević et al claimed it was a model of the real world intension of the concept

6

LT
� - ^LT

�- ^^LT ===== ^^LC
�� ^LC

� �
LC

_LT

�

?
�- ^_LT

◆- _^LT

�

?
_^LC

�

?
�◆ ^_LC

�� _LC

�

?

__LT

wwwwwwwwww
�"

PT
µ -

�

-

�

�

JP K � µ
PC

"-

�

�

�

-

__LC

wwwwwwwwww

Fig. 8. Each language shown — the textual language LT and the concrete tree lan-
guage LC — are decomposed (�) into their intensions (^Lx) and extensions (_Lx),
which are in turn also decomposed into their intensions and extensions. The denota-
tion of a program (JP K) is modelled by two entities: the program text (PT ) and its
concrete parse tree (PC). They follow the same megapatterns: each Px conforms (�)
to both the intension of the extension of the corresponding language (^_Lx) and the
intension of the intension of the language (^^Lx). Each Px is also an element (") of
the extension of the language (_Lx). The intension of an extension (^_Lx) is an in-
stance (◆) of the extension of the intension (_^Lx), and in the simplest case also just
its element.

models all variants of languages closely without any regard to the choice of ^_
L.

In other words, for µ

0 = µ/

^^L,

_
LT

µ0

 � G

µ0

�! _
LC

This result agrees with the “shift in linguistical conformance” by Muller et
al [12] (when talking about mapping among models with the same intent) and
with the “constant functions all the way down” by Dowty et al [4] (when talking
about intensions of intensions). The final diagram is presented on Figure 8: a
“real” program can be encoded by a programmer as either text (conforming to
^_

LT ) or a tree (conforming to ^_
LC), and as long as the intension of the inten-

sion is preserved (PT
��! ^^

L), the languages stay same but different and valid
instances can be freely mapped in any direction. The same holds for mappings
between abstract syntax and concrete syntax, up to a homomorphism (such map-
pings often permute arguments and perform other component rearrangements).

4 Concluding remarks and related work

In short, we have proposed to consider four components of software languages:
intension-intensions (conceptual constraints to always conform to); extension-
extensions (sets of valid language instances in a given notation); intentions of
extensions (circumstantial constraints specific to the chosen syntax but not the

8



Two-Faced Data
Consequences

✓Questions?


