
Coupled
Transformations

of SPPFs

Dr. Vadim Zaytsev aka @grammarware

GCM @ STAF 2015

Grammars

✓ Finite language definitions
✓ Text biased
✓ Tree biased
✓ Can be 
generalised

http://rikiji.it/2010/06/21/compilers.html

http://rikiji.it/2010/06/21/compilers.html

Grammars ⇒ Trees

E ::= E "+" E;

E ::= "x" | "y";

E

E E+

yx

E

E E+

yx

Grammars ⇒ Trees

E ::= E "+" E;

E ::= "x" | "y";

E

E+

x

E

E E+

yx

Grammars ⇒ Trees

E

E+

x

E

E E+

xy

E

E +

x

OR

E

E E+

yx

Grammars ⇒ Trees

E

E+

x

E

E E+

xy

E

E +

x

AND

generalised parsing

E E

E

E E+

yx

Grammars ⇒ Graphs

+

generalised
parse

E

x

E

SPPF

E

E

2 + 2 + 2

E

E

+ 2

E E

E

E E E
e1

e2 e3

e4
e5

e6

t1 t2 t3 t4 t5 t6 t7
�
he1, (e2, t6, t7)i, he1, (e4, t4, e6)i, he1, (t1, t2, e3)i,
he2, (e4, t4, t5)i, he2, (t1, t2, e5)i, he3, (e5, t6, t7)i, he3, (t3, t4, e6)i,
he4, (t1, t2, t3)i, he5, (t3, t4, t5)i, he6, (t5, t6, t7)i

Fig. 2. One the left, an SPPF graph resulted from parsing the input “2+2+2+2” with
the grammar from Figure 1 (a). On the right, there are five parse trees in a forest, which
are packed in a triple ambiguity, two of subgraphs of which have double ambiguities.
All of them share leaves and subtrees whenever possible. Below the pictures we show
its formal representation as an ordered directed graph.

them in the rest of the paper and refer to other sources primarily dedicated
to them [7,4].

⇧ Disambiguation filters that are run after the parsing process has yielded a
fully formed SPPF: their main objective is to reduce the number of ambi-
guities and ultimately to shave all of them off, leaving one parse tree. An
example of this would be how processing production rules marked for re-
jection is done for SGLR [7] and GLL [4] — even though recursive descent
parsers can handle an equivalent construct (and-not clause) during parsing
without any trouble [42].

Formally speaking, the first class never produces parse forests; the second
class works with disambiguators (higher order functions that take a parser and
return a parser that produces less ambiguous SPPFs) [7]; the third class uses
filters (functions that take an SPPF and produce a less ambiguous SPPF) [23].
In some sources approaches with disambiguators are called “semantics-directed
parsing” and approaches with filters are called “semantics-driven disambigua-
tion” [6], since both indeed rely on semantic information to aid in the syntactic
analysis. Disambiguation filters are still but a narrow case of SPPF transfor-
mation, but they have apparent practical application and are therefore well-
researched.

4

E ::= ABC
 & AB c+
 & a+ BC;

ABC ::= a+ b+ c+
AB ::= a AB? b;
BC ::= b AB? c;

Boolean grammars

a b c

a+ AB b+ BC c+

S S S

AB?

ε

BC?

ε

ABC
nice parse view

context-sensitivity trick

The real problem:

transformation

The real problem:
✓ Manipulate “nice” views
✓ let the rest keep up

✓ Merge views
✓ disambiguate

✓ Modular transformations
✓ temporary inconsistencies

✓ Many solutions
✓ none satisfactory

✓ Standing challenge

State of the art
[grammars]

XBGF ΞBGF

SLEIR . . .

http://grammarware.github.io/lab/

http://grammarware.github.io/lab/

This paper

coupled
transformation

grammars SPPFs

extract

S ::= a+ b+ c+ & AB c+ & a+ BC;
AB ::= a AB? b;
BC ::= b BC? c;

a b c

a+ AB b+ BC c+

S S S

AB?

ε

BC?

ε

(a)

a b c

a+ AB b+ BC c+

S S S

AB?

ε

BC?

ε

ABP

a b c

AP AB b+ BC c+

S S S

AB?

ε

BC?

ε

a+

S ::= AP b+ c+ & AB c+ & AP BC;
AB ::= a AB? b;
BC ::= b BC? c;
AP ::= a+;

S ::= ABP c+ & AB c+ & a+ BC;
AB ::= a AB? b;
BC ::= b BC? c;
ABP ::= a+ b+;

(b) (c)

extract

fold

S ::= ABC & AB c+ & AP BC;
AB ::= a AB? b;
BC ::= b BC? c;
ABC ::= a+ b+ c+;
AP ::= a+;

a b c

AP

AB b+ BC c+

S S S

AB?

ε

BC?

ε

ABC

a+

S ::= ABC & AB c+ & a+ BC;
AB ::= a AB? b;
BC ::= b BC? c;
ABC ::= a+ b+ c+;
AP ::= a+; (a) (b)

fold

a b c

a+ AB b+ BC c+

S S S

AB?

ε

BC?

ε

ABC

(c)

S ::= ABC & AB c+ & AP BC;
AB ::= a AB? b;
BC ::= b BC? c;
ABC ::= AP b+ c+;
AP ::= a+;

a b c

AP AB b+ BC c+

S S S

AB?

ε

BC?

ε

ABC

a+

inline

S ::= ABC & AB c+ & a+ BC;
AB ::= a AB? b;
BC ::= b BC? c;
ABC ::= a+ b+ c+;

(a) (b)

inline

a b c

a+ AB b+ BC c+

S S S

AB?

ε

BC?

ε

ABC

S ::= a+ b+ c+ & AB c+ & a+ BC;
AB ::= a AB? b;
BC ::= b BC? c;

a b c

a+ AB b+ BC c+

S S S

AB?

ε

BC?

ε

Solution (graphs)
Language SPPFs Examples

preserved preserved introduce, unlabel
preserved refactored fold, inline

extended preserved addV, define
extended refactored removeC, widen
reduced preserved? removeV, undefine
reduced refactored disappear
reduced refactored? addC, narrow
revised refactored permute, renameT
revised refactored? redefine, replace
revised — inject

Conclusion
✓ Programmably cotransform
✓ string/term grammars
✓ forest representations

✓ Applicable to grammars in a broad sense
✓ views and models with uncertainty

✓ Still unclear
✓ What is the best way?
✓ Formalisation?

Questions?
Suggestions?

E

E

2 + 2 + 2

E

E

+ 2

E E

E

E E E
e1

e2 e3

e4
e5

e6

t1 t2 t3 t4 t5 t6 t7

