
Grammars
and

Trees

Dr. Vadim Zaytsev aka @grammarware
2015

Recap
✓ Lexical analysis
✓ Syntactic analysis
✓ Semantic analysis
✓ Intermediate representation
✓ Code generation
✓ Optimisation
✓ . . .

WHY

✓ Formats everywhere

✓ DSLs are easy

✓ SLs have many faces

✓ 90% automated,
10% hard work

Models of Languages

✓ How can a language be defined?

Models of Languages
✓ Actual (in)finite set
✓ {“a”, “b”, “c”}
✓{0ⁱ1ⁿ…}
✓ English
✓ set arithmetic works
✓ concatenation, union, difference,
intersection, complement, closure

Models of Languages
✓ Formal grammar
✓ term rewriting system
✓ “semi-Thue”
✓ all about rewriting rules
✓ α → β

Models of Languages
✓ Recognising automaton
✓ states
✓ transitions
✓ extra stuff

Models of Languages
✓ Declarative
✓ enumeration / description
✓ characteristic function

✓ Analytic
✓ recogniser / parser
✓ analytic grammar

✓ Generative
✓ term rewriting system
✓ generative grammar

Program

Language

instance of

Sentences GrammarAutomaton

Program

Language

modelled bymo
de
ll
ed
 b
y

mo
de

ll
ed

 b
y

Sentences GrammarAutomaton

Program

generatesaccepts

Language

modelled bymo
de
ll
ed
 b
y

mo
de

ll
ed

 b
y

Sentences Grammar

element of

Automaton

Program

generatesaccepts

Language

co
nf
or
ms
 t
o

parseable by

modelled bymo
de
ll
ed
 b
y

mo
de

ll
ed

 b
y

Language

Program

Grammar
defined by

conforms to

Program

Grammar
conforms to

defined by

Language

Program

Grammar
defined by

conforms to

Program

Grammar

conforms to

defined by

defined by

Example: XML
✓ X ::= ![<>]+

| '<' ![>]+ '>' X* '<' '/' ![>]+ '>'

✓ X ::= D
| '<' T A* '>' X* '<' '/' T '>'

✓ <!ELEMENT dir (#PCDATA)>
<!ATTLIST dir xml:space (def|preserve) 'preserve'>

✓ <xsd:element name="tag">
<xsd:complexType>

. . .

Conclusion

✓ “Language” is intangible
✓ Grammars hide in:
✓ data types
✓ API and libraries
✓ protocols and formats
✓ structural commitments
✓ . . .

✓ Not all grammars are equally “good”

58 2 Grammars as a Generating Device

Fig. 2.33. The silhouette of a rose, approximated by Type 3 to Type 0 grammars

Ro
se

 b
y

Ar
we

n
Gr

un
e;

 p
.5

8
of

 G
ru

ne
/J

ac
ob

s’
 “

Pa
rs

in
g

Te
ch

ni
qu

es
”,

 2
00

8

Unrestricted grammars

Context-sensitive
grammars

Context-free grammars

Regular grammars

α → β

X → a
X → aB

αXβ → αγβ

X → γ

Duncan Rawlinson, Chomsky.jpg, 2004, CC-BY.

Noam Chomsky. On Certain Formal Properties of Grammars,
Information & Control 2(2):137–167, 1959.

Noam Chomsky

(b.1928)

https://commons.wikimedia.org/wiki/File:Chomsky.jpg

Unrestricted grammars

Decidable grammars

Context-sensitive
grammars

Indexed grammars

Context-free grammars

Deterministic CFG

Nested word

Regular grammars

Non-recursive grammars

α → β

X → a
X → aB

αXβ → αγβ

X → γ

Duncan Rawlinson, Chomsky.jpg, 2004, CC-BY.

Noam Chomsky. On Certain Formal Properties of Grammars,
Information & Control 2(2):137–167, 1959.

A[σ] → α[σ]
A[σ] → B[fσ]
A[fσ] → α[σ]

Noam Chomsky

(b.1928)

https://commons.wikimedia.org/wiki/File:Chomsky.jpg

Unrestricted grammars Recursively enumerable
languages Turing machine

Decidable grammars Recursive languages Terminating automata

Context-sensitive
grammars

Context-sensitive
languages Linear-bounded automata

Indexed grammars Languages with macros Nested stack automata

Context-free grammars Context-free languages Pushdown automata

Deterministic CFG Deterministic CFL Deterministic PDA

Nested word Nested word Visibly PDA

Regular grammars Regular languages FSMs

Non-recursive grammars Finite languages FSMs without cycles

Finite languages
✓ Examples:

✓ Boolean values

✓ languages

✓ countries

✓ cities

✓ postcodes

Regular languages
✓ Regular sets by Stephen
Kleene in 1956

✓ ∅, ε, letters from Σ

✓ concatenation

✓ iteration

✓ alternation

✓ Precisely fit the
regular class Stephen Cole Kleene

(1909–1994)

S. C. Kleene, Representation of Events in Nerve Nets and Finite Automata. In Automata Studies, pp. 3–42, 1956.
photo from: Konrad Jacobs, S. C. Kleene, 1978, MFO.

http://owpdb.mfo.de/detail?photo_id=2122

Regular languages

✓ PCRE
✓ “Perl-compatible 
regular expressions”

✓ (not compatible with Perl)
✓ (not regular)
✓ C library
✓ (backrefs, recursion, assertions…)

Context-free

✓ FSM + memory (stack)
✓ Modular composition
✓ A ::= “[” B “]” ;
✓ B ::= A? ;

✓ Forget intersection & diff
✓ Closed under substitution John Backus

(1924–2007)

Context-sensitive

✓ Explainable only in context

✓ Sentence → List End

✓ List → Name;

✓ List → List “,” Name;

✓ “,” Name End → “and” Name

✓ Parsing in exponential time

Unbounded

✓ (almost) anything

✓ recognising is impossible

✓ parsing is impossible

Which is which?
✓ Substring search
✓ grep, contains(), find(),
substring(), …

✓ Substring replacement
✓ sed, awk, perl, vim, replace(),
replaceAll(), …

✓ Pretty-printing
✓ VS.NET, Sublime, TextMate, …

Which is which?

✓ Counting [non-empty] lines in a file
✓ wc -l, grep -c “”
✓ grep -v “^$”, sed -n /./p | wc -l

✓ Parsing HTML
✓ <BODY><TABLE><P><A HREF=…

✓ Parsing a postcode
✓ 1098 XG, …

Popular languages

✓{aⁱbⁿ…}
✓ 0 counters
✓ 1 counter
✓ n counters
✓ ∞ counters

✓ Dyck language
✓ parentheses
✓ named parentheses

Walther von Dyck

(1856–1934)

Zeitlupe, https://en.wikipedia.org/wiki/File:Grabstaette_Walther_von_Dyck.jpg, CC-BY-SA, 2012

Popular parsers
✓ Bottom-up

✓ Reduce the input back to
the start symbol

✓ Recognise terminals
✓ Replace terminals by
nonterminals

✓ Replace terminals and
nonterminals by left-hand
side of rule

✓ LR, LR(0), LR(1),
LR(k), LALR, SLR,
GLR, SGLR, CYK, …

✓ Top-down
✓ Imitate the production

process by rederivation
✓ Each nonterminal is a goal
✓ Replace each goal by

subgoals (= elements of its
rule)

✓ Parse tree is built from
top to bottom

✓ LL, LL(1), LL(k),
LL(*), GLL, DCG,
RD, Packrat,
Earley

Popular parsers
✓ Bottom-up

✓ Reduce the input back to
the start symbol

✓ Recognise terminals
✓ Replace terminals by
nonterminals

✓ Replace terminals and
nonterminals by left-hand
side of rule

✓ LR, LR(0), LR(1),
LR(k), LALR, SLR,
GLR, SGLR, CYK, …

✓ Top-down
✓ Imitate the production

process by rederivation
✓ Each nonterminal is a goal
✓ Replace each goal by

subgoals (= elements of its
rule)

✓ Parse tree is built from
top to bottom

✓ LL, LL(1), LL(k),
LL(*), GLL, DCG,
RD, Packrat,
Earley

YACC / bison

Beaver

SableCC

GDK

Tom

ASF+SDF

Spoofax

JavaCC

ANTLR

ModelCC

Rascal

TXL

Rats!

PetitParser

Popular data structures

✓ Lists (of tokens)

✓ Trees (hierarchy!)

✓ Forests (many trees)

✓ Graphs (loops!)

✓ Relations (tables)

Conclusion

✓ Parsing recognises structure

✓ Can be many models of a language

✓ Hierarchy of classes

✓ 90% automated, 10% hard work

✓ Terminal symbols
✓ finite sublanguage
✓ regular sublanguage

✓ Keywords
✓ Layout
✓ whitespace
✓ comments

Lexical syntax

✓ Terminal symbols
✓ finite sublanguage
✓ regular sublanguage

✓ Keywords
✓ Layout
✓ whitespace
✓ comments layout L = (WS|Cm)* 

!>> [\ \t\n\r] !>> "--";

Lexical syntax
lexical Boolean = "True" | "False";

lexical Id = [a-z]+ !>> [a-z];

keyword Reserved = "if" | "while";
lexical Id = [a-z]+ \ Reserved !>> [a-z];

lexical WS = [\ \t\n\r];

lexical Cm = "--" ... $;

layout L = [\ \t\n\r]* !>> [\ \t\n\r];
lexical D = ![\<\>]* !>> ![\<\>];
lexical T = [a-z][a-z0-9]* !>> [a-z0-9];
lexical A = [a-z]+ [=] [\"] ![\"]* [\"];
lexical X = D

| "\<" T A* "\>" X+ "\<" "/" T "\>";

Lexical syntax

XML

layout L = [\ \t\n\r]* !>> [\ \t\n\r];
lexical D = ![\<\>]* !>> ![\<\>];
lexical T = [a-z][a-z0-9]* !>> [a-z0-9];
lexical A = [a-z]+ [=] [\"] ![\"]* [\"];
lexical X = D
 | "\<" T L {A L}* "\>" X+ "\<" "/" T "\>";

Beyond lexical

XML

layout L = [\ \t\n\r]* !>> [\ \t\n\r];
lexical D = ![\<\>]* !>> ![\<\>];
lexical T = [a-z][a-z0-9]* !>> [a-z0-9];
lexical A = [a-z]+ [=] [\"] ![\"]* [\"];
lexical X = D
 | "\<" T L {A L}* "\>" X+ "\<" "/" T "\>";

Beyond lexical

XML

lexical → syntax

layout L = [\ \t\n\r]* !>> [\ \t\n\r];
syntax D = W+;
lexical W = ![\ \t\n\r\<\>]+

!>> ![\ \t\n\r\<\>];
lexical T = [a-z][a-z0-9]* !>> [a-z0-9];
lexical A = [a-z]+ [=] [\"] ![\"]* [\"];
syntax X = D

| "\<" T A* "\>" X* "\<" "/" T "\>";

Beyond lexical

XML

✓ Terminal: "if"
✓ Character class: [a-z]
✓ Inverse: ![a-z]
✓ Kleene closures: [a-z]+, [a-z]*
✓ Optionals: [a-z]?
✓ Reserve: [a-z]+ \ Keywords
✓ Follow: [a-z]+ !>> [a-z]

Recap: lexical

✓ Choice: |
✓ Priority: >
✓ Associativity: left, right, non-assoc
✓ Named alternatives: foo: x
✓ Named symbols: E left "+" E right
✓ Regular combinators: X*, X+, X?

Beyond lexical

✓ parse(#N, s)
✓ try parse(#N, s) catch: . . .
✓ vis::ParseTree::renderParsetree(t)
✓ /amb(_) !:= t
✓ t is foo
✓ t.x
✓ if (pattern := tree) . . .
✓ (E)`<E e1> + <E e2>`
✓ /regexp/

Useful

