
⇳Flipped Top-Down is 
Systematic Bottom-Up

Dr. Vadim Zaytsev aka @grammarware 
EduSymp 2015



UvA MSc BSc Inf
✓ Academic Skills 
✓ Introduction Programming 
✓ Architecture & Computer Organisation 
✓ Programming Languages 
✓ Discrete Maths & Logic 
✓ Webprogramming & Databases 
✓ Linear Algebra 
✓ Data Structures 
✓ Automata & Formal Languages 
✓ Operating Systems 
✓ Multimedia
https://datanose.nl/#timetable(BSc IN|1,36,0)

http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/19307
http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/15848
http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/19089
http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/20477
http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/18282
http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/15360
http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/19744
http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/19925
http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/22606
http://studiegids.uva.nl/xmlpages/page/2015-2016/zoek-vak/vak/17486
https://datanose.nl/#timetable


Input conditions

✓ No MDE 
✓ No need for MDE 
✓ Varying levels 
✓ High expectations 
✓ Enthusiasm



General setup?
✓ 1 month, full time 
✓ Mostly hacking/engineering 
✓ Some lectures 
✓ Some practice hours 
✓ Week 1: lectures + idea pitch 
✓ Week 2: MVP + audit 
✓ Week 3: progress + audit 
✓ Week 4: dry run + final demo 
✓ Flipped + mandatory questions



Onderwijsgek, Empty classroom, 2011. CC-BY-SA.

https://commons.wikimedia.org/wiki/File:Empty_classroom.jpg


Lecture 1: Intro

✓ History of computing? 
✓ Wicked problems? 
✓ CS vs SE? 
✓ Life cycle of software? 
✓ Success stories? 
✓ . . .❌



Lecturer is the model
✓ You can do . . . as I did 
✓ hacking -> system prog & rev eng 
✓ railways -> simulations 
✓ maths -> formal methods 
✓ web -> sep of concerns & mappings 
✓ data rec -> databases 
✓ query model -> AI 
✓ MDE -> OO & … 
✓ legacy -> mainframes & legacy 
✓ . . .



Lecture 2: Project

✓ “Form groups of X” 

✓ (Minimise grading effort) 

✓ (Larger tasks to escape simplicity) 

✓ “Wait for it”❌



Scrum
✓ Software dev’t process model 
✓ Agile manifesto 
✓ Weekly stand-up meetings 
✓ Planning poker 
✓ Roles: scrum master, product owner 
✓ Emergent roles: backend/frontend, 
merge&deploy, API design, . . .



Lecture 3: Inside SE
✓ Examples of activities? 

✓ Case study? 

✓ Highlights? Which ones? 

✓ In 2014: 

✓ maintenance 

✓ startups
❌



SWEBoK
✓ Do not explain parts 
✓ Explain everything 
✓ SWEBoK is the domain model 
✓ software construction 
✓ software testing 
✓ software maintenance 
✓ . . . 

✓ Also, a SWEBoK-based MSc programme



Lecture 4: Paradigms
✓ “Programming Paradigms” course 
✓ Recall Java 
✓ Look at LISP 
✓ Look at Prolog 
✓ Look at Forth 
✓ Look at XSLT 
✓ Look at Smalltalk 
✓ Look at Javascript 
✓ . . .
❌



ALL Paradigms

✓ Show ALL paradigms at once 

✓ Connected in a megamodel 

✓ Renarrate the megamodel

Peter Van Roy, https://www.info.ucl.ac.be/~pvr/paradigms.html

https://www.info.ucl.ac.be/~pvr/paradigms.html




Lecture 4’: Practices
✓ Go to considered harmful 
✓ Liberal on input, conservative on output 
✓ Favour composition over inheritance 
✓ Less is more 
✓ Keep it simple 
✓ Don’t repeat yourself 
✓ Loops affect performance 
✓ Respect naming conventions 
✓ Put opening curlies on the next line 
✓ . . .

❌



Patterns as models

✓ Good practices eventually become 
✓ Design patterns 
✓ Architectural patterns 
✓ Language constructs 

✓ Bad practices can be detected 
✓ Code smells 
✓ Antipatterns 
✓ Convention violations



Lecture 5: Choose!
✓ Search-based SE 
✓ Software language engineering 
✓ Language X / framework Y 
✓ Practical FP 
✓ Testing 
✓ Metaprogramming 
✓ Reverse engineering 
✓ Cracking 
✓ Nothing



Functional Thinking
✓ Homework 
✓ Neal Ford’s video 

✓ Classroom 
✓ Expression problem 

✓ Industrial examples 
✓ Code 
✓ in Java 8, Haskell, Scala, 
Clojure, Groovy, F#, Python, 
Racket, Erlang, Elixir

Neal Ford, Functional Thinking: Paradigm over Syntax, 2014.

http://shop.oreilly.com/product/0636920029687.do


Finale
✓ Active involvement 
✓ High grades 
✓ Product delivered 
✓ by each of 7 teams 

✓ Good evaluation 
✓ Big effort 
✓ 1000+ intermediate grades



Techniques
✓ Goal: introduce SE 
✓ lecturer as the model 
✓ SWEBoK as the domain model 

✓ Show relevance of MDE 
✓ constantly facing the complexity 

✓ Connect to the audience 
✓ constant feedback 

✓ Auditors for projects 
✓ students >>> lecturers



Lessons learnt
✓ Replicable experience? 
✓ certainly demanding 
✓ could have been harder 

✓ Refined material? 
✓ Ad hoc lectures? 
✓ “Tweetable lectures” failed? 
✓ Feedback?


