
Evolution
of

Metaprograms
Dr. Vadim Zaytsev aka @grammarware

SATToSE 2015

Ready to megamodel?
Languages, Models and Megamodels

A Tutorial

Anya Helene Bagge1 and Vadim Zaytsev2

1 BLDL, University of Bergen, Norway, anya@ii.uib.no
2 University of Amsterdam, The Netherlands, vadim@grammarware.net

Abstract. We all use software modelling in some sense, often without
using this term. We also tend to use increasingly sophisticated software
languages to express our design and implementation intentions towards
the machine and towards our peers. We also occasionally engage in meta-
modelling as a process of shaping the language of interest, and in meg-
amodelling as an activity of positioning models of various kinds with
respect to one another.
This paper is an attempt to provide an gentle introduction to modelling
the linguistic side of software evolution; some advanced users of model-
ware will find most of it rather pedestrian. Here we provide a summary
of the interactive tutorial, explain the basic terminology and provide
enough references to get one started as a software linguist and/or a meg-
amodeller.

1 Introduction

This paper is intended to serve as very introductory material into models, lan-
guages and their part in software evolution — in short, it has the same role as
the tutorial itself. However, the tutorial was interactive, yet the paper is not:
readers familiar with certain subtopics would have to go faster through certain
sections or skip them over.

In §2, we talk about languages in general and languages in software engineer-
ing. In §3, we move towards models as simplifications of software systems. The
subsections of §4 slowly explain megamodelling and different flavours of it. The
tutorial paper is concluded by §5.

2 Software Linguistics

Let us start by examining what a language is in a software context.
In Wikipedia, the concept is described3 as follows:

Language is the human ability to acquire and use complex systems of
communication, and a language is any specific example of such a system.
The scientific study of language is called linguistics.

3
http://en.wikipedia.org/wiki/Language.

http://ceur-ws.org/Vol-1354/paper-12.pdf

Haskell

Go
COBOL

PHP

Swift Scala
R

Haskell

Go
COBOL

PHP

Swift Scala
R

Rascal

EMF
EBNF

XSD

DTD XText
MOF

Evolution!

maintain

improve
refactor

edit

generate renovate
fix

maintain

improve
refactor

edit

generate renovate
fix

Metaprogram

Metaprogram

Metaprogramming

optimise

improve
dialect

tool

adapt present
fix

Examples

Example: ANTLR→BGF
grammarDef
 :
 {
 try{
 DocumentBuilderFactory dbfac = DocumentBuilderFactory.newInstance();
 DocumentBuilder docBuilder = dbfac.newDocumentBuilder();
 doc = docBuilder.newDocument();
 root = doc.createElement("bgf:grammar");
 root.setAttribute("xmlns:bgf", "http://planet-sl.org/bgf");
 doc.appendChild(root);
 }catch (Exception e){System.out.println(e);}
 }
 'grammar' ID ';' NEWLINE rule+
 {
 try{
 Transformer trans = TransformerFactory.newInstance().newTransformer();
 trans.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "no");
 trans.setOutputProperty(OutputKeys.INDENT, "yes");
 trans.transform(new DOMSource(doc), new StreamResult(new
FileOutputStream(output)));
 }catch (Exception e){System.out.println(e);}
 };

SLPS/topics/extraction/antlr/slps/antlr2bgf/StrippedANTLR.g

Example: SDF→BGF
equations

[map-sdf-definition-to-bgf]
&C*1 := trafoProds (accuProds (&M*1,))
==========================
main (definition &M*1)
=
<bgf:grammar xmlns:bgf="http://planet-sl.org/bgf">
 &C*1
</bgf:grammar>

[map-sdf-module-to-bgf]
&C*1 := trafoProds (accuProds (&M1,))
==========================
main (&M1)
=
<bgf:grammar xmlns:bgf="http://planet-sl.org/bgf">
 &C*1
</bgf:grammar>

[exclude-lexical-productions]
accuProds (lexical syntax &Ps1, &P*1) = &P*1

SLPS/topics/extraction/sdf/Main.asf

Example: Java OM→BGF
for (Class<?> clss : classes)
{
 Element rule = doc.createElement("bgf:production");
 Element nonterminal = doc.createElement("nonterminal");
 Element rhs = doc.createElement("bgf:expression");
 nonterminal.appendChild(doc.createTextNode(clss.getSimpleName()));
 root.appendChild(rule);
 rule.appendChild(nonterminal);
 rule.appendChild(rhs);
 Collection<Element> tmp = new LinkedList<Element>();
 if (clss.isEnum())
 {
 compositor = "choice";
 unit = "empty";
 for (Object c : clss.getEnumConstants())
 {
 Element selectable = doc.createElement("selectable");
 tmp.add(selectable);
 Element selector = doc.createElement("selector");
 selectable.appendChild(selector);
 selector.appendChild(doc.createTextNode(c.toString()));
 Element expr = doc.createElement("bgf:expression");
 selectable.appendChild(expr);
 Element empty = doc.createElement("epsilon");
 expr.appendChild(empty);
 }
 } else if . . .

SLPS/topics/extraction/java/slps/java2bgf/Tool.java

Example: LDF→BGF
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
Transform" xmlns:bgf="http://planet-sl.org/bgf"
xmlns:ldf="http://planet-sl.org/ldf" version="1.0">
 <xsl:output method="xml" encoding="UTF-8"/>
 <xsl:template match="/ldf:document">
 <bgf:grammar>
 <xsl:apply-templates select="//bgf:production"/>
 </bgf:grammar>
 </xsl:template>
 <xsl:template match="bgf:production">
 <xsl:if test="local-name(../..) != 'example'">
 <xsl:copy-of select="."/>
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

SLPS/topics/extraction/ldf/ldf2bgf.xslt

Example: TXL→BGF
<xsl:template match="literalOrType">
 <xsl:choose>
 <xsl:when test="type/typeSpec/typeid/literal/unquotedLiteral/special='!'"/>
 <xsl:when test="type/typeSpec/opt_typeModifier/typeModifier='see'"/>
 <xsl:when test="type/typeSpec/opt_typeRepeater/typeRepeater='+'">
 <bgf:expression>
 <plus>
 <bgf:expression>
 <nonterminal>
 <xsl:value-of select="type/typeSpec/typeid/id"/>
 </nonterminal>
 </bgf:expression>
 </plus>
 </bgf:expression>
 </xsl:when>
 <xsl:when test="type/typeSpec/opt_typeRepeater/typeRepeater='*' or type/
typeSpec/opt_typeModifier/typeModifier='repeat'">
 <bgf:expression>
 <star>
 <bgf:expression>
 <xsl:if test="type/typeSpec/typeid/id">
 <nonterminal>
 <xsl:value-of select="type/typeSpec/typeid/id"/>
 </nonterminal>
 </xsl:if> . . .

SLPS/topics/extraction/txl/txl2bgf.xslt

Example: XMI→BGF
<xsl:template match="/ecore:EPackage">
 <bgf:grammar>
 <xsl:apply-templates select="*"/>
 </bgf:grammar>
</xsl:template>
. . .
<xsl:when test="@xsi:type='ecore:EEnum'">
 <bgf:production>
 <nonterminal>
 <xsl:value-of select="$ourName"/>
 </nonterminal>
 <xsl:choose>
 <xsl:when test="count(eLiterals)=0">
 <bgf:expression>
 <epsilon/>
 </bgf:expression>
 </xsl:when>
 <xsl:when test="count(eLiterals)=1">
 <xsl:apply-templates select="./eLiterals"/>
 </xsl:when>
 <xsl:otherwise>
 . . .
 </xsl:otherwise>
 </xsl:choose>
 </bgf:production>
</xsl:when>

SLPS/topics/extraction/ecore/ecore2bgf.xslt

h h h

h

More in the paper:
Evolution of Metaprograms,

or
How to Transform XSLT to Rascal

Vadim Zaytsev
vadim@grammarware.net

Universiteit van Amsterdam, The Netherlands

Abstract

Metaprogramming is a well-established methodology of constructing
programs that work on other other programs, analysing, parsing, trans-
forming, compiling, evolving, mutating, transplanting them. Metapro-
grams themselves evolve as well, and there are times when this evolution
means migrating to a different metalanguage. This fairly complicated
scenario is demonstrated here by considering a concrete case of porting
several rewriting systems of grammar extraction from XSLT to Rascal.

Metaprogramming is a well-established methodology of constructing programs that work on other other pro-
grams [8], analysing [1], parsing [15], transforming [2], compiling [3], visualising [7], evolving [4], composing [9],
mutating [5], transplanting [10] them. Metaprograms themselves evolve as well, and there are times when this evo-
lution means migrating to a different metalanguage. For example, a unidirectional chain of grammar/metamodel
transformation steps can be turned into a bidirectional one (e.g., XBGF scripts to ⌅BGF scripts [14]) — on the
level of language instances this means turning a migration path (take X, transform into Y, forget X) into an
executable relationship (change X, update Y, change Y, update X, ...). The general problem is too big to handle
at the moment: we have recently successfully considered a much more focused problem of migration between
metasyntaxes for grammars [11]; the focus in this abstract is on migrating grammar-mapping metaprograms.

SLPS [16], of Software Language Processing Suite, was a repository that served as a home for many exper-
imental metaprograms — to be more precise, metagrammarware for grammar recovery, analysis, adaptation,
visualisation, testing. Around 2012, final versions of such tools were reimplemented as components in a li-
brary called GrammarLab [13]: the code written in Haskell, Prolog, Python and other languages, was ported to
Rascal [8], a software language specifically developed for the domain of metaprogramming.

Grammar extraction is a metaprogramming technique which input is a software artefact containing some kind
of grammatical (structural) knowledge — an XML schema, an Ecore metamodel, a parser specification, a typed
library, a piece of documentation — and recover the essence of those structural commitments, typically in a form
of a formal grammar with terminals, nonterminals, labels and production rules [12]. Over the years the SLPS
acquired over a dozen of such extractors, plus a couple of more error-tolerant recovery tools. Several of them were
essentially mappings from various XML representations (XSD, EMF, TXL, etc), implemented — quite naturally
— in XSLT [6].

A fragment of such a grammar extractor mapping is given on Figure 1(a). Readers that can overcome
the overwhelming verbosity of the XML syntax, can see two templates that match elements eLiterals and
eStructuralFeatures correspondingly, and generate output elements by reusing information harvested from
specific places within the matched elements. As a language for metaprogramming and structured mapping in
general, XSLT is pretty straightforward and provides functionality for branching, looping, traversal controls,

Copyright

c� by the paper’s authors. Copying permitted for private and academic purposes.

In: A. H. Bagge (ed.): Proceedings of SATToSE 2015, Mons, Belgium, 6–8 July 2015, to be published at http://ceur-ws.org

1

http://grammarware.net/writes/#XSLT-to-Rascal2015

TL;DR

• Useless preliminary analysis

• XSLT is declarative

• Rascal is functional/imperative

• XSLT is XML-like

• Rascal is Java-like

TL;DR

• Translates well

• named callables

• pattern matching

• condition checking

• comprehensions

TL;DR

• Problems

• XSLT is untyped: <xsl:when test=“…” />

• Multipattern matching: a|b

• Vectors vs scalars

• No variables in λ

Questions
• Does anyone recognise the problem?

• Has anyone ever done anything alike?

• Are there good solutions?

• Why is life so hard?

http://grammarware.github.io

