

Meyers, Vangheluwe. A Framework for Evolution of Modelling Languages, SCP 76(12), 2011.

B. Meyers, H. Vangheluwe / Science of Computer Programming () – 3

Fig. 1. A model and its relations in the context of MDE.

The index j highlights the fact that multiple general transformations (e.g., for synthesis, migration, abstraction/refinement,
normalisation, optimisation, etc. [29]) may exist.

Assuming that a modelled system consists of models in an appropriate language and explicit relations between these
models, we posit that the architecture of any modelled system can be mapped on (multiple instances of) Fig. 1. Multiple
modelsm can exist in a system, typically all conforming to the samemeta-modelMMLang . Eachmodel can bemapped on Fig. 1
separately. Note that Tj(m) or [[m]] can themselves be seen as amodelm in Fig. 1, towhich possibly relations such as T and [[.]]
apply. In domain-specific modelling, when languages are explicitly modelled the meta-model MMLang of a domain-specific
language (DSL) is an artefact that is part of the system in its own right. Thus,MMLang itself can be seen as anm in Fig. 1, having
ameta-model in its own right. Note that programs can also be considered asmodels, with an abstract syntax tree, a concrete
syntax and a semantic mapping to, for instance, machine code or an operational semantics in the form of an interpreter.

In conclusion, Fig. 1 describes any explicitly modelled system. Although the statement that all possible systems can be
mapped to the above diagram cannot be formally proved, we are confident that it holds, based on our experience with
modelling language engineering, in particular with AToM3 (A Tool for Multi-formalism and Meta-Modelling) [7]. From now
on, we assume Fig. 1 describes any explicitly modelled system, and hence a framework for evolution must support the
possible scenarios that emerge from it.

3. Related work

In this section, work related to evolution is presented and some useful concepts are introduced. This mainly covers the
related topics of model differencing and model co-evolution, on which we will build.

3.1. Model differencing

In order to be able to model evolution in-the-large, one should be able to model differences between two versions of a
model. This can of course be done by using lexical differencing, as used for text files, on the data representation of themodel.
However, the result of such analysis is often not useful, as (1) the actual differences occur at the granularity level of nodes,
links, labels and attributes and (2) models are usually not sequential in nature and equivalences betweenmodels will not be
taken into account. Hence, model differencing should be done at an appropriate level of abstraction, and take semantics into
account. Progress has beenmade in this area [1,6,27,38,55]. Existing approaches typically rely on the abstract syntax graphs
(ASGs) of the two models to compare, and traverse both graphs in parallel. Nodes in the graphs are matched by matching
unique identifiers [1,38], or by a number of heuristics [27,55]. However, no comprehensive approach that computes the
differences between graph-like models exists yet. As a direct result, no general model version control system exists today.

In addition to finding differences, one should be able to represent them explicitly as a model, called the delta model.
There are two kinds of representations: operational and structural. In the operational (or change-based) representation, the
difference between two versions of a model is modelled as the series of CRUD (Create/Read/Update/Delete) edit operations
that were performed on one model to arrive at the other [1,16]. When these operations are recorded live from a tool, this
strategy is very accurate and powerful, though dependent on that particular tool and difficult to manipulate explicitly. In
structural (or state-based) representations, either themodel is coloured [27,38,45,55] or a designated deltamodel is created
which can be used by modelling tools as yet another model in an appropriate language [6,47].

3.2. Model co-evolution

When the syntax of a modelling language evolves (i.e., the meta-model evolves), the most prominent side effect is
that its instance models may no longer conform to the new meta-model. Therefore, the co-evolution (with evolution of
their meta-model) of models has become an important research topic. This research is inspired by the way the problem of
language evolution is identified or dealt with in other domains. In grammar evolution [20,23,40], the type/instance relation
is analogous to the meta-model element/instance relation. This type/instance relation is also present in programming
languages. In database schema evolution, database tables have to be migrated after a change in the database schema
[2,26,41]. In format evolution, formally specified documents (e.g., XML documents) must be migrated when their format
(e.g., specified in a DTD) changes [24,48].

Fig. 8. Modelling the life cycle of a syntactic notation: a simplified narration on top,
the baseline megamodel in the middle, instantiated megamodel with links to particular
artefacts at the bottom. Taken from [17, pages 2, 4, 10].

Zaytsev. Language Evolution, Metasyntactically. EC-EASST 49 (BX). 2012.

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 139

represented in a concrete modeling space representing meta-metamodels that should be
bridged. Examples include an XSLT that transforms a MOF XMI document into an EMF
XMI document, a set of Java classes that adapt JMI interfaces to EMF interfaces, and a
Java program that does a batch transformation from a JMI-based code to an EMF-based
one.

Figure 9 – A bridge between two conceptual spaces and its implementation in a concrete space

As Figure 9 shows explicitly, a single bridge models transformation between two
modeling spaces at layer M3, between meta-metamodels. Transformations between
metamodels situated in a single modeling space at M2 layer are internal to that modeling

Djurić, Gašević, Devedžić. The Tao of Modeling Spaces. JOT 5(8). 2006.

P.-A. Muller et al.

Fig. 7 Metamodel for
modeling

Fig. 8 Expressing a constraint over aspect weaving: independence of
weaving order

model, or from the program itself, which basically means that
the intention of ‘understanding the structure of that program’
can be shared between the model and the program. The figure
also shows that a UML class diagram and a Java skeleton can
be two different models of a thing, while being both written
in order to represent, analyze and understand the structure of
that thing.

On the concrete side, tools, such as model (metamodel)
repositories, could be extended by the intentional modeling
elements represented in Fig. 7, so as to capture, maintain and
check, intentional properties expressed against the artefacts
manipulated by these tools. As an example, let us consider
expressing intentional constraints over aspect weaving within
a model repository.

The model in Fig. 8 can be seen as the specification of a
constraint that the model repository may enforce. This con-
straint states that the order of aspect weaving (respectively,

weaving either first Aspect1 and then Aspect2 into the Base,
or the inverse, first Aspect2 and next Aspect1) shall not affect
the resulting intention. M’1 and M’2 have the same intention,
this is stated by the two enclosing same arrows.

The intentions of M1 and M2 extend the Base’s intention,
by incorporating intention carried, respectively, by Aspect1
and Aspect2. The intention of M1 (and M2) includes the
intention of the base: this is represented by a Super repre-
sentation relation. The intention of M1 (and M2) does not
completely include the intention of Aspect1 (respectively
Aspect2); M1 (and so M2) does not have to be an aspect
(for instance, it does not bear weaving information), this is
represented by a Sub representation relation. M1 (and M2)
is then further extended by M’1 (respectively, M’2). In the
end, M’1 and M’2 do have the same intention. This is stated
by a Same representation relation.

This constraint is not saying that the order in which
Aspect1 and Aspect2 are woven does not matter. It is stat-
ing that we are interested in preserving intention during the
weaving process, and that we are especially interested in the
fact that the weaving order will not affect the resulting inten-
tion. Thus, this is clearly the specification of a constraint.

As seen earlier, a tool could check such constraint. For
instance, if the content of intentions is detailed, then it is
possible to use the kind of Prolog clauses to check the pres-
ervation of the expected property in a model repository.

6 Examples

6.1 This is not a pipe

Let’s examine the already classic example inspired from
Magritte’s painting (Fig 9). The picture is a µα represen-

123

Muller, Fondement, Baudry, Combemale. Modeling Modeling Modeling. SoSyM 11(3). 2012.

StakeholdersSystem Concerns

Model Kinds

Architecture ModelsCorrespondence Rules

Architecture Framework

Viewpoints

Financial
viewpoint (FVP)

System
viewpoint (SVP)

Operational
viewpoint (OVP)

Views

Financial
view (FV)

System
view (SV)

Operational
view (OV)

NodeCheck

Users

Operators

Developers

Acquirers

Accountants

Investors

Owners

Maintainers

Return on
investment

Timely delivery
of sensor data

Understanding of
interactions between

system elements

Architecture Description

Correspondence

governs
governs

frames
frames

frames

SID model Kind TLD model KindCFS model Kind SCS Dataflow Collection TLD

NodeCheck: Weaving model of SCS
Dataflow and Collection TLD

SCS Profit Statement

Figure 2: Megamodel for the running example SBSCS

As conceptually highlighted in Section 3.1, we defined a number
of OCL constraints to help software architects in checking various
properties of the current architecture description. These OCL con-
straints are implemented as ATL queries since the whole MEGAF
tooling set is based on the AMMA platform (ATL is part of it as
well) and ATL provides a stable and intuitive implementation of
the OCL language; further on, ATL queries can be launched ei-
ther programmatically or via Ant scripts8. This results in a ho-
mogeneous framework to orchestrate, manage and configure such
queries within MEGAF.

The MEGAF tooling set can be extended: we provide an exten-
sion point to define how to import specific kinds of models into a
megamodel conforming to GMM4SA. For instance, a set of stake-
holders and concerns may be extracted from a stakeholder diagram,
or a set of decisions and rationales may be extracted from some
other Architecture Knowledge diagram, a specific model may be
extracted from an Excel sheet, and so on. In the SBSCS running
example, we implemented an extension of MEGAF that is able to
analyse a financial model in Excel and produce its corresponding
EMF model; this allows us to specify financial properties using Ex-
cel and consider this information in the megamodel of the SBSCS
architecture description.

4. CONCLUSION AND FUTURE WORK
This paper proposed MEGAF as an infrastructure for creating ar-

chitecture frameworks that can be used for realizing architecture
descriptions. MEGAF is realized via megamodeling techniques that
natively promote the reuse of each architectural element that re-
sides in MEGAF: a framework can be created by simply linking and
reusing existing elements or adding new ones if needed. MEGAF
and its features have been presented by means of a simple running
example.

For future work, we plan to investigate more powerful mecha-
nisms to support reuse: from the reuse of a framework to the reuse
of a single system concern. At the moment an artefact can be reused
as it is. Modifications can be made by hand, possibly starting from
a copy of the existing element. We are currently investigating au-
tomatic extension and customization mechanisms inspired by the
work presented in [3], which, by means of composition operators,
enables the customization and extension of ADLs.
8http://ant.apache.org

5. REFERENCES
[1] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez.

Modeling in the large and modeling in the small. In LNCS,
Vol. 3599, 2005.

[2] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley, 2003.

[3] D. Di Ruscio, I. Malavolta, H. Muccini, P. Pelliccione, and
A. Pierantonio. Developing next generation ADLs through
MDE techniques. In ICSE 2010, 2010.

[4] P. Eeles and P. Cripps. The Process of Software Architecting.
Addison Wesley, 2010.

[5] D. Emery and R. Hilliard. Every architecture description
needs a framework: Expressing architecture frameworks
using ISO/IEC 42010. In WICSA/ECSA 2009, 2009.

[6] C. Hofmeister, R. L. Nord, and D. Soni. Applied Software
Architecture. Addison-Wesley, 2000.

[7] IEEE. IEEE Std 1471, IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems,
October 2000.

[8] ISO. ISO/IEC CD1 42010, Systems and software engineering
— Architecture description (draft), January 2010.

[9] P. Kruchten, R. Capilla, and J. C. Dueñas. The decision
view’s role in software architecture practice. IEEE Software,
26(2):36–42, 2009.

[10] P. B. Kruchten. The 4+1 view model of architecture. IEEE
Software, 12(6), 1995.

[11] N. Medvidovic and R. N. Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE TSE, 26(1), 2000.

[12] D. E. Perry and A. L. Wolf. Foundations for the Study of
Software Architecture. SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.

[13] N. Rozanski and E. Woods. Software Systems Architecture:
Working With Stakeholders Using Viewpoints and
Perspectives. Addison-Wesley Professional, 2005.

[14] J. A. Zachman. A framework for information systems
architecture. IBM Systems Journal, 26(3), 1987.

308

Hilliard, Malavolta, Muccini, Pelliccione. Realizing Architecture Frameworks through
Megamodelling Techniques. ASE. 2010.

The upper frame uses the MegaL/yEd visual notation for megamodeling.

The lower frame shows linked artifacts of the product explained later in the paper.

Fig. 1. The linguistic architecture of a software product when displayed with the Me-
gaL/Explorer tool.

demo functionality (see Demo.cs) and applied to a specific company—the Acme
Corporation.7

The shown linguistic architecture describes artifacts as they arise during de-
velopment time and runtime together with the relationships regarding dataflow,
language membership, schema/type conformance, and correspondence. Charac-

7 http://en.wikipedia.org/wiki/Acme_Corporation

Favre, Lämmel, Varanovich. Modeling the Linguistic Architecture of Software Products. MoDELS. 2012.

Zaytsev, Bagge, Parsing in a Broad Sense, MoDELS 2014. p.50

Str

(string)

Tok

(tokens)

TTk

(typed tokens)

Lex

(lexical model)

For

(parse forest)

Ptr

(parse tree)

Cst

(concrete syntax tree)

Ast

(abstract syntax tree)

Pic

(rasterised picture)

Dra

(vector drawing)

Gra

(graph model)

Dia

(diagram)

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

d
i
s
a
m
b
i
g
u
a
t
e

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

structural editing

m

2

m

t

r

a

n

s

f

o

r

m

a

t

i

o

n

r

e

f

a

c

t

o

r

i

n

g

c

o

d

e

t

r

a

n

s

f

o

r

m

a

t

i

o

n

fi

l

t

e

r

i

n

g

d

r

a

w

i

n

g

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Bidirectional megamodel of parsing. Dotted lines denote mappings that rely on
either lexical or syntactic definitions; solid lines denote universally defined mappings.
The loops are examples of transformations.

4 Artefacts and Mappings

Let us first introduce the kinds of artefacts we will use for the remainder of the
paper:
• Str — a string.
• Tok — a finite sequence of strings (called tokens) which, when concatenated,

yields Str. Includes spaces, line breaks, comments, etc — collectively, layout.
• TTk — a finite sequence of typed tokens, with layout removed, some classified

as numbers of strings, etc.
• Lex — a lexical source model [28,29] that addes grouping to typing; in fact a

possibly incomplete tree connecting most tokens together in one structure.
• For — a forest of parse trees, a parse graph or an ambiguous parse tree

with sharing; a tree-like structure that models Str according to a syntactic
definition.

5

Baseline TS megamodel

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Zaytsev, Bagge, Parsing in a Broad Sense, MoDELS 2014. p.50

lex + yacc

cf. M. E. Lesk, LEX, 1975. // S. C. Johnson, YACC, 1975.

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

ANTLR

cf. Parr, Definitive ANTLR Reference, 2007.

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Rascal one-stop-shop

cf. Klint, van der Storm, Vinju, EASY Meta-programming with Rascal, GTTSE’09.

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Iterative lexical analysis

cf. Cox, Clarke, Syntactic Approximation Using Iterative Lexical Analysis, IWPC’03.

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

