
PARSING
in a

BROAD
SENSE

3.1 Two classes of parsing methods 117

3.1 Two classes of parsing methods

A parsing method constructs the syntax tree for a given sequence of tokens. Con-
structing the syntax tree means that a tree of nodes must be created and that these
nodes must be labeled with grammar symbols, in such a way that:

• leaf nodes are labeled with terminals and inner nodes are labeled with non-
terminals;

• the top node is labeled with the start symbol of the grammar;
• the children of an inner node labeled N correspond to the members of an alterna-

tive of N, in the same order as they occur in that alternative;
• the terminals labeling the leaf nodes correspond to the sequence of tokens, in the

same order as they occur in the input.

Left-to-right parsing starts with the first few tokens of the input and a syntax tree,
which initially consists of the top node only. The top node is labeled with the start
symbol.

The parsing methods can be distinguished by the order in which they construct
the nodes in the syntax tree: the top-down method constructs them in pre-order, the
bottom-up methods in post-order. A short introduction to the terms “pre-order” and
“post-order” can be found below. The top-down method starts at the top and con-
structs the tree downwards to match the tokens in the input; the bottom-up methods
combine the tokens in the input into parts of the tree to finally construct the top
node. The two methods do quite different things when they construct a node. We
will first explain both methods in outline to show the similarities and then in enough
detail to design a parser generator.

Note that there are three different notions involved here: visiting a node, which
means doing something with the node that is significant to the algorithm in whose
service the traversal is performed;traversing a node, which means visiting that node
and traversing its subtrees in some order; and traversing a tree, which means travers-
ing its top node, which will then recursively traverse the entire tree. “Visiting” be-
longs to the algorithm; “traversing” in both meanings belongs to the control mech-
anism. This separates two concerns and is the source of the usefulness of the tree
traversal concept. In everyday speech these terms are often confused, though.

3.1.1 Principles of top-down parsing

A top-down parser begins by constructing the top node of the tree, which it knows
to be labeled with the start symbol. It now constructs the nodes in the syntax tree
in pre-order, which means that the top of a subtree is constructed before any of its
lower nodes are.

When the top-down parser constructs a node, the label of the node itself is already
known, say N; this is true for the top node and we will see that it is true for all other
nodes as well. Using information from the input, the parser then determines the

Grune, van Reeuwijk, Bal, Jacobs, Langendoen, Modern Compiler Design, 2ed

3.1 Two classes of parsing methods 117

3.1 Two classes of parsing methods

A parsing method constructs the syntax tree for a given sequence of tokens. Con-
structing the syntax tree means that a tree of nodes must be created and that these
nodes must be labeled with grammar symbols, in such a way that:

• leaf nodes are labeled with terminals and inner nodes are labeled with non-
terminals;

• the top node is labeled with the start symbol of the grammar;
• the children of an inner node labeled N correspond to the members of an alterna-

tive of N, in the same order as they occur in that alternative;
• the terminals labeling the leaf nodes correspond to the sequence of tokens, in the

same order as they occur in the input.

Left-to-right parsing starts with the first few tokens of the input and a syntax tree,
which initially consists of the top node only. The top node is labeled with the start
symbol.

The parsing methods can be distinguished by the order in which they construct
the nodes in the syntax tree: the top-down method constructs them in pre-order, the
bottom-up methods in post-order. A short introduction to the terms “pre-order” and
“post-order” can be found below. The top-down method starts at the top and con-
structs the tree downwards to match the tokens in the input; the bottom-up methods
combine the tokens in the input into parts of the tree to finally construct the top
node. The two methods do quite different things when they construct a node. We
will first explain both methods in outline to show the similarities and then in enough
detail to design a parser generator.

Note that there are three different notions involved here: visiting a node, which
means doing something with the node that is significant to the algorithm in whose
service the traversal is performed;traversing a node, which means visiting that node
and traversing its subtrees in some order; and traversing a tree, which means travers-
ing its top node, which will then recursively traverse the entire tree. “Visiting” be-
longs to the algorithm; “traversing” in both meanings belongs to the control mech-
anism. This separates two concerns and is the source of the usefulness of the tree
traversal concept. In everyday speech these terms are often confused, though.

3.1.1 Principles of top-down parsing

A top-down parser begins by constructing the top node of the tree, which it knows
to be labeled with the start symbol. It now constructs the nodes in the syntax tree
in pre-order, which means that the top of a subtree is constructed before any of its
lower nodes are.

When the top-down parser constructs a node, the label of the node itself is already
known, say N; this is true for the top node and we will see that it is true for all other
nodes as well. Using information from the input, the parser then determines the

Grune, van Reeuwijk, Bal, Jacobs, Langendoen, Modern Compiler Design, 2ed

2 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

to DSMLs, where relatively frequent changes in the problem domain as well as in the implementation target domain (e.g.,
due to external technical or strategic decisions) must be reflected in the respective languages. This is to maintain the high
coupling between domain and language. The first problem is the need for rapid development techniques for DSMLs, as
they are created and modified frequently during the life cycle of the system they are used for. The second, and far greater
problem is that possibly large numbers of modelling artefacts such as instance models or transformation models developed
become invalid and unusablewhen a related DSML ismodified/evolved. Early adopters ofMDE andDSMdealt with language
evolution issues manually [43]. However, this approach, as well as an ad hoc approach to any language change, is tedious
and error-prone [49]. The reason for this is that syntax of languages such as UML [37] and BPMN [35], which have evolved
considerably over the last few years, easily comprise several hundreds of elements. Also, the semantic differences resulting
from this evolution, either intended or intentional, can be subtle. Hence, dealingwith evolution requires in-depth knowledge
of the language as a whole. Without a proper scientific foundation, as well as methods, techniques and tools to support
evolution, MDE in general and DSM in particular, cannot live up to its promise of ten-fold productivity increase [19]. This
becomes apparent when projects span longer periods of time [43]. Since the problem of modelling language evolution was
first identified by Sprinkle and Karsai [47], the general problem has only grown in importance, yet still remains largely
unsolved. The importance of modelling language evolution is further evidenced by the attention it receives in the research
community. The evolution of modelling languages is one of the 11 topics for paper submission at MODELS 2010 (ACM/IEEE
13th International Conference on Model Driven Engineering Languages and Systems), and workshops such as ME 2010
(International Workshop on Models and Evolution) are devoted largely to the topic. Current state-of-the-art contributions
in this field are focused on (semi-)automatic model differencing [6] and on the co-evolution of instance models [16].

The remainder of the paper is organised as follows: Section 2 is a short introduction to modelling languages. Section 3
discusses related work. Section 4 introduces an example that will be used to illustrate our approach throughout the paper.
Section 5 presents the possible kinds of evolution. Section 6 introduces a way to tackle evolution of modelling languages by
deconstructing the problem into primitives. Section 7 presents a framework and algorithm for the evolution of modelling
artefacts when languages evolve. Section 8 concludes the paper and describes future work.

2. Modelling languages

To allow for a precise discussion of language evolution, we briefly introduce fundamental modelling language concepts.
This introduction which we elaborated in [10] is based on foundations laid by Harel and Rumpe [13] and Kühne [21]. The
two main aspects of a model are its syntax (how it is represented) and its semantics (what it means).

Firstly, the syntax comprises concrete syntax and abstract syntax. The concrete syntax describes how the model is
represented (e.g., in 2D vector graphics or in textual form), which can be used for model input as well as for model
visualisation. The abstract syntax contains the ‘‘essence’’ of the model (e.g., as a typed Abstract Syntax Graph (ASG)—when
models are represented as graphs).

A single abstract syntax may be represented by multiple concrete syntaxes. There exists a mapping between a concrete
syntax and its abstract syntax, called the parsing function. There is also a mapping in the opposite direction, called
the rendering function. These are the concrete mapping functions. Mappings are usually implemented, or can at least be
represented, as model transformations. The abstract syntax and concrete syntax of a model are related by a surjective
homomorphic function that translates a concrete syntax graph into an abstract syntax graph.

Secondly, the semantics of a model are defined by a complete, total and unique semantic mapping function which maps
every abstract syntax model onto a single element in a semantic domain, such as Ordinary Differential Equations, Petri nets
[39], or a set of behaviour traces. These are domains with well-known and precise semantics. For convenience, semantic
mapping is usually performedon abstract syntax, rather than on concrete syntax directly.More explicitly, the abstract syntax
can be used as a basis for semantic anchoring [4].

A meta-model is a finite model that explicitly describes the abstract syntax and static semantics, which are statically
checkable, of a language. Dynamic semantics are not covered by the meta-model. The abstract syntax of a model can be
represented as a graph, where the nodes are elements of the language and the edges are relations between these elements,
and also elements of the language. Instance models of the language are said to conform to the meta-model of the language.
In [21], Kühne refers to this relation as linguistic instance of. The description of the abstract syntax is typically specified in
a modelling language such as UML Class Diagrams [34]. Static semantics can be described in a constraint language such as
the Object Constraint Language (OCL) [36]). Often, but not necessarily, the concrete syntax mapping is directly attached to a
meta-model, where every element of the concrete syntax can be explicitly traced back to its corresponding element of the
abstract syntax.

Fig. 1 shows the different kinds of relations involving a model m. Relations are visualised by arrows, ‘‘conforms to’’-
relationships are dotted arrows. The abstract syntax model m conforms to a meta-model MMLang , the explicit model of
the language Lang . There is a rendering function i between m and a concrete syntax i(m) model. The inverse of i is a
parsing function ⇡i so that ⇡i(i(m)) = m. The index i highlights the fact that multiple concrete representations may
be used. i(m) conforms to a meta-model MMCS_i , the explicit model of the concrete syntax language (such as the set of
all 2D vector graphics drawings). Semantics are described by the semantic mapping function [[.]], and maps m to a model
[[m]] in the semantic domain. This semantic domain is a different modelling language with its own syntax en semantics.
Similar to m conforming to MMLang , [[m]] conforms to MMSemDom. Additionally, transformations Tj may be defined for m.

Meyers, Vangheluwe, A framework for evolution of modelling languages, SCP.

2 B. Meyers, H. Vangheluwe / Science of Computer Programming () –

to DSMLs, where relatively frequent changes in the problem domain as well as in the implementation target domain (e.g.,
due to external technical or strategic decisions) must be reflected in the respective languages. This is to maintain the high
coupling between domain and language. The first problem is the need for rapid development techniques for DSMLs, as
they are created and modified frequently during the life cycle of the system they are used for. The second, and far greater
problem is that possibly large numbers of modelling artefacts such as instance models or transformation models developed
become invalid and unusablewhen a related DSML ismodified/evolved. Early adopters ofMDE andDSMdealt with language
evolution issues manually [43]. However, this approach, as well as an ad hoc approach to any language change, is tedious
and error-prone [49]. The reason for this is that syntax of languages such as UML [37] and BPMN [35], which have evolved
considerably over the last few years, easily comprise several hundreds of elements. Also, the semantic differences resulting
from this evolution, either intended or intentional, can be subtle. Hence, dealingwith evolution requires in-depth knowledge
of the language as a whole. Without a proper scientific foundation, as well as methods, techniques and tools to support
evolution, MDE in general and DSM in particular, cannot live up to its promise of ten-fold productivity increase [19]. This
becomes apparent when projects span longer periods of time [43]. Since the problem of modelling language evolution was
first identified by Sprinkle and Karsai [47], the general problem has only grown in importance, yet still remains largely
unsolved. The importance of modelling language evolution is further evidenced by the attention it receives in the research
community. The evolution of modelling languages is one of the 11 topics for paper submission at MODELS 2010 (ACM/IEEE
13th International Conference on Model Driven Engineering Languages and Systems), and workshops such as ME 2010
(International Workshop on Models and Evolution) are devoted largely to the topic. Current state-of-the-art contributions
in this field are focused on (semi-)automatic model differencing [6] and on the co-evolution of instance models [16].

The remainder of the paper is organised as follows: Section 2 is a short introduction to modelling languages. Section 3
discusses related work. Section 4 introduces an example that will be used to illustrate our approach throughout the paper.
Section 5 presents the possible kinds of evolution. Section 6 introduces a way to tackle evolution of modelling languages by
deconstructing the problem into primitives. Section 7 presents a framework and algorithm for the evolution of modelling
artefacts when languages evolve. Section 8 concludes the paper and describes future work.

2. Modelling languages

To allow for a precise discussion of language evolution, we briefly introduce fundamental modelling language concepts.
This introduction which we elaborated in [10] is based on foundations laid by Harel and Rumpe [13] and Kühne [21]. The
two main aspects of a model are its syntax (how it is represented) and its semantics (what it means).

Firstly, the syntax comprises concrete syntax and abstract syntax. The concrete syntax describes how the model is
represented (e.g., in 2D vector graphics or in textual form), which can be used for model input as well as for model
visualisation. The abstract syntax contains the ‘‘essence’’ of the model (e.g., as a typed Abstract Syntax Graph (ASG)—when
models are represented as graphs).

A single abstract syntax may be represented by multiple concrete syntaxes. There exists a mapping between a concrete
syntax and its abstract syntax, called the parsing function. There is also a mapping in the opposite direction, called
the rendering function. These are the concrete mapping functions. Mappings are usually implemented, or can at least be
represented, as model transformations. The abstract syntax and concrete syntax of a model are related by a surjective
homomorphic function that translates a concrete syntax graph into an abstract syntax graph.

Secondly, the semantics of a model are defined by a complete, total and unique semantic mapping function which maps
every abstract syntax model onto a single element in a semantic domain, such as Ordinary Differential Equations, Petri nets
[39], or a set of behaviour traces. These are domains with well-known and precise semantics. For convenience, semantic
mapping is usually performedon abstract syntax, rather than on concrete syntax directly.More explicitly, the abstract syntax
can be used as a basis for semantic anchoring [4].

A meta-model is a finite model that explicitly describes the abstract syntax and static semantics, which are statically
checkable, of a language. Dynamic semantics are not covered by the meta-model. The abstract syntax of a model can be
represented as a graph, where the nodes are elements of the language and the edges are relations between these elements,
and also elements of the language. Instance models of the language are said to conform to the meta-model of the language.
In [21], Kühne refers to this relation as linguistic instance of. The description of the abstract syntax is typically specified in
a modelling language such as UML Class Diagrams [34]. Static semantics can be described in a constraint language such as
the Object Constraint Language (OCL) [36]). Often, but not necessarily, the concrete syntax mapping is directly attached to a
meta-model, where every element of the concrete syntax can be explicitly traced back to its corresponding element of the
abstract syntax.

Fig. 1 shows the different kinds of relations involving a model m. Relations are visualised by arrows, ‘‘conforms to’’-
relationships are dotted arrows. The abstract syntax model m conforms to a meta-model MMLang , the explicit model of
the language Lang . There is a rendering function i between m and a concrete syntax i(m) model. The inverse of i is a
parsing function ⇡i so that ⇡i(i(m)) = m. The index i highlights the fact that multiple concrete representations may
be used. i(m) conforms to a meta-model MMCS_i , the explicit model of the concrete syntax language (such as the set of
all 2D vector graphics drawings). Semantics are described by the semantic mapping function [[.]], and maps m to a model
[[m]] in the semantic domain. This semantic domain is a different modelling language with its own syntax en semantics.
Similar to m conforming to MMLang , [[m]] conforms to MMSemDom. Additionally, transformations Tj may be defined for m.

Meyers, Vangheluwe, A framework for evolution of modelling languages, SCP.

Technological
Space

Megamodel

PARSING
in a

BROAD
SENSE

Bidirectional
Transformations

...in the paper

• recognising structure

• text → tree

• parse tree → AST

• forest disambiguation

• tokens → graph

Parsing

• representing structure

• model → picture

• ASG → text

• (re)formatting

• serialisation

Unparsing

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

S e p a r a t e t o k e n s

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

D e t a i l e d
p a r s e t r e e

S e p a r a t e t o k e n s

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

D e t a i l e d
p a r s e t r e e

S e p a r a t e t o k e n s

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

R a w t e x t

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLexP a r s e t r e e
w i t h o u t l a y o u t

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLexP a r s e t r e e
w i t h o u t l a y o u t

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex
A b s t r a c t

s y n t a x
t r e e

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex
A b s t r a c t

s y n t a x
t r e e

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex
A b s t r a c t

s y n t a x
t r e egraph

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

V i s u a l
m o d e l

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

B o x e s
&

a r r o w s

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

c o o r d i n a t e s

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

p i x e l s

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

f o r e s t

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex
t y p e d

t o k e n s

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

l e x i c a l
m o d e l

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLexlexical
model

typed
tokens

slices/
tokens

raw
string

forest

parse
graph

concrete
syntax

abstract
model

visual
diagram

graph
model

vector
drawing

raster
picture

Examples

Lifting & Lowering
Lowered Transformations

Ast Asttransform

Cst Cst

im
pl

od
e

transform

ex
pl

od
e

Ptr Ptr

st
rip

fo
rm

at

transform

Str Str

pa
rse

unparse

transform
Zaytsev & Bagge (UvA/UiB) Modelling Parsing and Unparsing 2014-09-14 7 / 10

cf. Zaytsev/Bagge, Modelling Parsing and Unparsing, Parsing@SLE, 2014.

Bidirectionality

⇌

Str B Ast discards those parts of the abstract syntax tree that do not corre-
spond to any fragments of the updated code, and recalculates all inferred
annotations for the fragments that are new. A truly e�cient implementation
of it would feature iterative parsing, for which an old instance of Ptr would
need to be stored as well.

AstBDra displays the abstract model of a program in such a way that all
already recognised elements are placed at their old positions, and the rest
are rendered by default.

DraB Ast checks if any parts of a model have been added or removed, recalcu-
lates annotations for added ones and disregards the parts of the Ast related
to the removed ones.

AstB Str unparses the abstract syntax tree by preserving the indentation of all
recognised fragments of the old code, and pretty-printing the rest.

The code has around 3000 line of documented code in Rascal [4], a functional
language for program analysis and transformation. It is released as open source
and is publicly available from a dedicated repository:
http://github.com/grammarware/bx-parsing.

4 Conclusion

Two practical cases of bidirectionalisation have been described in this abstract.
In §2, a convergence graph with nodes-grammars and edges-transformations was
bidirectionalised by iteratively adding more information to the transformations
until the mapping became bijective. In §3, bidirectional maintainers were imple-
mented as traversals of ADT instances operating on the result of the superposi-
tion of the existing unidirectional mappings and thus achieving preservation of
locally significant information while updating the changed fragments. The results
are of practical and engineering nature, but their generalisation may be useful
for systematic development of new methods of automated and semi-automated
bidirectionalisation in the future.

The source code of all discussed prototypes is released as open source through
two repositories referenced above. It mostly consists of documented Prolog [5]
and Rascal [4] code.

One of the open questions left unanswered is dealing with sustainers [12]
instead of maintainers: I: L⇥R ! L⇥R instead of B and J: L⇥R ! L⇥R

instead of C. The sustainers are much more interesting because they can model
error-correcting strategies. However, it is yet unclear how to prove termination
of the update strategy in the case of more than two instances (like in §3), which
is required for the general case of model synchronisation [2].

References

1. K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger. Bidirec-
tional Transformations: A Cross-Discipline Perspective. In Theory and Practice of
Model Transformations, pages 260–283. Springer, 2009.

P t r ’

Str

Tok

TTk

Lex

For

Ptr

Cst

Ast

Pic

Dra

Gra

Dia

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

fi
l
t
e
r

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

program restructuring

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Di↵erent approaches and phases of software language processing feature di↵erent
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a di↵erent entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation

P t r ’

cf. Zaytsev, Case Studies in Bidirectionalisation, TFP, 2014.

Renarration

Tok Ptr

For

CstTTk

Str Pic

Dra

Gra

DiaAstLex

cf. Zaytsev, Understanding Metalanguage Integration by Renarrating a Technical Space Megamodel, GEMOC, 2014.

Conclusion
• Contributions:

• BX framework classification/extension
• Megamodel for parsing (in a broad sense)

• Explain yourself
• Understand others
• Find new ground

• More:

• Usage: TFP’14, Parsing@SLE’14, GEMOC’14, EduSymp’14,…
• Reach us at: @grammarware, @anyahelene, #models14, …

• Questions?

• Photos are self-made; from PEXELS (CC0); by Eelco Visser (Jean Bézivin).

PARSING
in a

BROAD
SENSE

http://grammarware.net/writes/index.html#Bidirectionalisation2014
http://grammarware.net/writes/index.html#Modelling-Parsing2014
http://grammarware.net/writes/index.html#Renarration2014
http://grammarware.net/writes/#SLE-Courses2014
http://twitter.com/grammarware
http://twitter.com/anyahelene
https://twitter.com/search?f=realtime&q=%23models14&src=typd
http://pexels.com
http://creativecommons.org/publicdomain/zero/1.0/
https://www.flickr.com/photos/eelcovisser/4772370824/
http://grammarware.github.io/parsing/
http://twitter.com/anyahelene
http://twitter.com/anyahelene
http://twitter.com/anyahelene
http://twitter.com/anyahelene
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware
http://twitter.com/grammarware

