on - -
Software Language Evolution
Vadim Zaytsev

Universiteit van A_mste rdam
NLFP 2014

Je 30 Je . (30, - .

30 -

~ Introduction

Universiteit van Amsterdam

(2013—2014)-

Centrum Wiskunde &
Informatica (2010—2013)

‘Universitit Koble nz-Landau
- (2008-2010)

Vrije Universiteit Amsterdam
(2004-2008)

U niversiteit Twente

(2002—2004)

R.os_tov State University
(1998-2003)

- Vadim Zaytsev

30 SRR .‘ Be - (3, - Be.

@0

Haskell

(2013—2014)-

‘Rascal
(2010-2013)

Prolog - ,

(2008-2010)

Smalltalk
(2004-2008)

XSET: =
(2002—2004)

Python '

(1998—2003)

~ Introduction

~Vadim Zaytsev

_ ~-Partl .
~ SLE background

‘Software Lan

S Programming languages

® Functional languages

guages

1977 ACM Turing Award Lecture

The 1977 ACM Turing Award was presented to John Backus
at the ACM Annual Conference in Seattle, October 17. In intro-
ducing the recipient, Jean E. Sammet, Chairman of the Awards
Committee, made the following comments and read a portion of
the final citation. The full announcement is in the September
1977 issue of Communications, page 681.

“Probably there is nobody in the room who has not heard of
Fortran and most of you have probably used it at least once, or at
least looked over the shoulder of someone who was writing a For-
tran program. There are probably almost as many people who
have heard the letters BNF but don’t necessarily know what they
stand for. Well, the B is for Backus, and the other letters are
explained in the formal citation. These two contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer field and both were made by John
Backus (which in the Fortran case also involved some col-
leagues). It is for these contributions that he is receiving this
year’s Turing award.

The short form of his citation is for ‘profound, influential,
and lasting contributions to the design of practical high-level
programming systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.’

The most significant part of the full citation is as follows:

‘. . . Backus headed a small IBM group in New York City
during the early 1950s. The earliest product of this group’s
efforts was a high-level language for scientific and technical com-

putations called Fortran. This same group designed the first
system to translate Fortran programs into machine language.
They employed novel optimizing techniques to generate fast
machine-language programs. Many other compilers for the lan-
guage were developed, first on IBM machines, and later on virtu-
ally every make of computer. Fortran was adopted as a U.S.
national standard in 1966.

During the latter part of the 1950s, Backus served on the
international committees which developed Algol 58 and a later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as a means for de-
veloping programs and as a formal means of publishing the
algorithms on which the programs are based.

In 1959, Backus presented a paper at the UNESCO confer-
ence in Paris on the syntax and semantics of a proposed inter-
national algebraic language. In this paper, he was the first to
employ a formal technique for specifying the syntax of program-
ming languages. The formal notation became known as BNF—
standing for “Backus Normal Form,” or “Backus Naur Form” to
recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of problem-solving on computers and to the theoretical
world existing at the interface between artificial languages and
computational linguistics. Fortran remains one of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal syntactic definition.’ ™

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM’s copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author’s address: 91 Saint Germain Ave., San Francisco, CA
94114.
© 1978 ACM 0001-0782/78/0800-0613 $00.75

613

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

Communications August 1978

of Volume 21
the ACM Number 8

e

v

D
»

|

2a N Y

\J -

€ o6

PR R P

A}
L.~\l — \" »“""
LI 1‘}"
IV LA
~1r2fan
daldlLlV

\ |
- ¢

|

~
4
1

v ——-«v\ . ﬁ\ = \ ’/‘-«4; /N\ y a—
Il 1 A VU’ N
B 1 < Y
D &

pdflatex paper

bibtex paper

pdflatex -interaction=batchmode paper
pdflatex -interaction=batchmode paper
open paper.pdf

rebuild:
clean
chapterl
chapter3
chapter4
chapter5
chaptero6
build

clean:
rm -f *~ * aux *.bbl *.blg *.1lo? *.toc
*.brf xbgf.tex

~ Software Languages

® Programming languages
S Fu'nctional languages
® Declarative languages

2 Modelling languages

http://en.wikipedia.org/wiki/File:Common_Base amplifier.png

http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png
http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png

e

e

~ Software Languages

<?xml version="1.0"

Programming languages <IDOCTYPE html PUBLI
o o B <html xmlns="http://www.ws
Functional languages <head><title>XYZ</title>
| : </head>
Declarative languages <body>
; | <p>
Modelling languages | voluptatem accusantium do
ik (totam rem aperiam eaque
Markup languages </p>
| </body>
</html>

XEREME

http://cdmmons.wikimedia.org/wiki/File:XHTML.svg
‘ http://en.wikipedia.org/wiki/File:Common_Base amplifier.png

http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png
http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png
http://commons.wikimedia.org/wiki/File:XHTML.svg
http://commons.wikimedia.org/wiki/File:XHTML.svg

Software Language Evolution

S Language — next version
* more features
S backward compat_ibility
2 DSL - DSL '
S typiéally developed iteratively

® feedback from client, performance, etc

Software Language Evolution

® Language — language dialect
® some features added, others blocked
® possibly concrete syntax deviation

® Language description — technology-specific one
S esp. parsing techniques

® Language — language replication

S compatibility

Grammar (in a broad sense)

® Definition of a software language

% Commitment to structure

® Differentiates between ‘correct’ and ‘incorrect’
S Comes in various flavours

S parser specs, metamodels; class diagrams,
(G)ADTs, XML schemata, ontologies, protocols,
APls, documentation, ...

* A finite definition of a (possibly) infinite language

Grammar (in a broad sense)

$ Nonterminals (syntaétic.categories)
 Terminals (atomic symbols)

S Labels, markers, groups

S Repetitions (2, +, %, seplists)

® Disjunction (conjunction, negation)

® Equivalence problem is undecideable

~ Grammar example (ADT)

= Types.hs — haskell UNREGISTERED
'mgﬁgm {-# OPTIONS -fglasgow-exts #-}
e e
S Data.Generics
Eﬁimg Function = Function Name [Name] Expr

TraversalLib.hs

(Eq,Show,Typeable,Data)
Name String
EXpr
Literal Int
Argument Name
Binary Ops Expr Expr
IfThenElse Expr Expr Expr
Apply Name [Expr]
(Eq,Show, Typeable,Data)
Ops= Equal Plus | Minus
(Eq,Show, Typeable,Data)

Line 7, Column 1 Tab Size: 4 Haskell

~ Grammar example (ADT)

Function ::= [Function]::(Name Name* Expr);

Name ::

String;
Expr ::= [Literal]::Int
Argument] : :Name
Binary]::(Ops Epr Expr)
IfThenElse]: :(Expr Expr Expr)
Apply]::(Name Expr*);

Ops ::= [Equal]::e | [Plus]::e | [Minus]: :¢;

Haskell

_ ~ Partll
~ Imperative View

Imperatwe view -
on software language evolutlon .

| Grammar I Bl & Grammar 2

Imperative example
~ James Gosling * Bill Joy * Guy Steele

The Java™ Language
Specification

Imperative example

James Gosling + Bill Joy * Guy Steele + Gilad Bracha

The Java Language
Specification
Second Edition

Imperative example

James Gosling * Bill Joy * Guy Steele « Gilad Bracha

The Java' Language
Specification,
Third Edition

~ Imperative example

James Gosling - ill oy - Guy Stele - Gilad Bracha e —

James Gosling ¢ Bill Joy « Guy Steele « Gilad Bracha

James Gosling ¢ Bill Joy * Guy Steele

The Java' Language
The Java™ Language Spedification The Java’ Language

ege g Specification,
Specification Second Edition Third Edition

The Java’ Series =

17 gy -
N e B B
N e Py |
> s F |
7 AR |
e
AN 7 1N
=
-4
)
4L
\

Y
“ A
N

R. Lammel,V. Zaytsev, Recovering Grammar Relationships for the Java Language Specification. SQJ, 201 I.

http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23JLS-SQJ2011

Grammar differences

intended vs. accidental

result of grammar adaptation

reéult of grammar'evolution_ .
idiosyncrasies thanks to metanotation
idiosyncrasiés thanks to. parsing technology
presentatio_n and understandability

misspelling

sere

_ ~ Part Il
~ Declarative View

_ Declaratwe view
on software language evolutlon

Transformation

_ Declaratwe view
on software language evolutlon

Transformation

_ Declaratwe view
on software language evolutlon

Transformation

‘Declarative example

expr: ...

e expr : ID;
atom : ID | INT | (expr) i N
EXPL . expr:...;
atom:ID | INT | expr; expr : ID;
| expr: INT;

expr: ..; expr : expr;

atom : ID;

atom : INT;

atom : expr;
R. Lammel,V. Zaytseyv, An Introduction to Grammar Convergence. IFM 2009, LNCS 5423.

http://grammarware.net/writes/%23Convergence2009
http://grammarware.net/writes/%23Convergence2009

I ' ' jls3 | read12 | read123 || Total l
o rename 10 2 36 ;

|
i o reroot 2
I

o unfold 13

| o fold 13

i o inline 100
o extract 30
. o chain —
o massage 82
i o distribute 6

o factor 24
o deyaccify 38
o yaccify 1

o eliminate 29
o introduce 13
o import —
o vertical 09
o horizontal 31
o add 20
o appear 25
o widen 8

o upgrade 20
O unite 21
o remove 18
o disappear 11 — — 33

SRS

250 i
7’5 5

70
18 |
44
87

46
34 85

b asuiletint Al abint sndaml

8 62
4 84
103

St taniils

s S a 8

| mw~w§-&m| uo|
)
S

S Con e M B e A

i t o narrow 4 — — 5 .
' t o downgrade 3 — — 13 | .
1 o define 9 1 6 26 1
' o undefine 3 - - 11 {
E o redefine i 6 2 26 i
' o inject 4) 1 7
| o project 2 — — 4 I

o replace 6 1 1 17 |

o unlabel e A 5 5 . |

, . B e e O e s T e TR e S e DT b ey : . . o b . g e T v '
e LA N L e A P 2 R L el) P v Pt S v T e v Ly 0 B WA P o P DA P | A A Y s L T P o et e i A 2 A el ST R B A T e W dm e Pl A Y e WP APl e Y A o o R PP Y W W I e A N W o S e T

‘Grammar mutations

distribute - DistributeAll
eliminate - EliminateTop =~

concatT ~ ConcatAllT

inline - InlinelLazy

renaméN — RenameNUpperDash2CamelNone

define - DefineAll([pil)

V. Zaytseyv, Software Language Engineering by Intentional Rewriting. SQM 20 14.

http://grammarware.net/writes/%23SLEIR2014
http://grammarware.net/writes/%23SLEIR2014

_ - Part IV
Imperative vs Declarative

Imperative View on Evolution

S Easy to use

S no extra effort required

® no additional languages involved
S No intention tracked

S what actually changed?

® what changed conceptually?

S why was it changed?

Declarative View on Evolution

S Hard to use
S tedious to specify each change
S need to learn/develop a new language
S Transformations are first class entities
S can be saved, documented, reused, rerun
S can be inspected without execution

€ can be transformed on its own

Bridging/mapping
Both approachés have (dis)advantages

Declarative — imperative

S easy, if the input is given

Imperative = declarative

® need a special ‘grammar differ’

Equality-based differ

Equivalence as equality -

Ndminal differences

A A =X Y7 S BIE XN
Structural differences
"’_A::='XYZ; A:=X Z

Deliberately limited comparator is useful

Hamming-based differ

% Resolves structural differences
S Seeks/counts required substitutions

% Yields good results if the transformation suite is

S replace

R.W. Hamming, “Error Detecting And Error Correcting Codes”,
Bell System Technical Journal 29 (2): 147—160, MR 0035935. |1950.

‘Levenshtein-based differ

® Resolves structural differences
® Seeks/counts required single-symbol edits

% Yields good results if the transformation suite is
® replace
® permute

® . . .
® 1nject, project
V.|l. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and Reversals,’
Soviet Physics Doklady, vol. 10, no. 8, pp. 707710, 1966.

Convergence-based differ

‘Cheats’ on undecidability by involving a human
Do a stupid comparison ' .
Report a mismatch
Let a humah encode it.as transformation
& _..in a possibly sophisticated framework

Repeat until equal/equivalent

R. Lammel,V. Zaytseyv, An Introduction to Grammar Convergence. IFM 2009, LNCS 5423.

http://grammarware.net/writes/%23Convergence2009
http://grammarware.net/writes/%23Convergence2009

Grammar convergence

source source -
grammar grammar
target
grammar

=BGF —
source source
| grammar grammar

V. Zaytsev, Language Evolution, Metasyntactically. EC-EASST 49, 2012.

XBGF

http://grammarware.net/writes/%23Metasyntactically2012
http://grammarware.net/writes/%23Metasyntactically2012

Signature-based differ

® Heuristic-based human emulator
S Powerful enough for typical local changes

S Case study with IT grammars:

S Rascal ADT, ANTLR spec, Prolog DCG, Ecore EMF,
JAXB model, Java object model, Rascal syntax def,
Python parser, SDF def, TXL def, XML schema

V. Zaytsev, Guided Grammar Convergence. SLE Poster, CEUR, 201 3.

http://grammarware.net/writes/%23Guided2013
http://grammarware.net/writes/%23Guided2013

7.3 Grammar in ANF

Production rule Production signature
“ FLPrg,+(FLFun)) {{FLFun,*)}
) FLFun,seq ([str, *(str), FLEzpr])) {(str,1x), (FLEzpr,1)}
. FLExpr, FLExpry) {{(FLExpr;,1)}
. FLExpr, FLExprs) {{FLExprs,1)}
“ FLEzxpr, FLExprs) {(FLEzxprs,1)}
) FLExpr, str) {(str,1)}
. FLExpr,int) {(int, 1)}
. FLEzpry,seq ([FLEzpr, FLOp, FLEzpr])) {{FLOp,1),{FLExpr,11)}
' FLExprs,seq ([str, *(FLExpr))])) {{(str,1), (FLExpr, %)}
. FLExprs,seq ([FLExpr, FLEzpr, FLEzpr])) {{FLExpr,111)}

ioliclclucRuclclucRucRucNe

NN NSNS\ SN NN,

7.4 Nominal resolution

Production rules are matched as follows (ANF on the left, master grammar on the right):

p (', FLPrg,«(FLFun)) p (', program, +(function))
p (', FLFun,seq ([str, *(str) , FLEzpr])
p (", FLEzpr, FLEzpr;
p (', FLExpr, FLExprs
p (', FLEzpr, FLEzprs

p (', function, seq ([str, +(str) , expression]))
, expression, binary)
, expression, apply)

, expression, conditional)

p (', FLExpr,int

p (', FLExpr;,seq ([FLExpr, FLOp, FLExpr])

p (“, FLExprs,seq ([str, *(FLEzpr)])

p (', FLExprs,seq ([FLExpr, FLEzpr, FLEzpr])

, ETPTESSION, int)
, binary, seq ([expression, operator, expression]))

, apply, seq ([str, +H expression)]))
, conditional, seq ([expression, expression, expression)))

)
)
)
)
p (', FLExpr, str) , ETPTeEesSsion, str)
)
)
)
)

V. Zaytsev, Guided Grammar Convergence. arXiv:1207.6541v| [cs.PL]. 2012.

http://grammarware.net/writes/%23Guided2012
http://grammarware.net/writes/%23Guided2012

Acceptance-based differ

Take recognisers of different nonterminals
If they accept the same language,
S assume them equivalent

Easily generalisable for partial matches

B. Fischer, R. Lammel,V. Zaytsev, Comparison of Context-free Grammars Based on Parsing
Generated Test Data SLE 201 |, LNCS 6940.2012

http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012

- Acceptance-based differ

B. Fischer, R. Lammel,V. Zaytsev, Comparison of Context-free Grammars Based on Parsing
Generated Test Data SLE 201 |, LNCS 6940.2012

http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012
http://grammarware.net/writes/%23TestMatch2012

Conclusion

LRAMMARLIE

S Based on several years of published research

S and several yvears of hacking 1.
(Rascal, Prolog, Python, Haskell, XSLT, ...)

S Made at CWI (Centrum Wiskunde & Informatica)
S Also presented as a tutorial at MoDELS 2013

S http://grammarware.github.iollab

http://grammarware.github.io/lab/
http://grammarware.github.io/lab/

oo ~NOYT UL H WN =

NINNNNNNNNNRRRRRRRRE R
WO NOUMDWNRPSOSWOWORNOULDE WNES

ﬁnclude Iproject://grammarlab/zoo/csharp/ecma-334-1.gluel.
DeYaccifyAll.

UnchainAll

InlinePlus

inline using-alias-directive.

LI | n.n

inline using-namespace-directive.

factor ("using" identifier "=" namespace-or-type-name ";" | "using" namespace-name ";")
to ("using" (namespace-name | identifier "=" namespace-or-type-name) ";"
in using-directive.

extract
using-directive-insides ::= namespace-name | (identifier
globally.

inline using-directive.

splitT ",]" into "," "]" in global-attribute-section.

factor
("[" global-attribute-target-specifier attribute-list "]"
| "[" global-attribute-target-specifier attribute-list "," "]")

to ("[" global-attribute-target-specifier (attribute-list | attribute-list ",") "]1")
in global-attribute-section.

inline global-attribute-target-specifier.

inline global-attribute-target.

extract global-attribute-section-insides ::= attribute-list | attribute-list ","; globally.

inline class-declaration.

inline struct-declaration.

inline interface-declaration.

inline enum-declaration.

inline delegate-declaration.

rename class-modifier to modifier globally.

unite struct-modifier with modifier.

namespace-or-type-name);

- Imperative vs Declarative

S Evolution is a thing '
S Imperative is easy and weak
S Declarative is complex and powerful '
% ldeally, we want easy + support
% various approaches

S Vadim Zaytsev, http://grammarware.net

® Questions?

http://grammarware.net
http://grammarware.net

