
C A S E S T U D I E S I N
B I D I R E C T I O N A L I S A T I O N ⇌
1 5 T H I N T L . S Y M P O S I U M O N T R E N D S I N F U N C T I O N A L P R O G R A M M I N G

V A D I M Z A Y T S E V A . K . A . @ G R A M M A R W A R E

http://grammarware.net
http://ivi.uva.nl/
http://github.com/grammarware/bx-parsing

B I D I R E C T I O N A L
T R A N S F O R M A T I O N S

P A R T 1 O F 3

f

F R O M F P T O B X : U N I D I R E C T I O N A L

f

F R O M F P T O B X : U N I D I R E C T I O N A L

f

F R O M F P T O B X : U N I D I R . P A I R

f

→

←

�

F R O M F P T O B X : L E N S

↘

F R O M F P T O B X : S Y N C H R O N I S E R

F R O M F P T O B X : S U S T A I N E R

F R O M F P T O B X : S U S T A I N E R

B I D I R E C T I O N A L I S A T I O N

M A K E O R I N F E R B X F R O M F P

G R A M M A R
T R A N S F O R M A T I O N S

P A R T 2 O F 3

G R A M M A R T R A N S F O R M A T I O N S

expr : …;
atom : ID | INT | '(' expr ')';

expr : …;
atom : ID;
atom : INT;
atom : expr;

expr : …;
expr : ID;
expr : INT;
expr : expr;

expr : …;
expr : ID;
expr : INT;

expr : …;
atom : ID | INT | expr;

abstractize

vertical unite

abridge

R. Lämmel, V. Zaytsev, An Introduction to Grammar Convergence. IFM 2009, LNCS 5423.

http://grammarware.net/writes/#Convergence2009

I N G R A M M A R L A B :

importG	
	 expr ::= atom "+" expr;	
	 atom ::= ID | INT | "(" expr ")";	
.	
abstractize atom ::= ID | INT | <>:"(" expr <>:")"; .	
vertical in atom.	
unite atom with expr.	
abridge expr ::= expr; .

G R A M M A R T R A N S F O R M A T I O N S

expr : …;
atom : ID | INT | '(' expr ')';

expr : …;
atom : ID;
atom : INT;
atom : expr;

expr : …;
expr : ID;
expr : INT;
expr : expr;

expr : …;
expr : ID;
expr : INT;

expr : …;
atom : ID | INT | expr;

abstractize
concretize

vertical
horizontal

unite

abridge
detour

R. Lämmel, V. Zaytsev, An Introduction to Grammar Convergence. IFM 2009, LNCS 5423.

http://grammarware.net/writes/#Convergence2009

M I N I - L E N S I N A C T I O N

S A M E P R O B L E M S W I T H…

• eliminate

• introduce what?

• inline

• extract what?

• unlabel

• designate what?

• etc

P A R S I N G & U N P A R S I N G
P A R T 3 O F 3

(U N) P A R S I N G

• Parsing: recognising structure

• text → tree
• parse tree → AST
• disambiguation of trees/forests
• tokeniser vs. scannerless

• Unparsing: representing structure

• model → picture
• tree → text
• (re)formatting
• serialisation

Bagge, Zaytsev, Parsing in a Broad Sense, submitted to MoDELS 2014.

http://grammarware.net/writes/#Parsing2014

Str

Tkl

Tok

Lex

For

Ptr

Cst

Ast

Pic

Dra

Gra

Fig

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

fi
l
t
e
r

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

program restructuring

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Di↵erent approaches and phases of software language processing feature di↵erent
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a di↵erent entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation

Str

Tkl

Tok

Lex

For

Ptr

Cst

Ast

Pic

Dra

Gra

Fig

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

fi
l
t
e
r

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

program restructuring

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Di↵erent approaches and phases of software language processing feature di↵erent
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a di↵erent entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation

Str

Tkl

Tok

Lex

For

Ptr

Cst

Ast

Pic

Dra

Gra

Fig

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

fi
l
t
e
r

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

program restructuring

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Di↵erent approaches and phases of software language processing feature di↵erent
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a di↵erent entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation

Str

Tkl

Tok

Lex

For

Ptr

Cst

Ast

Pic

Dra

Gra

Fig

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

fi
l
t
e
r

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

program restructuring

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Di↵erent approaches and phases of software language processing feature di↵erent
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a di↵erent entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation

Str

Tkl

Tok

Lex

For

Ptr

Cst

Ast

Pic

Dra

Gra

Fig

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

fi
l
t
e
r

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

program restructuring

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Di↵erent approaches and phases of software language processing feature di↵erent
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a di↵erent entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation

Str

Tkl

Tok

Lex

For

Ptr

Cst

Ast

Pic

Dra

Gra

Fig

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

fi
l
t
e
r

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

program restructuring

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Di↵erent approaches and phases of software language processing feature di↵erent
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a di↵erent entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation

D r a ’⇌
Str B Ast discards those parts of the abstract syntax tree that do not corre-

spond to any fragments of the updated code, and recalculates all inferred
annotations for the fragments that are new. A truly e�cient implementation
of it would feature iterative parsing, for which an old instance of Ptr would
need to be stored as well.

AstBDra displays the abstract model of a program in such a way that all
already recognised elements are placed at their old positions, and the rest
are rendered by default.

DraB Ast checks if any parts of a model have been added or removed, recalcu-
lates annotations for added ones and disregards the parts of the Ast related
to the removed ones.

AstB Str unparses the abstract syntax tree by preserving the indentation of all
recognised fragments of the old code, and pretty-printing the rest.

The code has around 3000 line of documented code in Rascal [4], a functional
language for program analysis and transformation. It is released as open source
and is publicly available from a dedicated repository:
http://github.com/grammarware/bx-parsing.

4 Conclusion

Two practical cases of bidirectionalisation have been described in this abstract.
In §2, a convergence graph with nodes-grammars and edges-transformations was
bidirectionalised by iteratively adding more information to the transformations
until the mapping became bijective. In §3, bidirectional maintainers were imple-
mented as traversals of ADT instances operating on the result of the superposi-
tion of the existing unidirectional mappings and thus achieving preservation of
locally significant information while updating the changed fragments. The results
are of practical and engineering nature, but their generalisation may be useful
for systematic development of new methods of automated and semi-automated
bidirectionalisation in the future.

The source code of all discussed prototypes is released as open source through
two repositories referenced above. It mostly consists of documented Prolog [5]
and Rascal [4] code.

One of the open questions left unanswered is dealing with sustainers [12]
instead of maintainers: I: L⇥R ! L⇥R instead of B and J: L⇥R ! L⇥R

instead of C. The sustainers are much more interesting because they can model
error-correcting strategies. However, it is yet unclear how to prove termination
of the update strategy in the case of more than two instances (like in §3), which
is required for the general case of model synchronisation [2].

References

1. K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger. Bidirec-
tional Transformations: A Cross-Discipline Perspective. In Theory and Practice of
Model Transformations, pages 260–283. Springer, 2009.

Str

Tkl

Tok

Lex

For

Ptr

Cst

Ast

Pic

Dra

Gra

Fig

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

fi
l
t
e
r

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

program restructuring

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Di↵erent approaches and phases of software language processing feature di↵erent
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a di↵erent entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation

A s t ’
⇌

Str B Ast discards those parts of the abstract syntax tree that do not corre-
spond to any fragments of the updated code, and recalculates all inferred
annotations for the fragments that are new. A truly e�cient implementation
of it would feature iterative parsing, for which an old instance of Ptr would
need to be stored as well.

AstBDra displays the abstract model of a program in such a way that all
already recognised elements are placed at their old positions, and the rest
are rendered by default.

DraB Ast checks if any parts of a model have been added or removed, recalcu-
lates annotations for added ones and disregards the parts of the Ast related
to the removed ones.

AstB Str unparses the abstract syntax tree by preserving the indentation of all
recognised fragments of the old code, and pretty-printing the rest.

The code has around 3000 line of documented code in Rascal [4], a functional
language for program analysis and transformation. It is released as open source
and is publicly available from a dedicated repository:
http://github.com/grammarware/bx-parsing.

4 Conclusion

Two practical cases of bidirectionalisation have been described in this abstract.
In §2, a convergence graph with nodes-grammars and edges-transformations was
bidirectionalised by iteratively adding more information to the transformations
until the mapping became bijective. In §3, bidirectional maintainers were imple-
mented as traversals of ADT instances operating on the result of the superposi-
tion of the existing unidirectional mappings and thus achieving preservation of
locally significant information while updating the changed fragments. The results
are of practical and engineering nature, but their generalisation may be useful
for systematic development of new methods of automated and semi-automated
bidirectionalisation in the future.

The source code of all discussed prototypes is released as open source through
two repositories referenced above. It mostly consists of documented Prolog [5]
and Rascal [4] code.

One of the open questions left unanswered is dealing with sustainers [12]
instead of maintainers: I: L⇥R ! L⇥R instead of B and J: L⇥R ! L⇥R

instead of C. The sustainers are much more interesting because they can model
error-correcting strategies. However, it is yet unclear how to prove termination
of the update strategy in the case of more than two instances (like in §3), which
is required for the general case of model synchronisation [2].

References

1. K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger. Bidirec-
tional Transformations: A Cross-Discipline Perspective. In Theory and Practice of
Model Transformations, pages 260–283. Springer, 2009.

Str B Ast discards those parts of the abstract syntax tree that do not corre-
spond to any fragments of the updated code, and recalculates all inferred
annotations for the fragments that are new. A truly e�cient implementation
of it would feature iterative parsing, for which an old instance of Ptr would
need to be stored as well.

AstBDra displays the abstract model of a program in such a way that all
already recognised elements are placed at their old positions, and the rest
are rendered by default.

DraB Ast checks if any parts of a model have been added or removed, recalcu-
lates annotations for added ones and disregards the parts of the Ast related
to the removed ones.

AstB Str unparses the abstract syntax tree by preserving the indentation of all
recognised fragments of the old code, and pretty-printing the rest.

The code has around 3000 line of documented code in Rascal [4], a functional
language for program analysis and transformation. It is released as open source
and is publicly available from a dedicated repository:
http://github.com/grammarware/bx-parsing.

4 Conclusion

Two practical cases of bidirectionalisation have been described in this abstract.
In §2, a convergence graph with nodes-grammars and edges-transformations was
bidirectionalised by iteratively adding more information to the transformations
until the mapping became bijective. In §3, bidirectional maintainers were imple-
mented as traversals of ADT instances operating on the result of the superposi-
tion of the existing unidirectional mappings and thus achieving preservation of
locally significant information while updating the changed fragments. The results
are of practical and engineering nature, but their generalisation may be useful
for systematic development of new methods of automated and semi-automated
bidirectionalisation in the future.

The source code of all discussed prototypes is released as open source through
two repositories referenced above. It mostly consists of documented Prolog [5]
and Rascal [4] code.

One of the open questions left unanswered is dealing with sustainers [12]
instead of maintainers: I: L⇥R ! L⇥R instead of B and J: L⇥R ! L⇥R

instead of C. The sustainers are much more interesting because they can model
error-correcting strategies. However, it is yet unclear how to prove termination
of the update strategy in the case of more than two instances (like in §3), which
is required for the general case of model synchronisation [2].

References

1. K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger. Bidirec-
tional Transformations: A Cross-Discipline Perspective. In Theory and Practice of
Model Transformations, pages 260–283. Springer, 2009.

Str

Tkl

Tok

Lex

For

Ptr

Cst

Ast

Pic

Dra

Gra

Fig

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

fi
l
t
e
r

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

program restructuring

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Di↵erent approaches and phases of software language processing feature di↵erent
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a di↵erent entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation

A s t ’⇌

Str

Tkl

Tok

Lex

For

Ptr

Cst

Ast

Pic

Dra

Gra

Fig

t
o
k
e
n
i
s
e

c
o
n
c
a
t

s
t
r
i
p

f
o
r
m
a
t

parse

unparse

parse

unparse

s
t
r
i
p

f
o
r
m
a
t

i
m
p
l
o
d
e

e
x
p
l
o
d
e

fi
l
t
e
r

r
e
c
o
g
n
i
s
e

r
e
n
d
e
r

s
t
r
i
p

f
o
r
m
a
t

e
x
t
r
a
c
t

fl
a
t
t
e
n

scannerless parse

unparse

visualise

serialise

m
2
m

t

e

x

t

e

d

i

t

i

n

g

program restructuring

v

i

s

u

a

l

e

d

i

t

i

n

g

R

a

w

L

a

y

o

u

t

L

a

y

o

u

t

l

e

s

s

A

b

s

t

r

a

c

t

Textual Structured Graphical

Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Di↵erent approaches and phases of software language processing feature di↵erent
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a di↵erent entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation

P t r ’ ⇌

Str B Ast discards those parts of the abstract syntax tree that do not corre-
spond to any fragments of the updated code, and recalculates all inferred
annotations for the fragments that are new. A truly e�cient implementation
of it would feature iterative parsing, for which an old instance of Ptr would
need to be stored as well.

AstBDra displays the abstract model of a program in such a way that all
already recognised elements are placed at their old positions, and the rest
are rendered by default.

DraB Ast checks if any parts of a model have been added or removed, recalcu-
lates annotations for added ones and disregards the parts of the Ast related
to the removed ones.

AstB Str unparses the abstract syntax tree by preserving the indentation of all
recognised fragments of the old code, and pretty-printing the rest.

The code has around 3000 line of documented code in Rascal [4], a functional
language for program analysis and transformation. It is released as open source
and is publicly available from a dedicated repository:
http://github.com/grammarware/bx-parsing.

4 Conclusion

Two practical cases of bidirectionalisation have been described in this abstract.
In §2, a convergence graph with nodes-grammars and edges-transformations was
bidirectionalised by iteratively adding more information to the transformations
until the mapping became bijective. In §3, bidirectional maintainers were imple-
mented as traversals of ADT instances operating on the result of the superposi-
tion of the existing unidirectional mappings and thus achieving preservation of
locally significant information while updating the changed fragments. The results
are of practical and engineering nature, but their generalisation may be useful
for systematic development of new methods of automated and semi-automated
bidirectionalisation in the future.

The source code of all discussed prototypes is released as open source through
two repositories referenced above. It mostly consists of documented Prolog [5]
and Rascal [4] code.

One of the open questions left unanswered is dealing with sustainers [12]
instead of maintainers: I: L⇥R ! L⇥R instead of B and J: L⇥R ! L⇥R

instead of C. The sustainers are much more interesting because they can model
error-correcting strategies. However, it is yet unclear how to prove termination
of the update strategy in the case of more than two instances (like in §3), which
is required for the general case of model synchronisation [2].

References

1. K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger. Bidirec-
tional Transformations: A Cross-Discipline Perspective. In Theory and Practice of
Model Transformations, pages 260–283. Springer, 2009.

P t r ’ ’

⇌

• This was Dr. Vadim Zaytsev a.k.a. grammarware

• grammarware.net, twitter.com/grammarware,
grammarware.github.com, …

• Slides are CC-BY-SA: http://grammarware.net/talks/#TFP2014

• Bidirectionalisation: pushing FP to BX

T H A N K S F O R Y O U R A T T E N T I O N !

