4'1- q!
icr-atterné "l '
=

uldinmmars
- Dr. Vadlm Zaytsev SWAT, CWI
grammarware @ SLE 2013 @ SPLASH

O v
~ % . e
N AP oA, A i

> “

-,

~ ot

an -
. &
e

T

At

Arnoldius, Tree rings, 7 Februa‘ﬂ‘.y 2006, €C-BY-SA.

http://commons.wikimedia.org/wiki/File:Tree_rings.jpg
http://commons.wikimedia.org/wiki/File:Tree_rings.jpg
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en

Related work

Patterns

b

& o Design Patterns

s Design Patterns Elements of Reusable
Object-Oriented Software

Erich Gamma'
Richard Helm
Ralph Johnson
John Vlissides

S3Y3S ONILNIWOD TVYNOISSIA0¥d AFTSIM-NOSIAAY

Foreword l)y Gndy Booch

g

... Patterns

* Design Patterns

. '.“T \
» Implementation Patterns BN BAYIASEV:N S (OINE

PATTERNS

KENT BECK

... Patterns

\ . i 3 1}
- N P : , - “ bl _ .
:) St M g i Yo et o =y . \S o 2 nw
N 5 i ,‘ i e CATRE i Tl o

Pattern-matehing
Design Patterns

Implementation Patterns

Architectural Patterns

PATTERNS OF
ENTERPRISE
APPLICATION
ARCHITECTURE

MARTIN FOWLER

)
Mam
D Hisary,
Mar, &

i
w Foaaawe

.
.
ANIY STAFT OB

|

!
Raomen
IR

S

S

Design Patterns

Implementation Patterns
Architectural Patterns

Micro Patterns

Micro Patterns in Java Code-

Joseph (Yossi) Gil

Iltay Maman

Department of Computer Science
Technion—Israel Institute of Technology

{ yogi | imaman } @ cs.technion.ac.il

Abstract

Micro patterns are similar to design patterns, except that micro pat-
terns stand at a lower, closer to the implementation, level of ab-
straction. Micro patterns are also unique in that they are mechan-
ically recognizable, since each such pattern can be expressed as a
formal condition on the structure of a class.

This paper presents a catalog of 27 micro-patterns defined on
JAVA classes and interfaces. The catalog captures a wide spec-
trum of common programming practices, including a particular
and (intentionally restricted) use of inheritance, immutability, data
management and wrapping, restricted creation, and emulation of
procedural-, modular-, and even functional- programming para-
digms with object oriented constructs. Together, the patterns present
a set of prototypes after which a large portion of all JAVA classes
and interfaces are modeled. We provide empirical indication that
this portion is as high as 75% .

A statistical analysis of occurrences of micro patterns in a large
software corpus, spanning some 70,000 JAVA classes drawn from a
rich set of application domains, shows, with high confidence level
that the use of these patterns is not random. These results indi-
cate consciousness and discernible design decisions, which are sus-
tained in the software evolution. With high dence level, we can
also show that the use of these patterns is tied to the specification,
or the purpose, that the software realizes.

The traceability, abundance and the statistical significance of mi-
cro pattern occurrence raise the hope of using the classification of
software into these patterns for a more founded appreciation of its
design and code quality.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages

General Terms
Design, Object-Oriented Programming

*Research supported in part by Israel Science Foundation (ISF)
grant no. 2004460.
TWork is supported in part by the IBM faculty award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’05, October 16-20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

Keywords

Program Analysis, Design Patterns, Implementation Patterns

1. Introduction

We all know what makes one algorithm better than another: time,
space, random-bits, disk access, etc. are established, objective and
well defined metrics [14] to be employed in making such a judge-
ment. In contrast, the assessment of quality of software design is an
illusive prospect. Despite the array of books and research articles
on the topic (see e.g., [11,12,28,30]), a question such as “Is De-
sign A better than Design B?” can, still, only be decided by force
of the argumentation, and ultimately, by the personal and subjective
perspective of the judge.

The research described in this paper is concerned with the impor-
tant, yet so recalcitrant, problem of finding sound objective meth-
ods of assessment of design. Medical experiments can prove that
a certain medication is better than another in treating a specific ail-
ment. We all want to carry similar controlled experiments to prove
that certain design methods are more likely to produce better soft-
ware than others. However, in contrast with many other natural
sciences, experiments on large scale software development are so
prohibitively costly that much of the research on the topic aban-
doned this hope.

Our attack on this multiple Gordian knot is by taking a different
angle at it: Rather than subjecting the development process to ex-
perimentation, we apply statistical tools to existing artifacts of the
development. Instead of dealing with “is A better than B?” sort of
questions, our research should help in rigorously determining “how
is A different than B?’. We can also show that certain design tech-
niques are more common than others. The judgement of the quality
of design can perhaps then be reduced to the judgement of the abun-
dance of the design, and the quality of the software that uses it.

This angle is made possible by the bountiful class structure of
JAVA [3], together with the colossal, publicly available, base of soft-
ware in the language, which opens the road for sound claims and
understanding of the way people write software (more precisely, on
the software written by people). We argue that this class structure
makes it possible to find traces of design, specifically of what we
shall call micro patterns.

1.1 Traceability of Design

Can design be traced and identified in software? The prime can-
didates of units of design to look for in the software are obviously
design patterns [22]. However, despite the dozen years that passed
since the original publication [21], and the voluminous research
ensuing it, attempts to automate and formalize design patterns are
scarce. Systems like DisCo [31], LePUS [16,17], SPINE and HEDGE-
HOG [6], constraint diagrams [27], Elemental Design Patterns [39],

97

Main Pattern Short description Additional
Category Category
Deereris Designator An interfac.:e with absoluteloy no memb.ers.
) Ta?<onomy An empty %nterface .ex.te.ndmg another 1nterfac§.
Bohacior Joiner An empty 1pterface joming two Qr more superinterfaces.
Pool A class which declares only static final fields, but no methods.
R e ne Funct!on Poi.nter A class w@th a s@ngle publ@c @nstance method, but with no ﬁeld.s.
0% Befs Functlor_l Object A class w¥th a smgle pub}lc instance methqd, and at least one instance field.
= Cobol Like A class with a single static method, but no instance members
§ Stateless A class with no fields, other than static final ones.
& | Degenerate Common State A class in which all fields are static.
s | State Immutable A class with several instance fields, which are assigned exactly
§ once, during instance construction.
Restricted Creation | A class with no public constructors, and at least one static field of
Controlled the same type as the class
Creation Sampler A class with one or more public constructors, and at least one static
field of the same type as the class
Py Box A class which has exactly one, mutable, instance field.
S e Compound Box A class W}th exactly one non primitive instance ﬁeld.
) Canopy A class with exactly one instance field that it assigned exactly once, Degenerate
5 during instance construction. State
% Data Record A class in which all fields are public, no declared methods. Degenerate
Mansigers D_ata Manager A class where all methods are either setters or getters. Behavior
Sink A class whose methods do not propagate calls to any other class.
Outline A class where at least two methods invoke an abstract method on “this” Degenerate
Trait An abstract class which has no state. State
s State Machine An interfa.ce whose methods accept no parameters.
o Pure Type A class with only abstract methods, and no static members, and no fields Degenerate
g Augmented Type Only abstract methods and three or more static final fields of the same type State and
g Pseudo Class A class which can be rewritten as an interface: no concrete Behavior
& methods, only static fields
Implementor A concrete class, where all the methods override inherited abstract methods.
Inheritors Overrider A class in which all methods override inherited, non-abstract methods.
Extender A class which extends the inherited protocol, without overriding any methods.

Table 1: Micro patterns in the catalog

J. Gil and I. Maman. Micro Patterns in Java Code. OOPSLA'05, pages 97—116. ACM, 2005.

S

Design Patterns

Implementation Pa

Architectural Patte
Icro Patterns
ano Patterns

Ll Patterns

tterns

r

Micro Patterns in Java Code-

Joseph (Yossi) Gil

Iltay Maman

Department of Computer Science
Technion—Israel Institute of Technology

{ yogi | imaman } @ cs.technion.ac.il

Abstract

Micro patterns are similar to design patterns, except that micro pat-
terns stand at a lower, closer to the implementation, level of ab-
straction. Micro patterns are also unique in that they are mechan-
ically recognizable, since each such pattern can be expressed as a
formal condition on the structure of a class.

This paper presents a catalog of 27 micro-patterns defined on
JAVA classes and interfaces. The catalog captures a wide spec-
trum of common programming practices, including a particular
and (intentionally restricted) use of inheritance, immutability, data
management and wrapping, restricted creation, and emulation of
procedural-, modular-, and even functional- programming para-
digms with object oriented constructs. Together, the patterns present
a set of prototypes after which a large portion of all JAVA classes
and interfaces are modeled. We provide empirical indication that
this portion is as high as 75% .

A statistical analysis of occurrences of micro patterns in a large
software corpus, spanning some 70,000 JAVA classes drawn from a
rich set of application domains, shows, with high confidence level
that the use of these patterns is not random. These results indi-
cate consciousness and discernible design decisions, which are sus-
tained in the software evolution. With high e level, we can
also show that the use of these patterns is tied to the specification,
or the purpose, that the software realizes.

The traceability, abundance and the statistical significance of mi-
cro pattern occurrence raise the hope of using the classification of
software into these patterns for a more founded appreciation of its
design and code quality.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages

General Terms
Design, Object-Oriented Programming

*Research supported in part by Israel Science Foundation (ISF)
grant no. 2004460.
TWork is supported in part by the IBM faculty award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’05, October 16-20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

Keywords

Program Analysis, Design Patterns, Implementation Patterns

1. Introduction

We all know what makes one algorithm better than another: time,
space, random-bits, disk access, etc. are established, objective and
well defined metrics [14] to be employed in making such a judge-
ment. In contrast, the assessment of quality of software design is an
illusive prospect. Despite the array of books and research articles
on the topic (see e.g., [11,12,28,30]), a question such as “Is De-
sign A better than Design B?” can, still, only be decided by force
of the argumentation, and ultimately, by the personal and subjective
perspective of the judge.

The research described in this paper is concerned with the impor-
tant, yet so recalcitrant, problem of finding sound objective meth-
ods of assessment of design. Medical experiments can prove that
a certain medication is better than another in treating a specific ail-
ment. We all want to carry similar controlled experiments to prove
that certain design methods are more likely to produce better soft-
ware than others. However, in contrast with many other natural
sciences, experiments on large scale software development are so
prohibitively costly that much of the research on the topic aban-
doned this hope.

Our attack on this multiple Gordian knot is by taking a different
angle at it: Rather than subjecting the development process to ex-
perimentation, we apply statistical tools to existing artifacts of the
development. Instead of dealing with “is A better than B?” sort of
questions, our research should help in rigorously determining “how
is A different than B?’. We can also show that certain design tech-
niques are more common than others. The judgement of the quality
of design can perhaps then be reduced to the judgement of the abun-
dance of the design, and the quality of the software that uses it.

This angle is made possible by the bountiful class structure of
JAVA [3], together with the colossal, publicly available, base of soft-
ware in the language, which opens the road for sound claims and
understanding of the way people write software (more precisely, on
the software written by people). We argue that this class structure
makes it possible to find traces of design, specifically of what we
shall call micro patterns.

1.1 Traceability of Design

Can design be traced and identified in software? The prime can-
didates of units of design to look for in the software are obviously
design patterns [22]. However, despite the dozen years that passed
since the original publication [21], and the voluminous research
ensuing it, attempts to automate and formalize design patterns are
scarce. Systems like DisCo [31], LePUS [16,17], SPINE and HEDGE-
HOG [6], constraint diagrams [27], Elemental Design Patterns [39],

97

Why micropatterns?

 |s design A better than design B?
®» How design A is better than design B?

* How to design C?

Grammar Zoo

Sasic :HCFE‘
ASSemb\y DO r"l' I\ﬁ\c?v(igclgpf

ABS cor -FZV”;

Ada CCS
C++ or

http://slps.github.io/zoo
http://slps.github.io/zoo

Grammar Zoo

http://slps.github.i0/z00

s Language documentation

s |SO, ECMA, W3C, OMG
s Document schemata

» XML Schema, RELAX NG, Ecore
s Concrete syntax specs

s Rascal library

® SDF library

» TXL library

® ANTLR library

http://slps.github.io/zoo
http://slps.github.io/zoo

Grammar Zoo

http://slps.github.i0/z00

» Coursework

s TESCOL, FL
® Versioning system

» BGF, XBGF, EDD, LCF, LDF, XLDF
¢ Metamodels

¢ the entire AtlantEcore Zoo

» QOther collections

®» books; test suites

¢ mining/hunting/crawling

http://slps.github.io/zoo
http://slps.github.io/zoo

h

‘ﬂ‘“ i

>/ »
fterns, 31 Jul;XZO 0! CCJ b

http://www.flickr.com/photos/snowpeak/4863327703/
http://www.flickr.com/photos/snowpeak/4863327703/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en

ecognisable
s Purposeful
revalent
imple

ocal

@
PR s S0 o R T

vidently use

Grammatical micropatterns

s |s an isolated micropattern useful?
® How high is the coverage? s

® Mining what?

Global & structure

Category Pattern Matches Prevalence
Global Root 563 1.37%
Leaf 9,467 23.07%
Top 3,245 7.91%
MultiRoot 1 0.002%
Bottom 1,311 3.19%
Total coverage 12,459 30.36%
Structure Disallowed 69 0.17%
Singleton 29,134 70.99%
Vertical 3,697 9.01%
Horizontal 6,043 14.73%
Ziglag 784 1.91%
Total coverage 39,727 96.81%

Global & structure

Expression?2:

Expression3 Expression2Rest?
ExpressionZRest:

(Infixop Expression3 g
ExpressionZRest: vertical

Expression3 "i1nstanceof" Type

)*

horizontal:
Modifier:
"public" | "protected" | "private" | "static" | "abstract"
| "final" | "native" | "synchronized" | "transient"

| "volatile" | "strictfp"

Category Pattern Matches Prevalence
Metasyntax |ContainsEpsilon 4,185 10.20%
ContainsFailure 69 0.17%
ContainsUniversal 825 2.01%
ContainsString 1,889 4.60%
ContainsInteger 343 0.84%
ContainsOptional 6,554 15.97%
ContainsPlus 4,586 11.18%
ContainsStar 3,080 7.51%
ContainsSepListPlus 55 0.13%
ContainsSepListStar 142 0.35%
ContainsDisjunction 2,804 6.83%
ContainsSelectors 17,328 42.22%
ContainsLabels 132 0.32%
ContainsSequence 19,447 47.39%
AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

Category Pattern Matches Prevalence | Frequency

Sugar FakeOptional 134 0.33% 10.89%
FakeSepList 624 1.52% 50.69%
ExprMidLayer 349 0.85% 28.35%
ExprLowLayer 39 0.10% 3.17%
YaccifiedPlusLeft 354 0.86% 28.76%
YaccifiedPlusRight 6 0.01% 0.49%
YaccifiedStarLeft 0 0.00% 0.00%
YaccifiedStarRight 0 0.00% 0.00%
Total coverage 1,231 3.00%

ExprMidLayer

ExprMidLayer
logical-or—-expression ::= logical—-and-expression
| logical-or-expression "||" logical-and-expression ;
logical-and-expression ::= 1nclusive-or-expression

| logical-and-expression "&&" inclusive-or-expression ;
... (12 layers skipped) ...
primary-expression ::= literal | "this"
| "(" expression ")" | id-expression ;

Exprl_owl_ayer (ISO/IEC 14882.’1998(E) C++)

Naming micropatterns

Category Pattern Matches Prevalence

Naming CamelCase 16704 40.70%
LowerCase 3323 8.10%
MixedCase 1706 4.16%
MultiWord 31816 77.53%
UpperCase 2073 5.05%
Total coverage 40,562 98.84%

Naming, lax |CamelCaseLax 18332 44.67%
LowerCaselax 17840 43.47%
MixedCaselLax 1969 4.80%
MultiWordLax 32290
UpperCaseLax 2412 .
Total coverage 41,038 100.00%

All clasified!

All clasified?

Express_metamodel::Core::General ARRAYType

Concrete syntax

Category Pattern Matches Prevalence | Frequency

Concrete Preterminal 3249 7.92% 100.00%
Keyword 906 2.21% 27.89%
Keywords 1774 4.32% 54.60%
Operator 1001 2.44% 30.81%
Operators 1190 2.90% 36.63%
OperatorsMixed 110 0.27% 3.39%
Words 40 0.10% 1.23%
Tokens 34 0.08% 1.05%
Modifiers 19 0.05% 0.58%
Range 730 1.78% 22.47%
NumericLiteral 51 0.12% 1.57%
LiteralSimple 15 0.04% 0.46%
LiteralFirstRest 62 0.15% 1.91%
EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

eibaguailisf i'er™ SR Eideeax it V| Nlemids ™ WIS R e 1 WSS e L T

Keywords (TXL C Basis Grammar 5.2)
typeModifier ::= ("opt" | "repeat" | "list" | "attr" | "see" | "not"
S push Y SIEREpop - il St > 1 |)
OperatOrSMixed (TXL Basis Grammar for TXL 10.5)
G oD T P i TP (ST R BRI e T e TSR
[l M o o] - 1\ ok] AT R o Yo d i e M R S TR | - Y ST
| "DIV" | "AND") ;

(TXL Basis Grammar for Borland Delphi Object Pascal 1.1)

simpleDerivationSet ::= "#all" | ("list" | "union" | "restriction")x
Words (RELAX NG schema for XML Schema)
mml .lines.datatype ::= ("none" | "solid" | "dashed")+

(TESCOL 10001)
LiteralFirst Rest

TOENTS &= (Ve | RSt i gl AV BN E L TR [s u] g
Gt et o ok BRI e Lol Rl e e LT o [e R R L
(Michael Studman Java 5)
VARTEE et 1 | Sl 7 el B et)
G S TR el At e e ey P8 pRetR R o e ha i T e

(TESCOL 10110)

Normal forms

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%
GNF 3,074 7.49%
ANF 26,269 64.01%
Total coverage 28,168 68.64%

Folding/unfolding

Category Pattern Matches Prevalence | Frequency

Folding Empty 3,028 7.38% 32.56%
Failure 69 0.17% 0.74%
JustOptional 48 0.12% 0.52%
JustPlus 199 0.48% 2.14%
JustStar 130 0.32% 1.40%
JustSepListPlus 28 0.07% 0.30%
JustSepListStar 32 0.08% 0.34%
JustChains 1,045 2.55% 11.24%
JustOneChain 2,065 5.03% 22.20%
ReflexiveChain 0 0.00% 0.00%
ChainOrTerminal 145 0.35% 1.56%
ChainsAndTerminals 290 0.71% 3.12%
Total coverage 9,300 22.66%

Category Pattern Matches Prevalence | Frequency

Template Constructor 657 1.60% 13.56%
Bracket 132 0.32% 2.73%
BracketedFakeSepList 56 0.14% 1.16%
BracketedFakeSLStar 10 0.02% 0.21%
BracketedOptional 117 0.29% 2.42%
BracketedPlus 6 0.01% 0.12%
BracketedSepListPlus 8 0.02% 0.17%
BracketedSepListStar 24 0.06% 0.50%
BracketedStar 15 0.04% 0.31%
Delimited 81 0.20% 1.67%
ElementAccess 25 0.06% 0.52%
PureSequence 2,999 7.31% 61.91%
DistinguishByTerm 933 2.27% 19.26%
Total coverage 4,844 11.80%

Explicit_creation_type ::= "{" Type "}" ;

Actual_generics ::= "[" Type_list "1" ;
Bracket Parenthesized ::= "(" Expression ")" ;
External_system_file ::= "<" Simple_string ">" ;

(ISO/IEC 25/36:2006(E) Eiffel)

typeParameters ::= "<" typeParameter ("," typeParameter)x* ">" ;
namedFormalParameters ::= "[" defaultFormalParameter

("," defaultFormalParameter)* "]" ;
BracketedFakeSL (ANTLR Google Dart)

template ::= "{{" title ("|" part)* "}}" ;
tplarer s i=al el BTt Fel (It par B) i e
(EBNF MediaWiki)
% X RecordType ::= "RECORD" Fields "END" ;
Dellmlted LoopStmt ::= "LOOP" Stmts "END" ;

(SDF Modula 3)

slice ::= prefix "(" discrete_range ")" ;
ElementAccess (LNCS 4348, Ada 2005)
libraryDefinition ::= LIBRARY "{" libraryBody "}" ;
(ANTLR Google Dart)
ArrayDeclarator ::= VariableName " (" ArraySpec ")" ;
StructureConstructor ::= TypeName "(" ExprList ")" ;

(TXL Fortran 77/90)

Conclusion

s Experiment is successful

® Concise in Rascal

set[str] check4mp(bracketSLPlus(), GGrammar g) = {n | str n <- g.nts,
[production(n,sequence(|
terminal(str x),
seplistplus(monterminal(_),terminal()),
terminal(stry)]))
] :== normanon(g.prods[n]),
bracketpair(x,y)};

s Empirical evidence is weak

s Usefulness needs support

Grammar
Smell

Detection

Tijs van der Storm, jJurgen Vinju, Vadim Zaytsev,
SWAT, CWI @ SLE 2014

Rosmo douro Datterns #2 4 October 2010 CC-BY-SA.

]*.\“' e A -M—L—A e “'-o-b' M aass s ~ e ‘gL— .-—';?‘-". " P ‘-";— ‘-“M.' “""*‘Y S
il i e e i i i . svenred @2 - ,
—-—-J.«h.-—--—.—-t--—m-- ot .. . TGNl 4 l;_;-i[‘“ \i \ ¥ *. A N : o
p Bt v cnc] W Eadibrwn s e o i | et o) A by - a L E g { . - B - ey
e A e ity e ww—b\.wu.-.dsh» L L ‘“"w"‘“ . v . . : § e % — Ly .
S B . v A - sty : ‘ ; : f ' ‘Ilﬂlﬁ" B < e g : :
" e _A .u\— 3 Reg Gra W@ Doy A g Tl n R el ‘G ', A .Mp’-“a‘ oY 4y 4 5 - b2
: - i P L S Iraadin 1 v c T, b Lie . g T
. g . . 4 . » - b y"f'?ﬂ‘h'@ . . L 3 s -~k) ,
e DNy S T \ X , - T- - k3 ~\‘-".~‘1"""'.L"‘:l‘?"," b AN o ot o,
w@h—-“wmwhd \ = w0 s s
- - u ris -"J;_,.-;‘_“-
__-‘_,..‘.. ki e AT
X ~ s o —— PN .
2 ummal JE ‘M % 7
A
a « "
e & - - - v "fl,;.f/, “
.......u-*--.no.\.cu-.-u—h-&- ot s silre~

<-vu\\\((n .t&' K r f - Q.
r ‘..

--~~.‘~ \
[| '..
\-;-“N!um‘ |\

" Q"
OB e

[nr "1.’"./
)ﬁ ;./ =

mailto:vadim@grammarware.net?subject=IPA
mailto:vadim@grammarware.net?subject=IPA
http://grammarware.net
http://grammarware.net
http://www.flickr.com/photos/rosino/5064737599/
http://www.flickr.com/photos/rosino/5064737599/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://creativecommons.org/licenses/by-sa/2.0/deed.en

