
Micropatterns
in

Grammars
Dr. Vadim Zaytsev, SWAT, CWI

grammarware @ SLE 2013 @ SPLASH

Arnoldius, Tree rings, 7 February 2006, CC-BY-SA.

http://commons.wikimedia.org/wiki/File:Tree_rings.jpg
http://commons.wikimedia.org/wiki/File:Tree_rings.jpg
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en

Related work

… Patterns

Pattern matching

Design Patterns

… Patterns

Pattern matching

Design Patterns

Implementation Patterns

… Patterns

Pattern matching

Design Patterns

Implementation Patterns

Architectural Patterns

… Patterns

Pattern matching

Design Patterns

Implementation Patterns

Architectural Patterns

Micro Patterns

Micro Patterns in Java Code∗

Joseph (Yossi) Gil† Itay Maman
Department of Computer Science

Technion—Israel Institute of Technology
{ yogi | imaman } @ cs.technion.ac.il

Abstract
Micro patterns are similar to design patterns, except that micro pat-
terns stand at a lower, closer to the implementation, level of ab-
straction. Micro patterns are also unique in that they are mechan-
ically recognizable, since each such pattern can be expressed as a
formal condition on the structure of a class.
This paper presents a catalog of 27 micro-patterns defined on

JAVA classes and interfaces. The catalog captures a wide spec-
trum of common programming practices, including a particular
and (intentionally restricted) use of inheritance, immutability, data
management and wrapping, restricted creation, and emulation of
procedural-, modular-, and even functional- programming para-
digms with object oriented constructs. Together, the patterns present
a set of prototypes after which a large portion of all JAVA classes
and interfaces are modeled. We provide empirical indication that
this portion is as high as 75% .
A statistical analysis of occurrences of micro patterns in a large

software corpus, spanning some 70,000 JAVA classes drawn from a
rich set of application domains, shows, with high confidence level
that the use of these patterns is not random. These results indi-
cate consciousness and discernible design decisions, which are sus-
tained in the software evolution. With high confidence level, we can
also show that the use of these patterns is tied to the specification,
or the purpose, that the software realizes.
The traceability, abundance and the statistical significance of mi-

cro pattern occurrence raise the hope of using the classification of
software into these patterns for a more founded appreciation of its
design and code quality.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages

General Terms
Design, Object-Oriented Programming
∗Research supported in part by Israel Science Foundation (ISF)
grant no. 2004460.
†Work is supported in part by the IBM faculty award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

Keywords
Program Analysis, Design Patterns, Implementation Patterns

1. Introduction
We all know what makes one algorithm better than another: time,

space, random-bits, disk access, etc. are established, objective and
well defined metrics [14] to be employed in making such a judge-
ment. In contrast, the assessment of quality of software design is an
illusive prospect. Despite the array of books and research articles
on the topic (see e.g., [11, 12, 28, 30]), a question such as “Is De-
sign A better than Design B?” can, still, only be decided by force
of the argumentation, and ultimately, by the personal and subjective
perspective of the judge.
The research described in this paper is concerned with the impor-

tant, yet so recalcitrant, problem of finding sound objective meth-
ods of assessment of design. Medical experiments can prove that
a certain medication is better than another in treating a specific ail-
ment. We all want to carry similar controlled experiments to prove
that certain design methods are more likely to produce better soft-
ware than others. However, in contrast with many other natural
sciences, experiments on large scale software development are so
prohibitively costly that much of the research on the topic aban-
doned this hope.
Our attack on this multiple Gordian knot is by taking a different

angle at it: Rather than subjecting the development process to ex-
perimentation, we apply statistical tools to existing artifacts of the
development. Instead of dealing with “is A better than B?” sort of
questions, our research should help in rigorously determining “how
is A different than B?’. We can also show that certain design tech-
niques are more common than others. The judgement of the quality
of design can perhaps then be reduced to the judgement of the abun-
dance of the design, and the quality of the software that uses it.
This angle is made possible by the bountiful class structure of

JAVA [3], together with the colossal, publicly available, base of soft-
ware in the language, which opens the road for sound claims and
understanding of the way people write software (more precisely, on
the software written by people). We argue that this class structure
makes it possible to find traces of design, specifically of what we
shall call micro patterns.

1.1 Traceability of Design
Can design be traced and identified in software? The prime can-

didates of units of design to look for in the software are obviously
design patterns [22]. However, despite the dozen years that passed
since the original publication [21], and the voluminous research
ensuing it, attempts to automate and formalize design patterns are
scarce. Systems like DisCo [31], LePUS [16,17], SPINE and HEDGE-
HOG [6], constraint diagrams [27], Elemental Design Patterns [39],

97

Main
Category

Pattern Short description Additional
Category

D
egenerate

C
lasses

Degenerate
State and
Behavior

Designator An interface with absolutely no members.
Taxonomy An empty interface extending another interface.
Joiner An empty interface joining two or more superinterfaces.
Pool A class which declares only static final fields, but no methods.

Degenerate
Behavior

Function Pointer A class with a single public instance method, but with no fields.
Function Object A class with a single public instance method, and at least one instance field.
Cobol Like A class with a single static method, but no instance members

Degenerate
State

Stateless A class with no fields, other than static final ones.
Common State A class in which all fields are static.
Immutable A class with several instance fields, which are assigned exactly

once, during instance construction.

Controlled
Creation

Restricted Creation A class with no public constructors, and at least one static field of
the same type as the class

Sampler A class with one or more public constructors, and at least one static
field of the same type as the class

C
ontainm

ent

Wrappers
Box A class which has exactly one, mutable, instance field.
Compound Box A class with exactly one non primitive instance field.
Canopy A class with exactly one instance field that it assigned exactly once,

during instance construction.
Degenerate
State

Data
Managers

Record A class in which all fields are public, no declared methods. Degenerate
BehaviorData Manager A class where all methods are either setters or getters.

Sink A class whose methods do not propagate calls to any other class.

Inheritance

Base
Classes

Outline A class where at least two methods invoke an abstract method on “this”
Trait An abstract class which has no state.

Degenerate
State

State Machine An interface whose methods accept no parameters.
Degenerate
State and
Behavior

Pure Type A class with only abstract methods, and no static members, and no fields
Augmented Type Only abstract methods and three or more static final fields of the same type
Pseudo Class A class which can be rewritten as an interface: no concrete

methods, only static fields

Inheritors
Implementor A concrete class, where all the methods override inherited abstract methods.
Overrider A class in which all methods override inherited, non-abstract methods.
Extender A class which extends the inherited protocol, without overriding any methods.

Table 1: Micro patterns in the catalog

able2 indicates (at run time) that it is legal to make a field-for-field
copy of instances of that class.
Thus, a Designator micro pattern is an interface which does not de-
clare any methods, does not define any static fields or methods, and
does not inherit such members from any of its superinterfaces.
A class can also be Designator if its definition, as well as the defin-
itions of all of its ancestors (other than Object), are empty.
Pattern Designator is the rarest, with only 0.2% prevalence in our
software corpus. It was included in the catalog because it presents
an important JAVA technique, which is also easily discernible.

2. Taxonomy. Even if the definition of an interface is empty it may
still extend another, potentially non-empty, interface.
Consider for example interface DocAttribute (defined in pack-
age javax.print.attribute). This interface extends inter-
face Attribute in the same package without adding any further
declarations. Interface DocAttribute is used, similarly to the
Designator micro pattern, for tagging purposes—specifically that
the attribute at hand is specialized for what is known as “Doc” in
the JRE.
An empty interface which extends a single interface is called a Tax-
onomy, since it is included, in the subtyping sense, in its parent, but
otherwise identical to it.
There are also classes which are Taxonomy. Such a class must sim-
ilarly be empty, i.e., add no fields nor methods to its parent. Since
2This, and all subsequent examples are drawn from the standard
Java Runtime Library.

constructors are not inherited, an empty class may contain construc-
tors. A Taxonomy class may not implement any interfaces.

This micro pattern is very common in the hierarchy of JAVA’s ex-
ception classes, such as: EOFException which extends IOEx-
ception. The reason is that selection of a catch clause is de-
termined by the runtime type of the thrown exception, and not by
its state.

3. Joiner. An empty interface which extends more than one inter-
face is called a Joiner, since in effect, it joins together the sets of
members of its parents.

For example, the interface MouseInputListener joins together
two other interfaces: interface MouseMotionListener and in-
terface MouseListener.

An empty class which implements one or more interfaces is also
a Joiner. For example, class LinkedHashSet marries together
class HashSet and three interfaces Cloneable, Serializ-
able and Set.

4. Pool. The most degenerate classes are those which have neither
state nor behavior. Such a class is distinguished by the requirement
that it declares no instance fields. Moreover, all of its declared static
fields must be final3. Another requirement is that the class has no
methods (other than those inherited from Object, or automatically
generated constructors).
3If a class has final instance fields, then, each of its instances
may have a different (immutable) state, and therefore it cannot be
characterized as having no state.

101

J. Gil and I. Maman. Micro Patterns in Java Code. OOPSLA’05, pages 97–116. ACM, 2005.

… Patterns

Pattern matching

Design Patterns

Implementation Patterns

Architectural Patterns

Micro Patterns

Nano Patterns

Milli Patterns

Micro Patterns in Java Code∗

Joseph (Yossi) Gil† Itay Maman
Department of Computer Science

Technion—Israel Institute of Technology
{ yogi | imaman } @ cs.technion.ac.il

Abstract
Micro patterns are similar to design patterns, except that micro pat-
terns stand at a lower, closer to the implementation, level of ab-
straction. Micro patterns are also unique in that they are mechan-
ically recognizable, since each such pattern can be expressed as a
formal condition on the structure of a class.
This paper presents a catalog of 27 micro-patterns defined on

JAVA classes and interfaces. The catalog captures a wide spec-
trum of common programming practices, including a particular
and (intentionally restricted) use of inheritance, immutability, data
management and wrapping, restricted creation, and emulation of
procedural-, modular-, and even functional- programming para-
digms with object oriented constructs. Together, the patterns present
a set of prototypes after which a large portion of all JAVA classes
and interfaces are modeled. We provide empirical indication that
this portion is as high as 75% .
A statistical analysis of occurrences of micro patterns in a large

software corpus, spanning some 70,000 JAVA classes drawn from a
rich set of application domains, shows, with high confidence level
that the use of these patterns is not random. These results indi-
cate consciousness and discernible design decisions, which are sus-
tained in the software evolution. With high confidence level, we can
also show that the use of these patterns is tied to the specification,
or the purpose, that the software realizes.
The traceability, abundance and the statistical significance of mi-

cro pattern occurrence raise the hope of using the classification of
software into these patterns for a more founded appreciation of its
design and code quality.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages

General Terms
Design, Object-Oriented Programming
∗Research supported in part by Israel Science Foundation (ISF)
grant no. 2004460.
†Work is supported in part by the IBM faculty award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

Keywords
Program Analysis, Design Patterns, Implementation Patterns

1. Introduction
We all know what makes one algorithm better than another: time,

space, random-bits, disk access, etc. are established, objective and
well defined metrics [14] to be employed in making such a judge-
ment. In contrast, the assessment of quality of software design is an
illusive prospect. Despite the array of books and research articles
on the topic (see e.g., [11, 12, 28, 30]), a question such as “Is De-
sign A better than Design B?” can, still, only be decided by force
of the argumentation, and ultimately, by the personal and subjective
perspective of the judge.
The research described in this paper is concerned with the impor-

tant, yet so recalcitrant, problem of finding sound objective meth-
ods of assessment of design. Medical experiments can prove that
a certain medication is better than another in treating a specific ail-
ment. We all want to carry similar controlled experiments to prove
that certain design methods are more likely to produce better soft-
ware than others. However, in contrast with many other natural
sciences, experiments on large scale software development are so
prohibitively costly that much of the research on the topic aban-
doned this hope.
Our attack on this multiple Gordian knot is by taking a different

angle at it: Rather than subjecting the development process to ex-
perimentation, we apply statistical tools to existing artifacts of the
development. Instead of dealing with “is A better than B?” sort of
questions, our research should help in rigorously determining “how
is A different than B?’. We can also show that certain design tech-
niques are more common than others. The judgement of the quality
of design can perhaps then be reduced to the judgement of the abun-
dance of the design, and the quality of the software that uses it.
This angle is made possible by the bountiful class structure of

JAVA [3], together with the colossal, publicly available, base of soft-
ware in the language, which opens the road for sound claims and
understanding of the way people write software (more precisely, on
the software written by people). We argue that this class structure
makes it possible to find traces of design, specifically of what we
shall call micro patterns.

1.1 Traceability of Design
Can design be traced and identified in software? The prime can-

didates of units of design to look for in the software are obviously
design patterns [22]. However, despite the dozen years that passed
since the original publication [21], and the voluminous research
ensuing it, attempts to automate and formalize design patterns are
scarce. Systems like DisCo [31], LePUS [16,17], SPINE and HEDGE-
HOG [6], constraint diagrams [27], Elemental Design Patterns [39],

97

Why micropatterns?

Is design A better than design B?

How design A is better than design B?

How to design C?

SLE design BoK
Syntactic Structures (Ch, 1957)

Orthogonal Design and Description
of a FL (AvW, 1965)

Go To Statement Considered
Harmful (D, 1968)

Minority Report (D, 1968)

Hints on PL Design (H, 1973)

On the Design of PLs (W, 1974)

On the Design of PLs Including MINI
ALGOL 68 (Ammeraal, 1975)

Designing a Beginners’ PL (Geurts,
Meertens, 1976, 1980)

The Design of Elegant Languages
(Meertens, 1993)

When and How to Develop DSLs
(Mernik, Heering, Sloane, 2005)

Evolving a DSL Implementation
(Tratt, 2007)

SLE: Creating DSLs Using
Metamodels (Kleppe, 2008)

DSLs (Fowler, 2010)

Language Implementation Patterns
(Parr, 2010)

Semantics First! (Erwig,
Walkingshaw, 2012)

DSL Engineering: Designing,
Implementing and Using DSLs (Völter
et al, 2013)

Grammar Zoo

http://slps.github.io/zoo

http://slps.github.io/zoo
http://slps.github.io/zoo

Grammar Zoo

Language documentation

ISO, ECMA, W3C, OMG

Document schemata

XML Schema, RELAX NG, Ecore

Concrete syntax specs

Rascal library

SDF library

TXL library

ANTLR library

http://slps.github.io/zoo

http://slps.github.io/zoo
http://slps.github.io/zoo

Grammar Zoo

Coursework

TESCOL, FL

Versioning system

BGF, XBGF, EDD, LCF, LDF, XLDF

Metamodels

the entire AtlantEcore Zoo

Other collections

books; test suites

mining/hunting/crawling

http://slps.github.io/zoo

http://slps.github.io/zoo
http://slps.github.io/zoo

Back to the
grammars

John Fowler, Patterns, 31 July 2010, CC-BY.

http://www.flickr.com/photos/snowpeak/4863327703/
http://www.flickr.com/photos/snowpeak/4863327703/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en

Grammatical micropatterns

Recognisable

Purposeful

Prevalent

Simple

Local

Evidently used

Grammatical micropatterns

Is an isolated micropattern useful?

How high is the coverage?

Mining what?

Global & structure

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

CamelCaseLax 18332 44.67%
Naming

LowerCase 3323 8.10%

Naming

LowerCaseLax 17840 43.47%

Naming

MixedCase 1706 4.16%

Naming

MixedCaseLax 1969 4.80%

Naming

MultiWord 31816 77.53%

Naming

MultiWordLax 32290 78.68%

Naming

UpperCase 2073 5.05%

Naming

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 3,697 9.01%

Structure

Horizontal 6,043 14.73%

Structure

ZigZag 784 1.91%
Total coverage 39,727 96.81%

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsSequence 19,447 47.39%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

Category Pattern Matches Prevalence
Sugar FakeOptional 134 0.33%Sugar

FakeSepList 624 1.52%
Sugar

ExprMidLayer 349 0.85%

Sugar

ExprLowLayer 30 0.07%

Sugar

YaccifiedPlusLeft 354 0.86%

Sugar

YaccifiedPlusRight 6 0.01%

Sugar

YaccifiedStarLeft 0 0.00%

Sugar

YaccifiedStarRight 0 0.00%
Total coverage 1,222 2.98%

FakeOptional 134
FakeSepList 624
ExprMidLayer 349
ExprLowLayer 30
YaccifiedPlusLeft 354
YaccifiedPlusRight 6
YaccifiedStarLeft 0
YaccifiedStarRight 0

Empty 3028
Failure 69
ReflexiveChain 0
AChain 5404
JustChains 1045
JustOneChain 2063
JustOptional 48
JustPlus 199
JustStar 130
JustSepListPlus 28
JustSepListStar 32
NTorT 123
NTorTS 155
NTSorT 144
TSorNT 47

Category Pattern Matches Prevalence
Folding Empty 3028 7.38%Folding

Failure 69 0.17%
Folding

ReflexiveChain 0 0.00%

Folding

AChain 5404 13.17%

Folding

JustChains 1045 2.55%

Folding

JustOneChain 2063 5.03%

Folding

JustOptional 48 0.12%

Folding

JustPlus 199 0.48%

Folding

JustStar 130 0.32%

Folding

JustSepListPlus 28 0.07%

Folding

JustSepListStar 32 0.08%

Folding

NTorT 123 0.30%

Folding

NTorTS 155 0.38%

Folding

NTSorT 144 0.35%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.62%Template

BracketSelf 2 0.00% 0.04%
Template

Bracket 109 0.27% 2.26%

Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 112 0.27% 2.32%

Template

BracketedPlus 5 0.01% 0.10%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 104 0.25% 2.16%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 3002 7.32% 62.22%

Template

DistinguishByTerm 917 2.23% 19.01%
Total coverage 4,825 11.76%

4,825
Constructor 657 4,825
BracketSelf 2 4,825
Bracket 109 4,825
BracketedFakeSepList 56 4,825
BracketedFakeSLStar 10 4,825
BracketedOptional 112 4,825
BracketedPlus 5 4,825
BracketedSepListPlus 8 4,825
BracketedSepListStar 24 4,825
BracketedStar 15 4,825
Delimited 104 4,825
ElementAccess 25 4,825
PureSequence 3002 4,825
DistinguishByTerm 917 4,825

CamelCase 16704
CamelCaseLax 18332
LowerCase 3323
LowerCaseLax 17840
MixedCase 1706
MixedCaseLax 1969
MultiWord 31816
MultiWordLax 32290
UpperCase 2073
UpperCaseLax 2412

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563
Leaf 9467
Top 3245
MultiRoot 1
Bottom 1311
Disallowed 69
Singleton 29134
Vertical 3697
Horizontal 6043
ZigZag 784

ContainsEpsilon 4185
ContainsFailure 69
ContainsUniversal 825
ContainsString 1889
ContainsInteger 343
ContainsOptional 6554
ContainsPlus 4586
ContainsStar 3080
ContainsSepListPlus 55
ContainsSepListStar 142
ContainsDisjunction 2804
ContainsSelectors 17328
ContainsLabels 132
ContainsSequence 19447
AbstractSyntax 29299

Global & structure

5.6 Grammar transformation 113

Example 5.20 (Correcting statement syntax in impl2)

inject(
Statement:

"break" Identifier? �";"�
);

The production for the break statement lacks the semicolon which is injected accordingly (left

unnoticed in Bosworth’s bug list, but obvious when converging with read2).

Example 5.21 (Correcting expression syntax)
Incorrect expression syntax in impl2 and impl3

Expression2:
Expression3 Expression2Rest?

Expression2Rest:
(Infixop Expression3)�

Expression2Rest:
Expression3 "instanceof" Type

Language-revising transformation

project(
Expression2Rest:

�Expression3� "instanceof" Type
);

Corrected expression syntax

Expression2:
Expression3 Expression2Rest?

Expression2Rest:
(Infixop Expression3)�

Expression2Rest:
"instanceof" Type

The impl2 and impl3 grammars define the Java expression syntax by means of layers, i.e., there are

several nonterminals Expression1, Expression2, ... for the different priorities. We are concerned

with one layer here. The second rule for Expression2Rest contains an offending occurrence of

Expression3 which needs to be projected away. This issue was revealed by comparison with the

read2 and read3 grammars (subject to prior refactoring), but also found in the “known bugs”.

The two examples above are concerned with incorrect syntax of the kind that the

intended language is not captured proper. There are also situations where incorrect syntax

merely arises from representation anomalies of the HTML input used for extraction.

}vertical

112 Case study on recovery and convergence

Example 5.19 (Grammar relaxation) The BGF snippets in this example are deliber-
ately pretty-printed as horizontal productions for the sake of readability. In reality the
extractor produces only vertical ones as usual.

impl2

Modifier:
"public" | "protected" | "private" | "static" | "abstract"

| "final" | "native" | "synchronized" | "transient"
| "volatile" | "strictfp"

read2

ClassModifier:
"public" | "protected" | "private" | "abstract" | "static"

| "final" | "strictfp"
ConstantModifier:

"public" | "static" | "final"
ConstructorModifier:

"public" | "protected" | "private"
InterfaceModifier:

"public" | "protected" | "private" | "abstract" | "static"
| "strictfp"

AbstractMethodModifier:
"public" | "abstract"

MethodModifier:
"public" | "protected" | "private" | "abstract" | "static"

| "final" | "synchronized" | "native" | "strictfp"
FieldModifier:

"public" | "protected" | "private" | "static" | "final" |
"transient" | "volatile"

In impl2, there is only one category of (arbitrary) modifiers. In contrast, in read2, there are
various precise categories of modifiers for classes, fields, interfaces and methods. Accordingly,
the impl2 grammar is more permissive as far as modifiers are concerned. We omit the neutralising
transformation.

We suggest that a language specification should explicitly call out relaxations so that
they are not confused with corrections. Neither relaxation and corrections must be con-
fused with extension (in the sense of evolution).

5.6.3 Semantics-revising operators

There are operators to undefine a nonterminal (i.e., to abandon its definition), to replace
a grammar expression in an unconstrained manner, to inject new components into a pro-
duction and to project away existing components. The operators inject and project can
be invoked by a form such that a grammar expression with markers (as in a �b�c) is
passed as a parameter. These markers highlight the components to be added or removed,
respectively., and thereby state the intention of the operator application more explicitly.

horizontal:

Metasyntax micropatterns

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

CamelCaseLax 18332 44.67%
Naming

LowerCase 3323 8.10%

Naming

LowerCaseLax 17840 43.47%

Naming

MixedCase 1706 4.16%

Naming

MixedCaseLax 1969 4.80%

Naming

MultiWord 31816 77.53%

Naming

MultiWordLax 32290 78.68%

Naming

UpperCase 2073 5.05%

Naming

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 3,697 9.01%

Structure

Horizontal 6,043 14.73%

Structure

ZigZag 784 1.91%
Total coverage 39,727 96.81%

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsSequence 19,447 47.39%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

Category Pattern Matches Prevalence
Sugar FakeOptional 134 0.33%Sugar

FakeSepList 624 1.52%
Sugar

ExprMidLayer 349 0.85%

Sugar

ExprLowLayer 30 0.07%

Sugar

YaccifiedPlusLeft 354 0.86%

Sugar

YaccifiedPlusRight 6 0.01%

Sugar

YaccifiedStarLeft 0 0.00%

Sugar

YaccifiedStarRight 0 0.00%
Total coverage 1,222 2.98%

FakeOptional 134
FakeSepList 624
ExprMidLayer 349
ExprLowLayer 30
YaccifiedPlusLeft 354
YaccifiedPlusRight 6
YaccifiedStarLeft 0
YaccifiedStarRight 0

Empty 3028
Failure 69
ReflexiveChain 0
AChain 5404
JustChains 1045
JustOneChain 2063
JustOptional 48
JustPlus 199
JustStar 130
JustSepListPlus 28
JustSepListStar 32
NTorT 123
NTorTS 155
NTSorT 144
TSorNT 47

Category Pattern Matches Prevalence
Folding Empty 3028 7.38%Folding

Failure 69 0.17%
Folding

ReflexiveChain 0 0.00%

Folding

AChain 5404 13.17%

Folding

JustChains 1045 2.55%

Folding

JustOneChain 2063 5.03%

Folding

JustOptional 48 0.12%

Folding

JustPlus 199 0.48%

Folding

JustStar 130 0.32%

Folding

JustSepListPlus 28 0.07%

Folding

JustSepListStar 32 0.08%

Folding

NTorT 123 0.30%

Folding

NTorTS 155 0.38%

Folding

NTSorT 144 0.35%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.56%Template

BracketSelf 2 0.00% 0.04%
Template

Bracket 132 0.32% 2.73%

Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 117 0.29% 2.42%

Template

BracketedPlus 6 0.01% 0.12%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 81 0.20% 1.67%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 2999 7.31% 61.91%

Template

DistinguishByTerm 933 2.27% 19.26%
Total coverage 4,844 11.80%

4,844
Constructor 657 4,844
BracketSelf 2 4,844
Bracket 132 4,844
BracketedFakeSepList 56 4,844
BracketedFakeSLStar 10 4,844
BracketedOptional 117 4,844
BracketedPlus 6 4,844
BracketedSepListPlus 8 4,844
BracketedSepListStar 24 4,844
BracketedStar 15 4,844
Delimited 81 4,844
ElementAccess 25 4,844
PureSequence 2999 4,844
DistinguishByTerm 933 4,844

4,844

CamelCase 16704
CamelCaseLax 18332
LowerCase 3323
LowerCaseLax 17840
MixedCase 1706
MixedCaseLax 1969
MultiWord 31816
MultiWordLax 32290
UpperCase 2073
UpperCaseLax 2412

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563
Leaf 9467
Top 3245
MultiRoot 1
Bottom 1311
Disallowed 69
Singleton 29134
Vertical 3697
Horizontal 6043
ZigZag 784

ContainsEpsilon 4185
ContainsFailure 69
ContainsUniversal 825
ContainsString 1889
ContainsInteger 343
ContainsOptional 6554
ContainsPlus 4586
ContainsStar 3080
ContainsSepListPlus 55
ContainsSepListStar 142
ContainsDisjunction 2804
ContainsSelectors 17328
ContainsLabels 132
ContainsSequence 19447
AbstractSyntax 29299

Sugary micropatterns

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

CamelCaseLax 18332 44.67%
Naming

LowerCase 3323 8.10%

Naming

LowerCaseLax 17840 43.47%

Naming

MixedCase 1706 4.16%

Naming

MixedCaseLax 1969 4.80%

Naming

MultiWord 31816 77.53%

Naming

MultiWordLax 32290 78.68%

Naming

UpperCase 2073 5.05%

Naming

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 3,697 9.01%

Structure

Horizontal 6,043 14.73%

Structure

ZigZag 784 1.91%
Total coverage 39,727 96.81%

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsSequence 19,447 47.39%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

Category Pattern Matches Prevalence Frequency
Sugar FakeOptional 134 0.33% 10.89%Sugar

FakeSepList 624 1.52% 50.69%
Sugar

ExprMidLayer 349 0.85% 28.35%

Sugar

ExprLowLayer 39 0.10% 3.17%

Sugar

YaccifiedPlusLeft 354 0.86% 28.76%

Sugar

YaccifiedPlusRight 6 0.01% 0.49%

Sugar

YaccifiedStarLeft 0 0.00% 0.00%

Sugar

YaccifiedStarRight 0 0.00% 0.00%
Total coverage 1,231 3.00%

1231
FakeOptional 134 1231
FakeSepList 624 1231
ExprMidLayer 349 1231
ExprLowLayer 39 1231
YaccifiedPlusLeft 354 1231
YaccifiedPlusRight 6 1231
YaccifiedStarLeft 0 1231
YaccifiedStarRight 0 1231

Empty 3028 9,226
Failure 69 9,226
ReflexiveChain 0 9,226
AChain 5404 9,226
JustChains 1045 9,226
JustOneChain 2063 9,226
JustOptional 48 9,226
JustPlus 199 9,226
JustStar 130 9,226
JustSepListPlus 28 9,226
JustSepListStar 32 9,226
NTorT 123 9,226
NTorTS 155 9,226
NTSorT 144 9,226
TSorNT 47 9,226

Category Pattern Matches Prevalence Frequency
Folding Empty 3,028 7.38% 32.82%Folding

Failure 69 0.17% 0.75%
Folding

ReflexiveChain 0 0.00% 0.00%

Folding

AChain 5,404 13.17% 58.57%

Folding

JustChains 1,045 2.55% 11.33%

Folding

JustOneChain 2,063 5.03% 22.36%

Folding

JustOptional 48 0.12% 0.52%

Folding

JustPlus 199 0.48% 2.16%

Folding

JustStar 130 0.32% 1.41%

Folding

JustSepListPlus 28 0.07% 0.30%

Folding

JustSepListStar 32 0.08% 0.35%

Folding

NTorT 123 0.30% 1.33%

Folding

NTorTS 155 0.38% 1.68%

Folding

NTSorT 144 0.35% 1.56%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.56%Template

BracketSelf 2 0.00% 0.04%
Template

Bracket 132 0.32% 2.73%

Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 117 0.29% 2.42%

Template

BracketedPlus 6 0.01% 0.12%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 81 0.20% 1.67%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 2999 7.31% 61.91%

Template

DistinguishByTerm 933 2.27% 19.26%
Total coverage 4,844 11.80%

4,844
Constructor 657 4,844
BracketSelf 2 4,844
Bracket 132 4,844
BracketedFakeSepList 56 4,844
BracketedFakeSLStar 10 4,844
BracketedOptional 117 4,844
BracketedPlus 6 4,844
BracketedSepListPlus 8 4,844
BracketedSepListStar 24 4,844
BracketedStar 15 4,844
Delimited 81 4,844
ElementAccess 25 4,844
PureSequence 2999 4,844
DistinguishByTerm 933 4,844

4,844

CamelCase 16704
CamelCaseLax 18332
LowerCase 3323
LowerCaseLax 17840
MixedCase 1706
MixedCaseLax 1969
MultiWord 31816
MultiWordLax 32290
UpperCase 2073
UpperCaseLax 2412

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563
Leaf 9467
Top 3245
MultiRoot 1
Bottom 1311
Disallowed 69
Singleton 29134
Vertical 3697
Horizontal 6043
ZigZag 784

ContainsEpsilon 4185
ContainsFailure 69
ContainsUniversal 825
ContainsString 1889
ContainsInteger 343
ContainsOptional 6554
ContainsPlus 4586
ContainsStar 3080
ContainsSepListPlus 55
ContainsSepListStar 142
ContainsDisjunction 2804
ContainsSelectors 17328
ContainsLabels 132
ContainsSequence 19447
AbstractSyntax 29299

ExprMidLayer

logical-or-expression ::= logical-and-expression

| logical-or-expression "||" logical-and-expression ;

logical-and-expression ::= inclusive-or-expression

| logical-and-expression "&&" inclusive-or-expression ;

... (12 layers skipped) ...

primary-expression ::= literal | "this"

| "(" expression ")" | id-expression ;

(ISO/IEC 14882:1998(E) C++)

Based on multiple occurrences of such an implementation pattern in the

Grammar Zoo, we have designed the following two micropatterns:

– ExprMidLayer: one alternative is a nonterminal, the others are sequences of

a nonterminal, a terminal and another nonterminal;

– ExprLowLayer: one alternative is a sequence of a terminal, a nonterminal and

another terminal, where the two terminals form a symmetric bracketing pair,

the others are solitary terminals or solitary nonterminals.

As one can see, these micropatterns are defined locally and do not enforce

any complicated constraints (e.g., concerning the nonterminal between brackets

in ExprLowLayer), which could possibly result in false positives, but satisfies our

requirements from section 1.

Similarly, we can look for “yaccified” definitions that emulate repetition

metasymbols with recursive patterns. A yaccified definition [18,22] is named af-

ter YACC [17], a compiler compiler, the old versions of which required explicitly

defined recursive nonterminals. Instead of writing:

X ::= Y+ ;

one would write:

X ::= Y ;

X ::= X Y ;

because in LALR parsers like YACC, left recursion was preferred to right

recursion (contrary to recursive descent parsers, which are unable to process

left recursion directly at all). The use of metalanguage constructs X+ and X*
is technology-agnostic, and the compiler compiler can make its own decisions

about the particular way of implementation, and will neither crash nor have to

perform any transformations behind the scenes. However, as can be seen from

Table 3, many existing grammars contain yaccified definitions, and usually the

first step in any project that attempts to reuse such grammars for practical

purposes, starts with deyaccification [22,25,35, etc].

3.4 Naming

Research on naming conventions has enjoyed a lot of interest in the scopes of

program analysis and comprehension [4] and code refactorings that recommend

ExprMidLayer

ExprLowLayer

Naming micropatterns

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

LowerCase 3323 8.10%
Naming

MixedCase 1706 4.16%

Naming

MultiWord 31816 77.53%

Naming

UpperCase 2073 5.05%
Total coverage 40,562 98.84%

Naming, lax CamelCaseLax 18332 44.67%Naming, lax
LowerCaseLax 17840 43.47%

Naming, lax

MixedCaseLax 1969 4.80%

Naming, lax

MultiWordLax 32290 78.68%

Naming, lax

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%

40562 41038
CamelCase 16704 40562 41038
LowerCase 3323 40562 41038
MixedCase 1706 40562 41038
MultiWord 31816 40562 41038
UpperCase 2073 40562 41038
CamelCaseLax 18332 40562 41038
LowerCaseLax 17840 40562 41038
MixedCaseLax 1969 40562 41038
MultiWordLax 32290 40562 41038
UpperCaseLax 2412 40562 41038

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563

All clasified!

All clasified?

Express_metamodel::Core::GeneralARRAYType

Concrete syntax

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

CamelCaseLax 18332 44.67%
Naming

LowerCase 3323 8.10%

Naming

LowerCaseLax 17840 43.47%

Naming

MixedCase 1706 4.16%

Naming

MixedCaseLax 1969 4.80%

Naming

MultiWord 31816 77.53%

Naming

MultiWordLax 32290 78.68%

Naming

UpperCase 2073 5.05%

Naming

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 3,697 9.01%

Structure

Horizontal 6,043 14.73%

Structure

ZigZag 784 1.91%
Total coverage 39,727 96.81%

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsSequence 19,447 47.39%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

Category Pattern Matches Prevalence
Sugar FakeOptional 134 0.33%Sugar

FakeSepList 624 1.52%
Sugar

ExprMidLayer 349 0.85%

Sugar

ExprLowLayer 30 0.07%

Sugar

YaccifiedPlusLeft 354 0.86%

Sugar

YaccifiedPlusRight 6 0.01%

Sugar

YaccifiedStarLeft 0 0.00%

Sugar

YaccifiedStarRight 0 0.00%
Total coverage 1,222 2.98%

FakeOptional 134
FakeSepList 624
ExprMidLayer 349
ExprLowLayer 30
YaccifiedPlusLeft 354
YaccifiedPlusRight 6
YaccifiedStarLeft 0
YaccifiedStarRight 0

Empty 3028
Failure 69
ReflexiveChain 0
AChain 5404
JustChains 1045
JustOneChain 2063
JustOptional 48
JustPlus 199
JustStar 130
JustSepListPlus 28
JustSepListStar 32
NTorT 123
NTorTS 155
NTSorT 144
TSorNT 47

Category Pattern Matches Prevalence
Folding Empty 3028 7.38%Folding

Failure 69 0.17%
Folding

ReflexiveChain 0 0.00%

Folding

AChain 5404 13.17%

Folding

JustChains 1045 2.55%

Folding

JustOneChain 2063 5.03%

Folding

JustOptional 48 0.12%

Folding

JustPlus 199 0.48%

Folding

JustStar 130 0.32%

Folding

JustSepListPlus 28 0.07%

Folding

JustSepListStar 32 0.08%

Folding

NTorT 123 0.30%

Folding

NTorTS 155 0.38%

Folding

NTSorT 144 0.35%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.62%Template

BracketSelf 2 0.00% 0.04%
Template

Bracket 109 0.27% 2.26%

Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 112 0.27% 2.32%

Template

BracketedPlus 5 0.01% 0.10%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 104 0.25% 2.16%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 3002 7.32% 62.22%

Template

DistinguishByTerm 917 2.23% 19.01%
Total coverage 4,825 11.76%

4,825
Constructor 657 4,825
BracketSelf 2 4,825
Bracket 109 4,825
BracketedFakeSepList 56 4,825
BracketedFakeSLStar 10 4,825
BracketedOptional 112 4,825
BracketedPlus 5 4,825
BracketedSepListPlus 8 4,825
BracketedSepListStar 24 4,825
BracketedStar 15 4,825
Delimited 104 4,825
ElementAccess 25 4,825
PureSequence 3002 4,825
DistinguishByTerm 917 4,825

CamelCase 16704
CamelCaseLax 18332
LowerCase 3323
LowerCaseLax 17840
MixedCase 1706
MixedCaseLax 1969
MultiWord 31816
MultiWordLax 32290
UpperCase 2073
UpperCaseLax 2412

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563
Leaf 9467
Top 3245
MultiRoot 1
Bottom 1311
Disallowed 69
Singleton 29134
Vertical 3697
Horizontal 6043
ZigZag 784

ContainsEpsilon 4185
ContainsFailure 69
ContainsUniversal 825
ContainsString 1889
ContainsInteger 343
ContainsOptional 6554
ContainsPlus 4586
ContainsStar 3080
ContainsSepListPlus 55
ContainsSepListStar 142
ContainsDisjunction 2804
ContainsSelectors 17328
ContainsLabels 132
ContainsSequence 19447
AbstractSyntax 29299

exit_qualifier ::= ("__exit" | "exit__" | "exit" | "__exit__") ;

(TXL C Basis Grammar 5.2)

– Operator: defined with one production rule, which right hand side is a strictly
non-alphanumeric word:
formal_discrete_type_definition ::= "(<>)" ;

(Magnus Kempe Ada 95)

right-shift-assignment ::= ">>=" ;

(Microsoft C# 4.0)

empty-statement ::= ";" ;

(ECMA-334 C# 1.0)

– Operators: a horizontal or vertical definition with all alternatives being op-
erators:
relational_operator ::= ("=" | "/=" | "<" | "<=" | ">" | ">=") ;

(Lämmel-Verhoef Ada 95)

PostfixOp ::= "++" ;

PostfixOp ::= "--" ;

(JLS Third Edition Java, implementable)

equalityOperator ::= ("==" | "!=" | "===" | "!==") ;

(Google Dart 0.01)

– OperatorsMixed: a horizontal or vertical definition with some alternatives be-
ing operators and some being keywords:
typeModifier ::= ("opt" | "repeat" | "list" | "attr" | "see" | "not"

| "push" | "pop" | ":" | "~" | ">" | "<") ;

(TXL Basis Grammar for TXL 10.5)

op ::= (">" | "<" | "<=" | ">=" | "<>" | "=" | "in" | "is" | "+" | "-"

| "or" | "xor" | "*" | "/" | "div" | "mod" | "and" | "shl" | "shr"

| "DIV" | "AND") ;

(TXL Basis Grammar for Borland Delphi Object Pascal 1.1)

overloadable_unary_operator ::= ("+" | "-" | "!" | "~" | "++" | "--"

| "true" | "false") ;

(Validated TXL Basis Grammar for C# Edition 3)

– Words: a sequential and/or repetitive composition of keywords:
simpleDerivationSet ::= "#all" | ("list" | "union" | "restriction")*

(RELAX NG schema for XML Schema)

mml.lines.datatype ::= ("none" | "solid" | "dashed")+

(TESCOL 10001)

– Tokens: a sequential and/or repetitive composition of nontrivial non-keywords:
WS ::= (" " | "\t" | "\r" | "\n")+ ;

(TESCOL 10100)

– Modifiers: a horizontal or vertical definition with all alternatives being com-
binations of same keywords:
mode ::= ("in"? | ("in" "out") | "out") ;

(LNCS 4348, Ada 2005)

static_constructor_modifiers ::=

(("extern"? "static") | ("static" "extern"?)) ;

(Validated TXL Basis Grammar for C# 3)

exit_qualifier ::= ("__exit" | "exit__" | "exit" | "__exit__") ;

(TXL C Basis Grammar 5.2)

– Operator: defined with one production rule, which right hand side is a strictly
non-alphanumeric word:
formal_discrete_type_definition ::= "(<>)" ;

(Magnus Kempe Ada 95)

right-shift-assignment ::= ">>=" ;

(Microsoft C# 4.0)

empty-statement ::= ";" ;

(ECMA-334 C# 1.0)

– Operators: a horizontal or vertical definition with all alternatives being op-
erators:
relational_operator ::= ("=" | "/=" | "<" | "<=" | ">" | ">=") ;

(Lämmel-Verhoef Ada 95)

PostfixOp ::= "++" ;

PostfixOp ::= "--" ;

(JLS Third Edition Java, implementable)

equalityOperator ::= ("==" | "!=" | "===" | "!==") ;

(Google Dart 0.01)

– OperatorsMixed: a horizontal or vertical definition with some alternatives be-
ing operators and some being keywords:
typeModifier ::= ("opt" | "repeat" | "list" | "attr" | "see" | "not"

| "push" | "pop" | ":" | "~" | ">" | "<") ;

(TXL Basis Grammar for TXL 10.5)

op ::= (">" | "<" | "<=" | ">=" | "<>" | "=" | "in" | "is" | "+" | "-"

| "or" | "xor" | "*" | "/" | "div" | "mod" | "and" | "shl" | "shr"

| "DIV" | "AND") ;

(TXL Basis Grammar for Borland Delphi Object Pascal 1.1)

overloadable_unary_operator ::= ("+" | "-" | "!" | "~" | "++" | "--"

| "true" | "false") ;

(Validated TXL Basis Grammar for C# Edition 3)

– Words: a sequential and/or repetitive composition of keywords:
simpleDerivationSet ::= "#all" | ("list" | "union" | "restriction")*

(RELAX NG schema for XML Schema)

mml.lines.datatype ::= ("none" | "solid" | "dashed")+

(TESCOL 10001)

– Tokens: a sequential and/or repetitive composition of nontrivial non-keywords:
WS ::= (" " | "\t" | "\r" | "\n")+ ;

(TESCOL 10100)

– Modifiers: a horizontal or vertical definition with all alternatives being com-
binations of same keywords:
mode ::= ("in"? | ("in" "out") | "out") ;

(LNCS 4348, Ada 2005)

static_constructor_modifiers ::=

(("extern"? "static") | ("static" "extern"?)) ;

(Validated TXL Basis Grammar for C# 3)

exit_qualifier ::= ("__exit" | "exit__" | "exit" | "__exit__") ;

(TXL C Basis Grammar 5.2)

– Operator: defined with one production rule, which right hand side is a strictly
non-alphanumeric word:
formal_discrete_type_definition ::= "(<>)" ;

(Magnus Kempe Ada 95)

right-shift-assignment ::= ">>=" ;

(Microsoft C# 4.0)

empty-statement ::= ";" ;

(ECMA-334 C# 1.0)

– Operators: a horizontal or vertical definition with all alternatives being op-
erators:
relational_operator ::= ("=" | "/=" | "<" | "<=" | ">" | ">=") ;

(Lämmel-Verhoef Ada 95)

PostfixOp ::= "++" ;

PostfixOp ::= "--" ;

(JLS Third Edition Java, implementable)

equalityOperator ::= ("==" | "!=" | "===" | "!==") ;

(Google Dart 0.01)

– OperatorsMixed: a horizontal or vertical definition with some alternatives be-
ing operators and some being keywords:
typeModifier ::= ("opt" | "repeat" | "list" | "attr" | "see" | "not"

| "push" | "pop" | ":" | "~" | ">" | "<") ;

(TXL Basis Grammar for TXL 10.5)

op ::= (">" | "<" | "<=" | ">=" | "<>" | "=" | "in" | "is" | "+" | "-"

| "or" | "xor" | "*" | "/" | "div" | "mod" | "and" | "shl" | "shr"

| "DIV" | "AND") ;

(TXL Basis Grammar for Borland Delphi Object Pascal 1.1)

overloadable_unary_operator ::= ("+" | "-" | "!" | "~" | "++" | "--"

| "true" | "false") ;

(Validated TXL Basis Grammar for C# Edition 3)

– Words: a sequential and/or repetitive composition of keywords:
simpleDerivationSet ::= "#all" | ("list" | "union" | "restriction")*

(RELAX NG schema for XML Schema)

mml.lines.datatype ::= ("none" | "solid" | "dashed")+

(TESCOL 10001)

– Tokens: a sequential and/or repetitive composition of nontrivial non-keywords:
WS ::= (" " | "\t" | "\r" | "\n")+ ;

(TESCOL 10100)

– Modifiers: a horizontal or vertical definition with all alternatives being com-
binations of same keywords:
mode ::= ("in"? | ("in" "out") | "out") ;

(LNCS 4348, Ada 2005)

static_constructor_modifiers ::=

(("extern"? "static") | ("static" "extern"?)) ;

(Validated TXL Basis Grammar for C# 3)

Category Pattern Matches Prevalence
Naming CamelCase 16704 40.70%Naming

CamelCaseLax 18332 44.67%
Naming

LowerCase 3323 8.10%

Naming

LowerCaseLax 17840 43.47%

Naming

MixedCase 1706 4.16%

Naming

MixedCaseLax 1969 4.80%

Naming

MultiWord 31816 77.53%

Naming

MultiWordLax 32290 78.68%

Naming

UpperCase 2073 5.05%

Naming

UpperCaseLax 2412 5.88%
Total coverage 41,038 100.00%

Category Pattern Matches Prevalence Frequency
Concrete Preterminal 3249 7.92% 100.00%Concrete

Keyword 906 2.21% 27.89%
Concrete

Keywords 1774 4.32% 54.60%

Concrete

Operator 1001 2.44% 30.81%

Concrete

Operators 1190 2.90% 36.63%

Concrete

OperatorsMixed 110 0.27% 3.39%

Concrete

Words 40 0.10% 1.23%

Concrete

Tokens 34 0.08% 1.05%

Concrete

Modifiers 19 0.05% 0.58%

Concrete

Range 730 1.78% 22.47%

Concrete

NumericLiteral 51 0.12% 1.57%

Concrete

LiteralSimple 15 0.04% 0.46%

Concrete

LiteralFirstRest 62 0.15% 1.91%

Concrete

EmptyStatement 30 0.07% 0.92%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 3,697 9.01%

Structure

Horizontal 6,043 14.73%

Structure

ZigZag 784 1.91%
Total coverage 39,727 96.81%

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsSequence 19,447 47.39%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,522 89.00%

Category Pattern Matches Prevalence
Sugar FakeOptional 134 0.33%Sugar

FakeSepList 624 1.52%
Sugar

ExprMidLayer 349 0.85%

Sugar

ExprLowLayer 30 0.07%

Sugar

YaccifiedPlusLeft 354 0.86%

Sugar

YaccifiedPlusRight 6 0.01%

Sugar

YaccifiedStarLeft 0 0.00%

Sugar

YaccifiedStarRight 0 0.00%
Total coverage 1,222 2.98%

FakeOptional 134
FakeSepList 624
ExprMidLayer 349
ExprLowLayer 30
YaccifiedPlusLeft 354
YaccifiedPlusRight 6
YaccifiedStarLeft 0
YaccifiedStarRight 0

Empty 3028
Failure 69
ReflexiveChain 0
AChain 5404
JustChains 1045
JustOneChain 2063
JustOptional 48
JustPlus 199
JustStar 130
JustSepListPlus 28
JustSepListStar 32
NTorT 123
NTorTS 155
NTSorT 144
TSorNT 47

Category Pattern Matches Prevalence
Folding Empty 3028 7.38%Folding

Failure 69 0.17%
Folding

ReflexiveChain 0 0.00%

Folding

AChain 5404 13.17%

Folding

JustChains 1045 2.55%

Folding

JustOneChain 2063 5.03%

Folding

JustOptional 48 0.12%

Folding

JustPlus 199 0.48%

Folding

JustStar 130 0.32%

Folding

JustSepListPlus 28 0.07%

Folding

JustSepListStar 32 0.08%

Folding

NTorT 123 0.30%

Folding

NTorTS 155 0.38%

Folding

NTSorT 144 0.35%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.62%Template

BracketSelf 2 0.00% 0.04%
Template

Bracket 109 0.27% 2.26%

Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 112 0.27% 2.32%

Template

BracketedPlus 5 0.01% 0.10%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 104 0.25% 2.16%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 3002 7.32% 62.22%

Template

DistinguishByTerm 917 2.23% 19.01%
Total coverage 4,825 11.76%

4,825
Constructor 657 4,825
BracketSelf 2 4,825
Bracket 109 4,825
BracketedFakeSepList 56 4,825
BracketedFakeSLStar 10 4,825
BracketedOptional 112 4,825
BracketedPlus 5 4,825
BracketedSepListPlus 8 4,825
BracketedSepListStar 24 4,825
BracketedStar 15 4,825
Delimited 104 4,825
ElementAccess 25 4,825
PureSequence 3002 4,825
DistinguishByTerm 917 4,825

CamelCase 16704
CamelCaseLax 18332
LowerCase 3323
LowerCaseLax 17840
MixedCase 1706
MixedCaseLax 1969
MultiWord 31816
MultiWordLax 32290
UpperCase 2073
UpperCaseLax 2412

Preterminal 3249 3,249
Keyword 906 3,249
Keywords 1774 3,249
Operator 1001 3,249
Operators 1190 3,249
OperatorsMixed 110 3,249
Words 40 3,249
Tokens 34 3,249
Modifiers 19 3,249
Range 730 3,249
NumericLiteral 51 3,249
LiteralSimple 15 3,249
LiteralFirstRest 62 3,249
EmptyStatement 30 3,249

Root 563
Leaf 9467
Top 3245
MultiRoot 1
Bottom 1311
Disallowed 69
Singleton 29134
Vertical 3697
Horizontal 6043
ZigZag 784

ContainsEpsilon 4185
ContainsFailure 69
ContainsUniversal 825
ContainsString 1889
ContainsInteger 343
ContainsOptional 6554
ContainsPlus 4586
ContainsStar 3080
ContainsSepListPlus 55
ContainsSepListStar 142
ContainsDisjunction 2804
ContainsSelectors 17328
ContainsLabels 132
ContainsSequence 19447
AbstractSyntax 29299

Table 5. Concrete syntax micropatterns

– Range: a choice of trivial terminals:
Integer_base_letter ::= ("b" | "c" | "x" | "B" | "C" | "X") ;

(ISO/IEC 25436:2006(E) Eiffel)

DIGIT ::= ("0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9") ;

(ANTLR Google Dart)

– NumericLiteral: a possibly signed repetition of choice of digits:
HEX_DIGIT ::= ("0" | "1" | ... | "9" | "A" | ... | "F" | "a" | ... | "f") ;

(Michael Studman Java 5)

INT ::= ("+" | "-")? ("0" | (("1" | ... | "9") ("0" | "1" | ... | "9")*)) ;

(TESCOL 00011)

– LiteralSimple: a repetition of a range of trivial terminals:
[NT-Digits] Digits ::= ("0" | "1" | "2" | "3" | ... | "8" | "9")+ ;

(W3C XPath 1.0)

– LiteralFirstRest: a choice of terminals followed by a Kleene star over a choice
of terminals:
IDENT ::= ("a" | ... | "z" | "A" | ... | "Z" | "_" | "$")

("a" | ... | "z" | "A" | ... | "Z" | "_" | "0" | ... | "9" | "$")* ;

(Michael Studman Java 5)

VARID ::= ("A" | ... | "Z" | "a" | ... | "z")

("A" | ... | "Z" | "a" | ... | "z" | "0" | ... | "9" | "_")* ;

(TESCOL 10110)

– EmptyStatement: a keyword followed by a semicolon:
terminate_alternative ::= "terminate" ";" ;

null_statement ::= "null" ";" ;

(ISO/IEC 8652/1995(E) LNCS 2219 Ada 95)

Words

LiteralFirst Rest

OperatorsMixed

Keywords

Normal forms

Category Pattern Matches Prevalence
Naming CamelCase 16,704 40.70%Naming

MixedCase 5,029 12.25%
Naming

LowerCase 3,323 8.10%

Naming

UpperCase 2,073 5.05%

Naming

MultiWord 28,487 69.42%
Total coverage 37,233 90.73%

Category Pattern Matches Prevalence
Concrete Preterminal 3,249 7.92%Concrete

LiteralSimple 49 0.12%
Concrete

LiteralFirstRest 62 0.15%

Concrete

LiteralSigned 13 0.03%

Concrete

LiteralNillable 1 0.002%
Total coverage 3,249 7.92%

Category Pattern Matches Prevalence
Global Root 563 1.37%Global

Leaf 9,467 23.07%
Global

Top 3,245 7.91%

Global

MultiRoot 1 0.002%

Global

Bottom 1,311 3.19%
Total coverage 12,459 30.36%

Structure Disallowed 69 0.17%Structure
Singleton 29,134 70.99%

Structure

Vertical 4,481 10.92%

Structure

Horizontal 6,043 14.73%
Total coverage 39,727 96.81%

Category Pattern Matches Prevalence
Metasyntax ContainsEpsilon 4,185 10.20%Metasyntax

ContainsFailure 69 0.17%
Metasyntax

ContainsUniversal 825 2.01%

Metasyntax

ContainsString 1,889 4.60%

Metasyntax

ContainsInteger 343 0.84%

Metasyntax

ContainsOptional 6,554 15.97%

Metasyntax

ContainsPlus 4,586 11.18%

Metasyntax

ContainsStar 3,080 7.51%

Metasyntax

ContainsMarked 0 0.00%

Metasyntax

ContainsSepListStar 142 0.35%

Metasyntax

ContainsSepListPlus 55 0.13%

Metasyntax

ContainsSelectors 17,328 42.22%

Metasyntax

ContainsLabels 132 0.32%

Metasyntax

ContainsConjunction 0 0.00%

Metasyntax

ContainsDisjunction 2,804 6.83%

Metasyntax

ContainsNegation 0 0.00%

Metasyntax

ContainsSequence 19,475 47.46%

Metasyntax

AbstractSyntax 29,299 71.39%
Total coverage 36,540 89.04%

Category Pattern Matches Prevalence
Sugar FakeOptional 134 0.33%Sugar

FakeSepList 624 1.52%
Sugar

ExprMidLayer 349 0.85%

Sugar

ExprLowLayer 30 0.07%

Sugar

YaccifiedPlusLeft 354 0.86%

Sugar

YaccifiedPlusRight 6 0.01%

Sugar

YaccifiedStarLeft 0 0.00%

Sugar

YaccifiedStarRight 0 0.00%
Total coverage 1,224 2.98%

FakeOptional 134
FakeSepList 624
ExprMidLayer 349
ExprLowLayer 30
YaccifiedPlusLeft 354
YaccifiedPlusRight 6
YaccifiedStarLeft 0
YaccifiedStarRight 0

Empty 3028
Failure 69
ReflexiveChain 0
AChain 5404
JustChains 1045
JustOneChain 2063
JustOptional 48
JustPlus 199
JustStar 130
JustSepListPlus 28
JustSepListStar 32
NTorT 123
NTorTS 155
NTSorT 144
TSorNT 47

Category Pattern Matches Prevalence
Folding Empty 3028 7.38%Folding

Failure 69 0.17%
Folding

ReflexiveChain 0 0.00%

Folding

AChain 5404 13.17%

Folding

JustChains 1045 2.55%

Folding

JustOneChain 2063 5.03%

Folding

JustOptional 48 0.12%

Folding

JustPlus 199 0.48%

Folding

JustStar 130 0.32%

Folding

JustSepListPlus 28 0.07%

Folding

JustSepListStar 32 0.08%

Folding

NTorT 123 0.30%

Folding

NTorTS 155 0.38%

Folding

NTSorT 144 0.35%
Total coverage 9,226 22.48%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%
Total coverage 28,168 68.64%

CNF 5365
GNF 3074
ANF 26269

Category Pattern Matches Prevalence
Template Constructor 657 1.60%Template

BracketSelf 2 0.00%
Template

Bracket 109 0.27%

Template

BracketedFakeSepList 56 0.14%

Template

BracketedFakeSLStar 10 0.02%

Template

BracketedOptional 112 0.27%

Template

BracketedPlus 5 0.01%

Template

BracketedSepListPlus 8 0.02%

Template

BracketedSepListStar 24 0.06%

Template

BracketedStar 15 0.04%

Template

Delimited 104 0.25%

Template

ElementAccess 25 0.06%

Template

PureSequence 3002 7.32%

Template

DistinguishByTerm 917 2.23%
Total coverage 4,825 11.76%

Constructor 657
BracketSelf 2
Bracket 109
BracketedFakeSepList 56
BracketedFakeSLStar 10
BracketedOptional 112
BracketedPlus 5
BracketedSepListPlus 8
BracketedSepListStar 24
BracketedStar 15
Delimited 104
ElementAccess 25
PureSequence 3002
DistinguishByTerm 917

Folding/unfolding

Category Pattern Matches Prevalence Frequency
Sugar FakeOptional 134 0.33% 10.89%Sugar

FakeSepList 624 1.52% 50.69%
Sugar

ExprMidLayer 349 0.85% 28.35%

Sugar

ExprLowLayer 39 0.10% 3.17%

Sugar

YaccifiedPlusLeft 354 0.86% 28.76%

Sugar

YaccifiedPlusRight 6 0.01% 0.49%

Sugar

YaccifiedStarLeft 0 0.00% 0.00%

Sugar

YaccifiedStarRight 0 0.00% 0.00%
Total coverage 1,231 3.00%

1231
ExprMidLayer 349 1231
ExprLowLayer 39 1231
YaccifiedPlusLeft 354 1231
YaccifiedPlusRight 6 1231
YaccifiedStarLeft 0 1231
YaccifiedStarRight 0 1231

9300
Empty 3028 9300
Failure 69 9300
JustOptional 48 9300
JustPlus 199 9300
JustStar 130 9300
JustSepListPlus 28 9300
JustSepListStar 32 9300
JustChains 1045 9300
JustOneChain 2065 9300
ReflexiveChain 0 9300
ChainOrTerminal 145 9300
ChainsAndTerminals 290 9300
AChain 5503 9300

Category Pattern Matches Prevalence Frequency
Folding Empty 3,028 7.38% 32.56%Folding

Failure 69 0.17% 0.74%
Folding

JustOptional 48 0.12% 0.52%

Folding

JustPlus 199 0.48% 2.14%

Folding

JustStar 130 0.32% 1.40%

Folding

JustSepListPlus 28 0.07% 0.30%

Folding

JustSepListStar 32 0.08% 0.34%

Folding

JustChains 1,045 2.55% 11.24%

Folding

JustOneChain 2,065 5.03% 22.20%

Folding

ReflexiveChain 0 0.00% 0.00%

Folding

ChainOrTerminal 145 0.35% 1.56%

Folding

ChainsAndTerminals 290 0.71% 3.12%
Total coverage 9,300 22.66%

Category Pattern Matches Prevalence
Normal CNF 5,365 13.07%Normal

GNF 3,074 7.49%
Normal

ANF 26,269 64.01%

CNF 5365
GNF 3074
ANF 26269

Empty
Failure
JustOptional
JustPlus
JustStar
JustSepListPlus
JustSepListStar
JustChains
JustOneChain
ReflexiveChain
ChainOrTerminal
ChainsAndTerminals
AChain

Category Pattern Matches Prevalence
Total coverage 28,168 68.64%

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.56%Template

Bracket 132 0.32% 2.73%
Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 117 0.29% 2.42%

Template

BracketedPlus 6 0.01% 0.12%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 81 0.20% 1.67%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 2,999 7.31% 61.91%

Template

DistinguishByTerm 933 2.27% 19.26%
Total coverage 4,844 11.80%

4,844
Constructor 657 4,844
BracketSelf 2 4,844
Bracket 132 4,844
BracketedFakeSepList 56 4,844
BracketedFakeSLStar 10 4,844
BracketedOptional 117 4,844
BracketedPlus 6 4,844
BracketedSepListPlus 8 4,844
BracketedSepListStar 24 4,844
BracketedStar 15 4,844
Delimited 81 4,844
ElementAccess 25 4,844
PureSequence 2999 4,844
DistinguishByTerm 933 4,844

4,844

Category Pattern Matches Prevalence
Total coverage 28,168 68.64%

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.56%Template

Bracket 132 0.32% 2.73%
Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 117 0.29% 2.42%

Template

BracketedPlus 6 0.01% 0.12%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 81 0.20% 1.67%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 2,999 7.31% 61.91%

Template

DistinguishByTerm 933 2.27% 19.26%
Total coverage 4,844 11.80%

4,844
Constructor 657 4,844
BracketSelf 2 4,844
Bracket 132 4,844
BracketedFakeSepList 56 4,844
BracketedFakeSLStar 10 4,844
BracketedOptional 117 4,844
BracketedPlus 6 4,844
BracketedSepListPlus 8 4,844
BracketedSepListStar 24 4,844
BracketedStar 15 4,844
Delimited 81 4,844
ElementAccess 25 4,844
PureSequence 2999 4,844
DistinguishByTerm 933 4,844

4,844

Table 8. Template micropatterns

– Constructor: a named (non-empty production label or a top-level selector)
empty term (ε);

– Bracket: a bracket-delimited nonterminal:
Explicit_creation_type ::= "{" Type "}" ;

Actual_generics ::= "[" Type_list "]" ;

Parenthesized ::= "(" Expression ")" ;

External_system_file ::= "<" Simple_string ">" ;

(ISO/IEC 25436:2006(E) Eiffel)

– BracketedFakeSepList: a bracket-delimited explicitly encoded separator list:
typeParameters ::= "<" typeParameter ("," typeParameter)* ">" ;

namedFormalParameters ::= "[" defaultFormalParameter

("," defaultFormalParameter)* "]" ;

(ANTLR Google Dart)

template ::= "{{" title ("|" part)* "}}" ;

tplarg ::= "{{{" title ("|" part)* "}}}" ;

(EBNF MediaWiki)

– BracketedFakeSLStar: a bracket-delimited possibly empty separator list;

– BracketedOptional: a bracket-delimited optional reference to another nonter-
minal;

– BracketedPlus: a bracket-delimited one-or-more repetition of a nonterminal;

– BracketedSepListPlus: a bracket-delimited separator list;

– BracketedSepListStar: a bracket-delimited possibly empty separator list;

– BracketedStar: a bracket-delimited zero-or-more repetition of a nonterminal;

Category Pattern Matches Prevalence
Total coverage 28,168 68.64%

Category Pattern Matches Prevalence Frequency
Template Constructor 657 1.60% 13.56%Template

Bracket 132 0.32% 2.73%
Template

BracketedFakeSepList 56 0.14% 1.16%

Template

BracketedFakeSLStar 10 0.02% 0.21%

Template

BracketedOptional 117 0.29% 2.42%

Template

BracketedPlus 6 0.01% 0.12%

Template

BracketedSepListPlus 8 0.02% 0.17%

Template

BracketedSepListStar 24 0.06% 0.50%

Template

BracketedStar 15 0.04% 0.31%

Template

Delimited 81 0.20% 1.67%

Template

ElementAccess 25 0.06% 0.52%

Template

PureSequence 2,999 7.31% 61.91%

Template

DistinguishByTerm 933 2.27% 19.26%
Total coverage 4,844 11.80%

4,844
Constructor 657 4,844
BracketSelf 2 4,844
Bracket 132 4,844
BracketedFakeSepList 56 4,844
BracketedFakeSLStar 10 4,844
BracketedOptional 117 4,844
BracketedPlus 6 4,844
BracketedSepListPlus 8 4,844
BracketedSepListStar 24 4,844
BracketedStar 15 4,844
Delimited 81 4,844
ElementAccess 25 4,844
PureSequence 2999 4,844
DistinguishByTerm 933 4,844

4,844

Table 8. Template micropatterns

– Constructor: a named (non-empty production label or a top-level selector)
empty term (ε);

– Bracket: a bracket-delimited nonterminal:
Explicit_creation_type ::= "{" Type "}" ;

Actual_generics ::= "[" Type_list "]" ;

Parenthesized ::= "(" Expression ")" ;

External_system_file ::= "<" Simple_string ">" ;

(ISO/IEC 25436:2006(E) Eiffel)

– BracketedFakeSepList: a bracket-delimited explicitly encoded separator list:
typeParameters ::= "<" typeParameter ("," typeParameter)* ">" ;

namedFormalParameters ::= "[" defaultFormalParameter

("," defaultFormalParameter)* "]" ;

(ANTLR Google Dart)

template ::= "{{" title ("|" part)* "}}" ;

tplarg ::= "{{{" title ("|" part)* "}}}" ;

(EBNF MediaWiki)

– BracketedFakeSLStar: a bracket-delimited possibly empty separator list;

– BracketedOptional: a bracket-delimited optional reference to another nonter-
minal;

– BracketedPlus: a bracket-delimited one-or-more repetition of a nonterminal;

– BracketedSepListPlus: a bracket-delimited separator list;

– BracketedSepListStar: a bracket-delimited possibly empty separator list;

– BracketedStar: a bracket-delimited zero-or-more repetition of a nonterminal;

– Delimited: a sequence of symbols delimited by non-bracketing terminals:
RecordType ::= "RECORD" Fields "END" ;

LoopStmt ::= "LOOP" Stmts "END" ;

(SDF Modula 3)

– ElementAccess: a nonterminal followed by a bracketed nonterminal:
slice ::= prefix "(" discrete_range ")" ;

(LNCS 4348, Ada 2005)

libraryDefinition ::= LIBRARY "{" libraryBody "}" ;

(ANTLR Google Dart)

ArrayDeclarator ::= VariableName "(" ArraySpec ")" ;

StructureConstructor ::= TypeName "(" ExprList ")" ;

(TXL Fortran 77/90)

– PureSequence: a definition that uses purely sequential composition;
– DistinguishByTerm: a choice where each alternative starts with a terminal:

wildcard_type_bound ::= ("extends" type_specifier)

| ("super" type_specifier) ;

(TXL Java 1.5 Basis Grammar)

default_expression_OR_nodefault ::= ("default" expression)

| "nodefault" ;

(TXL Basis Grammar for Borland Delphi Object Pascal 1.1)

image-mode-manual-thumb ::= ("thumbnail=" image-name)

| ("thumb=" image-name) ;

(BNF MediaWiki)

4 Related work

An obviously related research topic to micropatterns are design patterns [13],
implementation patterns [3] and architectural patterns [11]. In the software lan-
guage engineering community, there is no widely accepted collection of “DSL de-
sign patterns”, but there is no shortage on papers and books with guidelines on
language design and implementation [31,16,33,1,27,19,12,30, 1965–2013]. Most
of these guidelines encapsulate their authors’ vision and experience, but are
still waiting to be formally organised, algorithmically expressed and verified. We
hope that the catalogue of micropatterns is a step toward that goal, even if a
small one. In [10], the main focuses of tool support for patterns were identified
as application, validation and discovery — of these three, micropatterns mostly
contribute to discovery.

Extending software metrics line of thinking to grammars can also be identi-
fied as a related domain to grammatical micropatterns. However, there are three
main differences between our work and grammar metric suites like gMetrics [7]
and SynC [28]. First, grammar metrics are used mostly for measurements, while
the main purpose of micropatterns is classification. One can compare grammars
based on their metrics, and one can cluster them by size, McCabe complexity
and other computed values, so this gap is not unbridgeable, but it is present. The
second issue is that grammar metrics work on the level of grammars, while mi-
cropatterns in this paper are formulated on the level of nonterminals. The third

– Delimited: a sequence of symbols delimited by non-bracketing terminals:
RecordType ::= "RECORD" Fields "END" ;

LoopStmt ::= "LOOP" Stmts "END" ;

(SDF Modula 3)

– ElementAccess: a nonterminal followed by a bracketed nonterminal:
slice ::= prefix "(" discrete_range ")" ;

(LNCS 4348, Ada 2005)

libraryDefinition ::= LIBRARY "{" libraryBody "}" ;

(ANTLR Google Dart)

ArrayDeclarator ::= VariableName "(" ArraySpec ")" ;

StructureConstructor ::= TypeName "(" ExprList ")" ;

(TXL Fortran 77/90)

– PureSequence: a definition that uses purely sequential composition;
– DistinguishByTerm: a choice where each alternative starts with a terminal:

wildcard_type_bound ::= ("extends" type_specifier)

| ("super" type_specifier) ;

(TXL Java 1.5 Basis Grammar)

default_expression_OR_nodefault ::= ("default" expression)

| "nodefault" ;

(TXL Basis Grammar for Borland Delphi Object Pascal 1.1)

image-mode-manual-thumb ::= ("thumbnail=" image-name)

| ("thumb=" image-name) ;

(BNF MediaWiki)

4 Related work

An obviously related research topic to micropatterns are design patterns [13],
implementation patterns [3] and architectural patterns [11]. In the software lan-
guage engineering community, there is no widely accepted collection of “DSL de-
sign patterns”, but there is no shortage on papers and books with guidelines on
language design and implementation [31,16,33,1,27,19,12,30, 1965–2013]. Most
of these guidelines encapsulate their authors’ vision and experience, but are
still waiting to be formally organised, algorithmically expressed and verified. We
hope that the catalogue of micropatterns is a step toward that goal, even if a
small one. In [10], the main focuses of tool support for patterns were identified
as application, validation and discovery — of these three, micropatterns mostly
contribute to discovery.

Extending software metrics line of thinking to grammars can also be identi-
fied as a related domain to grammatical micropatterns. However, there are three
main differences between our work and grammar metric suites like gMetrics [7]
and SynC [28]. First, grammar metrics are used mostly for measurements, while
the main purpose of micropatterns is classification. One can compare grammars
based on their metrics, and one can cluster them by size, McCabe complexity
and other computed values, so this gap is not unbridgeable, but it is present. The
second issue is that grammar metrics work on the level of grammars, while mi-
cropatterns in this paper are formulated on the level of nonterminals. The third

Bracket

BracketedFakeSL

Delimited

ElementAccess

Conclusion

Experiment is successful

Concise in Rascal

Empirical evidence is weak

Usefulness needs support

set[str] check4mp(bracketSLPlus(), GGrammar g) = {n | str n <- g.nts,
[production(n,sequence([

terminal(str x),
seplistplus(nonterminal(_),terminal(_)),
terminal(str y)]))

] := normanon(g.prods[n]),
bracketpair(x,y)};

Grammar
Smell

Detection
Tijs van der Storm, Jurgen Vinju, Vadim Zaytsev,

SWAT, CWI @ SLE 2014

coming soon:

Questions?

Summary:

Mining a big repo of grammars in a broad sense

Recognising purposeful, prevalent, simple, local
patterns in grammars

…

find me: vadim@grammarware.net

Rosino, douro patterns #2, 4 October 2010, CC-BY-SA.

mailto:vadim@grammarware.net?subject=IPA
mailto:vadim@grammarware.net?subject=IPA
http://grammarware.net
http://grammarware.net
http://www.flickr.com/photos/rosino/5064737599/
http://www.flickr.com/photos/rosino/5064737599/
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://creativecommons.org/licenses/by-sa/2.0/deed.en

