Notation-Parametric

Grammar Recovery

Twelfth International Workshop on Language
Descrlptlons, Tools and Applications (LDTA 2012)

Vadim Za ytsev, SWAT, CWI
@@ 2012

http://grammarware.net/
http://grammarware.net/
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/
http://www.cwi.nl/

Notation-Parametric
Grammar Recovery

Existing software artefacts with grammar knowledge
Grammar recovery

Problem: how to reuse grammar artefacts that are
written in different notations

EDD = EBNF Dialect Definition
edd2rsc and Grammar Hunter

Software Language Processing Suite

http://slps.sf.net/
http://slps.sf.net/

Grammar
recovery

progress and
- timeline

T T Tl T T T N O e O O L

Message Sequence Charts

o [TU Z.120, 1996

e Microsoft Word document

— PostScript document

e PostScript document

— ASCII file

e ASCII + extract.perl

— BNF rules

e .14 manual changes...

o Corrected BNF rules + script

— HTML

Development, Assessment, and Reengineering of Language Descriptions

Alex Sellink and Chris Verhoef

University of Amsterdam, Programming Research Group
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

alexQ@wins.uva.nl, xQ@wins.uva.nl

Abstract

We discuss tools that aid in the development, the assess-
ment and the reengineering of language descriptions. The
assessment tools give an indication as to what is wrong with
an existing language description, and give hints towards cor-
rection. From a correct and complete language description,
it is possible to generate a parser, a manual, and on-line
documentation. The parser is geared towards reengineering
purposes, but is also used to parse the examples that are
contained in the documentation. The reengineered language
description is a basic ingredient for a reengineering factory
that can manipulate this language. We demonstrate our ap-
proach with a proprietary language for real time embedded
software systems that is used in telecommunications indus-
try. The described tool support can also be used to develop
a language standard without syntax errors in the language
description and its code examples.

Categories and Subject Description: D.2.6 [Software En-
gineering|: Programming Environments Interactive; D.2.7
[Software Engineering]: Distribution and Maintenance—
Restructuring; D.3.4. [Processors]: Parsing.

Additional Key Words and Phrases: Reengineering, System reno-
vation, Language description development, Grammar reengineer-
ing, Document generation, Computer aided language engineering
(CALE), Message Sequence Charts.

1 Introduction
Since the emerge of computer languages, the need to de-
scribe languages in a precise way became an indispensable
part of computer science. In his paper on the syntax and
semantics of the proposed international algebraic language,
Backus [2] writes: ‘we shall need some metalinguistic con-
ventions for characterizing various strings of symbols. To
begin, we shall need metalinguistic formulae.’ Then he in-
troduced using an example what is now widely known as the
Backus-Naur Formalism. In virtually all documents that
give a precise language description the method of Backus is
used: first the syntax description notation is explained using
an example accompanied with some conventions, and then
the language description itself follows. In this way myriads
of dialects of the Backus-Naur Formalism emerged. They
are referred to as BNF, or EBNF, for extended BNF, or
metasyntax, metalanguage.

Language descriptions serve more than one purpose: they
are used as a guide to implement tools such as compilers or
they serve as a reference manual for users. We use language

descriptions to implement tools that serve the reengineer-
ing of those languages. Such grammar descriptions form the
basis of our approach towards reengineering. Let us give an
idea to make this more concrete. It is possible to generate
all kinds of prefab components that are useful in an environ-
ment for reengineering. We can generate a native pattern
language from a context-free grammar that can be used to
recognize code fragments [30]. It is possible to generate full
documentation for such a language [9]. In [8] we generate
components for software renovation factories. A sophisti-
cated parser can be generated from this grammar [17]. A
structured editor can be generated from the grammar [22].
It is also possible to generate complete programming envi-
ronments from context-free grammars. In order to gener-
ate such environments, one needs an environment as well.
The ASF+SDF Meta-Environment [19] is such an environ-
ment. We use it for the generation of tool factories [8]. SDF
stands for Syntax Definition Formalism [16], it can be used
to define the syntax of a lang age. ASF stands for Alge-
braic Specification Formalism [3], it can be used to describe
the semantics of a language. The combination is thus ad-
equate for defining syntax and semantics of languages and
the ASF+SDF Meta-Environment is the supporting envi-
ronment for both formalisms.

It is not a trivial task to construct a grammar for reengi-
neering purposes. First of all, such a grammar should have
certain properties that make reengineering easy. Secondly,
since reengineering problems do not have the habit to re-
side in small languages, the development process is time
consuming. For instance, many academics and companies
have struggled with a language definition for COBOL in or-
der to create a decent parser for reengineering targets. Due
to the myriad of COBOL dialects, it can be the case that
such a grammar itself needs reengineering. Such grammars
can suffer from large maintenance problems. In [7] this was
called the Year 1999 problem: before that date the gram-
mars had to be ready so that the generated parsers can be
used to analyze Year 2000 problems. We refer to [7] for an
overview of current parser technology that is used in reengi-
neering and problems that induce maintenance problems
on grammars. Since in reengineering, the grammar seems
to be the variable and the problem the constant, grammars
should be modifiable and tool support should be insensi-
tive to such modifications. Therefore, generating everything
from a grammar is in our opinion a solution. According to
[28] there are two problems with parser-based technology:
first the stringent constraints on the input, and second it
is problematic to extend existing parsers. We solve this by

Sellink, Verhoef, Development, Assessment, and Reengineering of Language Descriptions, CSMR 2000.

http://web.archive.org/web/19970625172502/http://www7.informatik.uni-erlangen.de/~nsfaltin/mscbnf/extract.perl
http://web.archive.org/web/19970625172502/http://www7.informatik.uni-erlangen.de/~nsfaltin/mscbnf/extract.perl
http://www.cs.vu.nl/~x/cale/
http://www.cs.vu.nl/~x/cale/

T T Tl T T T N O e O O L

Message Sequence Charts

o [TU Z.120, 1996

e Microsoft Word document
— PostScript document

e PostScript document
— ASCII file

e ASCII + extract.perl
— BNF rules

e .14 manual changes...

o Corrected BNF rules + script
— HTML

e Browse all the productions!

Development, Assessment, and Reengineering of Language Descriptions

Alex Sellink and Chris Verhoef

University of Amsterdam, Programming Research Group

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

alexQ@wins.uva.nl, xQ@wins.uva.nl

Abstract

We discuss tools that aid in the development, the assess-
ment and the reengineering of language descriptions. The
assessment tools give an indication as to what is wrong with
an existing language description, and give hints towards cor-
rection. From a correct and complete language description,
it is possible to generate a parser, a manual, and on-line
documentation. The parser is geared towards reengineering
purposes, but is also used to parse the examples that are
contained in the documentation. The reengineered language
description is a basic ingredient for a reengineering factory
that can manipulate this language. We demonstrate our ap-
proach with a proprietary language for real time embedded
software systems that is used in telecommunications indus-
try. The described tool support can also be used to develop
a language standard without syntax errors in the language
description and its code examples.

Categories and Subject Description: D.2.6 [Software En-
gineering|: Programming Environments Interactive; D.2.7
[Software Engineering]: Distribution and Maintenance—
Restructuring; D.3.4. [Processors]: Parsing.

Additional Key Wora and Phrases: Reengineering, System reno-
vation, Language desc. ‘on development, Grammar reengineer-
ing, Document generat: mputer aided langnage engineerins
(CALE), Message Sequ ts.

1 Introductio
Since the emerge of con.
scribe languages in a prec
part ot nuter science.
semantics « ~roposed i
Backus [2] w. * shall 1

Lions for che il

descriptions to implement tools that serve the reengineer-
ing of those languages. Such grammar descriptions form the
basis of our approach towards reengineering. Let us give an
idea to make this more concrete. It is possible to generate
all kinds of prefab components that are useful in an environ-
ment for reengineering. We can generate a native pattern
language from a context-free grammar that can be used to
recognize code fragments [30]. It is possible to generate full
documentation for such a language [9]. In [8] we generate
components for software renovation factories. A sophisti-
cated parser can be generated from this grammar [17]. A
structured editor can be generated from the grammar [22].
It is also possible to generate complete programming envi-
ronments from context-free grammars. In order to gener-
ate such environments, one needs an environment as well.
The ASF+SDF Meta-Environment [19] is such an environ-
ment. We use it for the generation of tool factories [8]. SDF
stands for Syntax Definition Formalism [16], it can be used
to define the syntax of a lang age. ASF stands for Alge-
braic Specification Formalism [3], it can be used to describe
the semantics of a language. The combination is thus ad-
equate for defining syntax and semantics of languages and
the ASF+SDF Meta-Fgzironment is the sunnorting envi-
ronment for both form s.

It is not a trivial task P constr amar for reengi-

neering purposes st of all nmar should have
certain prope’ aat v ring easy. Secondly,
since reen- > have the habit to re-

side i opment process is time

academics and companies

sefinition for COBOL in or-

or reengineering targets. Due

alects, it can be the case that

. reengineering. Such grammars

.enance problems. In [7] this was
slem: before that date the grar

that uerated parse e

ans. We re” _or an
.ologv * .0 reengi-
. .uce problems

. gramimar seems
constant, grammars

ort should be insensi-
re_senerating everything

—oud it
. solve this by

Sellink, Verhoef, Development, Assessment, and Reengineering of Language Descriptions, CSMR 2000.

http://web.archive.org/web/19970625172502/http://www7.informatik.uni-erlangen.de/~nsfaltin/mscbnf/extract.perl
http://web.archive.org/web/19970625172502/http://www7.informatik.uni-erlangen.de/~nsfaltin/mscbnf/extract.perl
http://www.cs.vu.nl/~x/cale/
http://www.cs.vu.nl/~x/cale/

T T Tl T T T N O e O O L

COBOL (dialects)

Obtaining a COBOL Grammar from Legacy Code for Reengineering

Purposes

Mark van den Brand, Alex Sellink, Chris Verhoef *

University of Amsterdam, Programming Research Group
Kruislaan 403, NL-1098 S.J Amsterdam, The Netherlands

markvdbQuins.uva.nl, alex@wins.uva.nl, xQwins.uva.nl

Abstract

We argue that maintenance and reengineering tools need
to have a thorough knowledge of the language that the
code is written in. More specifically, for the family of
COBOL languages we present a general method to define
COBOL dialects that are based on the actual code that
has to be reengineered or maintained. Subsequently, we
give some typical examples of maintenance and reengi-
neering tools that have been specified on top of such a
COBOL grammar in order to show that our approach is
useful and leads to accurate and relatively simple main-
tenance and reengineering tools.

Categories and Subject Description: D.2.6 [Software
Engineering]: Programming Environments Interactive;
D.2.7 [Software Engineering]: Distribution and Main-
tenance Restructuring; D.2.m [Software Engineering]:
Miscellaneous Rapid prototyping

Additional Key Words and Phrases: Reengineering, System
renovation, COBOL

1 Introduction

There is a constant need for updating and renovat-
ing business-critical software systems for many and di-
verse reasons: business requirements change, technologi-
cal infrastructure is modernized, the government changes
laws, or the third millennium approaches, to mention a
few. So, in the area of software engineering the sub-
ject of reengineering becomes more and more important.
Reengineering is the analysis and renovation of software,
see, for instance, [11] for an introductory paper and [7]
for an annotated bibliography on this subject. To aid
in the analysis and renovation of software it is crucial to
have tool support. We strongly believe that such tools
largely benefit from having knowledge of the language
they have to analyze or renovate. In other words, tools
to aid in reengineering should be based on the grammar
of the language they intend to process.

As most of the business-critical software is written in
COBOL, we will present a general method describing
how to obtain a COBOL grammar, given a number of

*Chris Verhoef was supported by the Netherlands Computer
Science Research Foundation (SION) with financial support from
the Netherlands Organization for Scientific Research (NWO),
project Interactive tools for program understanding, 612-33-002.

COBOL programs. Moreover, we explain how to reduce
the size of this grammar significantly by means of, as we
call it, unification of production rules. Finally, we show
that tools that are based on such a compact language
definition are useful in reengineering the code written in
that language. Thus, the challenge of specifying reengi-
neering tools lies in the (compact) specification of the
underlying language. When it comes to defining syn-
tax is is obviously better to use a parser generator, like
Lex+Yacc than to write a parser by hand. Therefore, it
is not surprising that, e.g., Software Refinery [24], which
is based on generic programming language technology
incorporates a number of reengineering tools (for more
connections between reengineering and generic language
technology we refer to [6]).

To emphasize the importance of tools based on lan-
guage definitions we give a small example. Suppose that
we need a tool that analyzes COBOL programs by look-
ing for date-related variables and that this tool is solely
based on lexical scanning. This implies that the tool will
list comments containing the patterns it is looking for,
as well. To reduce the number of so-called false-positives
it is sensible to modify this tool so that listing of com-
ments will be suppressed. In fact, the tool now contains
knowledge of the language it is analyzing. Still many
false-positives will be found for various reasons. This
can mostly be solved in an ad-hoc manner by adding ex-
tra knowledge of the language. This procedure has to be
reiterated for a tool that needs to perform another task.
In fact, most of the time a tool developer is busy with
adding knowledge of the language to the tool instead of
implementing the actual reengineering or maintenance
task of the tool. So in our opinion it is a better idea to
approach this in a more structured manner, by specify-
ing COBOL syntax and subsequently specifying tools on
top of that syntax. Which brings us to the matter of
defining COBOL syntax. There is a myriad of COBOL
dialects. We will discuss in this paper a general method
describing how to obtain a practical COBOL grammar
that recognizes a particular dialect. Then we discuss
how tools can be specified that aid in reengineering and
maintenance tasks. At this point the reader may observe
that although putting more knowledge in a tool implies
less false-positives, the processing overhead will increase.
However, since legacy systems are notoriously large, the
reduction of false-positives is a serious matter. In the end

v/d Brand, Sellink, Verhoef, Obtaining a COBOL Grammar from Legacy Code for Reengineering Purposes, ASF+SDF’97.

http://www.cs.vu.nl/~x/coboldef/coboldef.html
http://www.cs.vu.nl/~x/coboldef/coboldef.html

COBOL (dialects)

® Code — strip — reformulate
— disambiguate — ...

e ANSI COBOL 85 standard

e 1100 production rules + MSc
student — SDF

¢ Grammar
— restricted grammar

e Restricted grammar
— retokenised grammar

e Cleaned up grammar can
parse cleaned up code

Cobol code

Stripping

ANSI standard
+extensions

|
Reduction

666-code

Reformulation

Y

Restricted
grammar

Reduced
666-code

Retokeilization

Lex. dlsamb.

Retokenized
grammar

Lexically
disambiguated
666-code

Unifiﬁation

Unified
grammar

:v/d Brand, Sellink, Verhoef, Obtaining a COBOL Grammar from Legacy Code for Reengineering Purposes, ASF+SDF'97.

http://www.cs.vu.nl/~x/coboldef/coboldef.html
http://www.cs.vu.nl/~x/coboldef/coboldef.html

T T Tl T T T N O e O O L

Switching System Language

e Ericsson Reengineering Center:
HTML files

e HTML files = syntax rules

e SBNF parser + syntax rules
— grammar in SDF?

* ...naming convention
violations...

e ..non-matching brackets...

e ..interactive grammar hacking
in MetaEnv...

e SBNF’ parser + syntax rules’
— grammar in SDF!

Development, Assessment, and Reengineering of Language Descriptions

Alex Sellink and Chris Verhoef

University of Amsterdam, Programming Research Group
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

alexQ@wins.uva.nl, xQ@wins.uva.nl

Abstract

We discuss tools that aid in the development, the assess-
ment and the reengineering of language descriptions. The
assessment tools give an indication as to what is wrong with
an existing language description, and give hints towards cor-
rection. From a correct and complete language description,
it is possible to generate a parser, a manual, and on-line
documentation. The parser is geared towards reengineering
purposes, but is also used to parse the examples that are
contained in the documentation. The reengineered language
description is a basic ingredient for a reengineering factory
that can manipulate this language. We demonstrate our ap-
proach with a proprietary language for real time embedded
software systems that is used in telecommunications indus-
try. The described tool support can also be used to develop
a language standard without syntax errors in the language
description and its code examples.

Categories and Subject Description: D.2.6 [Software En-
gineering|: Programming Environments Interactive; D.2.7
[Software Engineering]: Distribution and Maintenance—
Restructuring; D.3.4. [Processors]: Parsing.

Additional Key Words and Phrases: Reengineering, System reno-
vation, Language description development, Grammar reengineer-
ing, Document generation, Computer aided language engineering
(CALE), Message Sequence Charts.

1 Introduction
Since the emerge of computer languages, the need to de-
scribe languages in a precise way became an indispensable
part of computer science. In his paper on the syntax and
semantics of the proposed international algebraic language,
Backus [2] writes: ‘we shall need some metalinguistic con-
ventions for characterizing various strings of symbols. To
begin, we shall need metalinguistic formulae.’ Then he in-
troduced using an example what is now widely known as the
Backus-Naur Formalism. In virtually all documents that
give a precise language description the method of Backus is
used: first the syntax description notation is explained using
an example accompanied with some conventions, and then
the language description itself follows. In this way myriads
of dialects of the Backus-Naur Formalism emerged. They
are referred to as BNF, or EBNF, for extended BNF, or
metasyntax, metalanguage.

Language descriptions serve more than one purpose: they
are used as a guide to implement tools such as compilers or
they serve as a reference manual for users. We use language

descriptions to implement tools that serve the reengineer-
ing of those languages. Such grammar descriptions form the
basis of our approach towards reengineering. Let us give an
idea to make this more concrete. It is possible to generate
all kinds of prefab components that are useful in an environ-
ment for reengineering. We can generate a native pattern
language from a context-free grammar that can be used to
recognize code fragments [30]. It is possible to generate full
documentation for such a language [9]. In [8] we generate
components for software renovation factories. A sophisti-
cated parser can be generated from this grammar [17]. A
structured editor can be generated from the grammar [22].
It is also possible to generate complete programming envi-
ronments from context-free grammars. In order to gener-
ate such environments, one needs an environment as well.
The ASF+SDF Meta-Environment [19] is such an environ-
ment. We use it for the generation of tool factories [8]. SDF
stands for Syntax Definition Formalism [16], it can be used
to define the syntax of a lang age. ASF stands for Alge-
braic Specification Formalism [3], it can be used to describe
the semantics of a language. The combination is thus ad-
equate for defining syntax and semantics of languages and
the ASF+SDF Meta-Environment is the supporting envi-
ronment for both formalisms.

It is not a trivial task to construct a grammar for reengi-
neering purposes. First of all, such a grammar should have
certain properties that make reengineering easy. Secondly,
since reengineering problems do not have the habit to re-
side in small languages, the development process is time
consuming. For instance, many academics and companies
have struggled with a language definition for COBOL in or-
der to create a decent parser for reengineering targets. Due
to the myriad of COBOL dialects, it can be the case that
such a grammar itself needs reengineering. Such grammars
can suffer from large maintenance problems. In [7] this was
called the Year 1999 problem: before that date the gram-
mars had to be ready so that the generated parsers can be
used to analyze Year 2000 problems. We refer to [7] for an
overview of current parser technology that is used in reengi-
neering and problems that induce maintenance problems
on grammars. Since in reengineering, the grammar seems
to be the variable and the problem the constant, grammars
should be modifiable and tool support should be insensi-
tive to such modifications. Therefore, generating everything
from a grammar is in our opinion a solution. According to
[28] there are two problems with parser-based technology:
first the stringent constraints on the input, and second it
is problematic to extend existing parsers. We solve this by

Sellink, Verhoef, Development, Assessment, and Reengineering of Language Descriptions, CSMR 2000.

http://www.cs.vu.nl/~x/cale/
http://www.cs.vu.nl/~x/cale/

TR T T E Ll T T e e e I O R

Programming Language for EXchanges

Drogramming languages.................cccvveeenennnen.e.

Gracking the
000-Language Problem

Parser
Implementation
effort dominates
the construction
of software
renovation tools
for any of the
500+ languages
in use today. The
authors propose
a way to rapidly
develop suitable
parsers: by
stealing the
grammars.

They apply this
approach to

two nontrivial,
representative
languages, PLEX
and US Gobol I1.

Ralf Lammel and Chris Verhoef, Frec University of Amsterdam

t least 500 programming languages and dialects are available in
commercial form or in the public domain, according to Capers
Jones.! He also estimates that corporations have developed some
200 proprietary languages for their own use. In his 1998 book on

estimating Year 2000 costs, he indicated that systems written in all 700 lan-

guages would be affected.? His findings inspired many Y2K whistle-blowers

to characterize this situation as a major impediment to solving the Y2K

problem; this impediment became known
as the 500-Language Problem.

In 1998, we realized that we had discov-
ered a breakthrough in solving the SO0LP—
so we had something to offer regarding the
Y2K problem. We immediately informed all
the relevant Y2K solution providers and peo-
ple concerned with the Y2K awareness cam-
paign. In answer to our emails, we received a
boilerplate email from Ed Yourdon explain-
ing that the SO0LP was a major impediment
to solving the Y2K problem (which we knew,
of course). Ed was apparently so good at cre-
ating awareness that this had backfired on
him: he got 200 to 300 messages a day with
Y2K questions and was no longer able to
read, interpret, and answer his email other
than in “write-only” mode. Although he pre-
sumably missed our input, his response re-
garding the SOOLP is worth quoting:

78 IEEE SOFTWARE November/December 2001

I recognize that there is always a chance that
someone will come up with a brilliant solu-
tion that everyone else has overlooked, but at
this late date, I think it’s bighly unlikely. In
particular, I think the chances of a “silver bul-
let” solution that will solve ALL y2k problems
is virtually zero. If you think you have such a
solution, I have two words for you: embedded
systems. If that’s not enough, I have three
words for you: 500 programming languages.
The i variety of p ing lan-
guages (yes, there really are 500!), hardware
platforms, operating systems, and environ-
ditions virtually elimi; any
chance of a single tool, method, or technique
being universally applicable.

mental

The number 500 should be taken poeti-
cally, like the 1,000 in the preserving
process for so-called 1,000-year-old eggs,
which last only 100 days. For a start, we

0740-7459/01/$10.00 © 2001 IEEE

Lammel, Verhoef, Cracking the 500 Language Problem, IEEE Software, 2001.

http://www.few.vu.nl/~x/500/500.html
http://www.few.vu.nl/~x/500/500.html

%Programming Language for EXchanges

e 20 sublanguages (sectors)

e 63 Mb of source code
— search for BNF

¢ BNF in comments + 6 parsers
— BNF

® BNF — SDF

® [exer — SDF
e ...combine...

e Parse 8 MLOC in 2 weeks

Lammel, Verhoef, Cracking the 500 Language Problem, IEEE Software, 2001.

Start

!

Compiler
sources?

.

Language
reference
manual?

"

No cases known

Yes

Yes

Hard-coded

L

parser

BNF

General
rules

Constructions
by example

No

—= Quality?

One case:
perl

Recover the
Yes grammar

_ Recover the

No

—=— Quality?

grammar

No cases
known

Recover the

Yes grammar

_ Dne case:

RPG

http://www.few.vu.nl/~x/500/500.html
http://www.few.vu.nl/~x/500/500.html

T T T T T T T I T O e e O O I L

IBM VS COBOL 11

Language reference
— raw grammar

Non-executable source
= static errors

77?7 — lexical syntax

Test-driven correction &
completion

... = beautification —
modularisation — ...

Disambiguation

Adaptation

SOFTWARE —PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2001; 12:1-6 Prepared using speauth.cls [Version: 2000/03/16 v2.12]

Semi-automatic Grammar Rt
Recovery

R. Lammel*-2-t, C. Verhoef*-2-+

L CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
2 Division of Mathematics and Computer Science, Vrije University Amsterdam, De Boelelaan 1081a, 1081
HYV Amsterdam, The Netherlands

SUMMARY

We propose an approach to the construction of grammars for existing languages. The main characteristic
of the approach is that the grammars are not constructed from scratch but they are rather recovered by
extracting them from language references, compilers, and other artifacts. We provide a structured process
to recover grammars including the adaptation of raw extracted grammars and the derivation of parsers.
The process is applicable to possibly all existing languages for which business critical applications exist. We
illustrate the approach with a non-trivial case study. Using our process and some basic tools, we constructed
in a few weeks a complete and correct VS COBOL II grammar specification for IBM mainframes. In
addition, we constructed a parser for VS COBOL II, and were the first to publish a (web-enabled) grammar
specification so that others can use this result to construct their own grammar-based tools for VS COBOL II
or derivatives.

KEY WORDS: Reengineering, System renovation, Software renovation factories, Grammar engineering,
Grammar recovery, Grammar reverse engineering, VS COBOL II, COBOL

INTRODUCTION

Languages play a crucial role in software engineering. Conservative estimates indicate that there are
at least 500 languages and dialects available in commercial form or in the public domain. On top of
that, Jones estimates that some 200 proprietary languages have been developed by corporations for
their own use [1, p. 321]. If we put the age of software engineering at 50 years, this implies that on the
average, more than once a month a new language is born somewhere (14 times per year). To illustrate
that this estimate is conservative, compare this to Weinberg who estimated as early as in 1971 that in

*Correspondence to: Division of Mathematics and Computer Science, Vrije University Amsterdam, De Boelelaan 1081a, 1081
HV Amsterdam, The Netherlands

TE-mail: ralf@cs.vu.nl

fE-mail: x@cs.vu.nl

Contract/grant sponsor: The first author received partial support from the Netherlands Organization for Scientific Research
(NWO) under the Generation of Program Transformation Systems project.

Received 1 December 2000
Copyright (©) 2001 John Wiley & Sons, Ltd. Revised 30 July 2001
Accepted 7 August 2001

Lammel, Verhoef, Semi-automatic Grammar Recovery, SP&E, 2001.

http://www.cs.vu.nl/~x/ge/ge.html
http://www.cs.vu.nl/~x/ge/ge.html

I I L

Tl e o o

ECMA/ISO C 3

PDF — text
Text = LLL

LIE +EST +GDK — LLL

e %redefine ... %to ...
LLL + GDK — SDF

SDF + tool? =@ HTML

Correct C# Grammar too Sharp for ISO

Vadim Zaytsev

Vrije Universiteit Amsterdam, The Netherlands,
vadim@cs.vu.nl

Introduction. The most used programming language nowadays is COBOL.
At the Free Unversity in Amsterdam we have done numerous transformations on
COBOL, parsed and transformed millions of lines of code. COBOL is standard-
ised, but vendors usually deviate from the standard, making their own dialects.
In order to parse code, we need a working grammar, which should be derived
from the compiler documentation. However, documentation is never complete
nor error-free, and special techniques are needed to obtain correct grammars:
grammar recovery and grammar (re)engineering. One can argue whether this
happens because of COBOL decades-long evolution and legacy.

Recently we started thinking about transforming C# code, too. C# is quite
different from COBOL, it is a very sharp modern language, the latest big ac-
complishment in programming languages design. C# was produced by a big
corporation and submitted as a specification to both ECMA International! and
ISO2. C# compiler provided by Microsoft claims to fully implement the stan-
dard. Thus, one might think that this standard is of much better quality that
COBOL’s, making it easier to use it in parser construction. This research piece
shows that it is not.

Specification quality: being sharp upon C#. The C# specification is
almost 500 pages long, it is written in English, explains all language features in
detail, and has an appendix with the formal language definition in a BNF-like
form (the same formulae are used throughout the text). One might suppose it
would be very easy to take that grammar and transform it into a working parser
(which is needed for our re-engineering purposes). Unfortunately, it did not work
out that easy: the C# specification’s formal contents turned out to be unusable
“as is”. This means: no compiler. Actually, not even one line of code could have
been parsed with that specification—so inconsistent was it.

In order to get to the parser, we took the BNF grammar apart from the
text and put it into GDK?®, which is expected to generate SDF formulae from it
(for use in the ASF+SDF Meta-Environment). This process showed that some
BNF formulae are informally described (“separated by”, “one of the follow-
ing”), some are redundant (occur more than once, some sorts have identical
definitions), some incorrect (e.g., forgotten “optional” marks), some inconsis-
tent (formulae given in the text and in the appendix differ), some non-intuitive
(e.g., expressions unintelligibly presented without priorities made implicit), some
idiosyncratic (omnipresent YACCified constructions), some ambiguous (the

Y Buropean Computer Manufacturers Association. Here the ECMA-334 is meant.
2 International Organization for Standardization. C# is ISO/IEC 23270:2003.
3 Grammar Deployment Kit by C. Verhoef, R. Lammel and J. Kort.

Zaytsev, Correct C# Grammar too Sharp for ISO, GTTSE 2005.

http://grammarware.net/writes/index.html%23Too-Sharp2005
http://grammarware.net/writes/index.html%23Too-Sharp2005

B N N A

Fortran, Modula, BNF, EBNF, YACC

An Introduction to Grammar Convergence

Ralf Limmel and Vadim Zaytsev

. S D F ’ B GF Software Languages Team, The University of Koblenz-Landau, Germany

Abstract. Grammar convergence is a lightweight verification method for estab-
lishing and maintaining the correspondence between grammar knowledge in-
grained in all kinds of software artifacts, e.g., object models, XML schemas,
parser descriptions, or language documents. The central idea is to extract gram-
. ANT LR _’ B GF mars from diverse software artifacts, and to transform the grammars until they

become syntactically identical. The present paper introduces and illustrates the

basics of grammar convergence.

1 Introduction

‘ ' Grammar convergence is a lightweight verification method for establishing and main-
taining the correspondence between grammar knowledge ingrained in all kinds of soft-
ware artifacts. In fact, it is an integrated method that works purposely across different

programming and specification languages as well as different approaches to software
development. Here are few use cases for grammar convergence:

R I N

— Given are Java classes for a specific domain, say financial exchange. There is also
. TXL ’ B GF an independently designed XML schema that is meant to standardize that domain.
One needs to establish the agreement between the object model and the schema.

— Given is a compiler for a programming language, say gcc for C++. There is also
a reverse/re- engineering tool for the same language based on a different parsing
infrastructure. One needs to establish that both tools agree on the language at hand.

— Given is an XML-data binding technology. One needs to test the (customizable)
mapping from XML schemas to object models. The oracle for testing relies on

. LLL —} B GF establishing an agreement between XML schemas and object models.

— Given are 3 versions of the Java language specification, with 2 grammars per ver-
sion. One needs to align grammars per version and express the evolution from ver-
sion to version. (We have done such a case study; see the authors’ website.)

The central idea of grammar convergence is to extract grammars from diverse software
artifacts, and to transform the grammars until they become syntactically identical. In

. _} B (F more detail, the method entails the following core ingredients:
o000 o000 ooo

1. A unified grammar format that effectively supports abstraction from specialities or
idiosyncrasies of the grammars as they occur in software artifacts in practice.

2. A grammar extractor for each kind of artifact — e.g., a Java extractor maps Java
classes to the unified grammar format.

3. A grammar comparer that determines and reports grammar differences in the sense
of deviations from syntactical equality (if any).

Il e

Lammel, Zaytsev, An Introduction to Grammar Convergence, IFM 2009, LNCS 5423.

I R

http://userpages.uni-koblenz.de/~laemmel/convergence/
http://userpages.uni-koblenz.de/~laemmel/convergence/

Java 1.0, 1.2, 5.0

HTML — BNF

HTML + very robust scanner
— something

Something + heuristics
— something better

Something better + initial
correction = grammar

Grammar + transformations
— anything

Recovering grammar relationships for the
Java Language Specification

Software Quality Journal

ISSN 0963-9314
Volume 19
Number 2

Software Qual J (2011) SOftware
19:333-378

o115 Quality
Journal

@ Springer

Lammel, Zaytsev, Recovering Grammar Relationships for the JLS, SCAM 2009, WSR 2010, SQJ 19:2.

http://arxiv.org/abs/1008.4188
http://arxiv.org/abs/1008.4188

[SO: C, C++, CIF

) ‘i""x;’}.g\' V"H .

PDF — TXT

Assume the formalism
— preliminary grammar

Apply heuristics
— automated corrections

Manual analysis — post-
extraction transformations

Automated analyses — ...

i OLPS Zoo

Zaytsev, Recovery, Convergence and Documentation of Languages, VU, 2010.

http://slps.sf.net/zoo
http://slps.sf.net/zoo
http://grammarware.net/writes/index.html%23Zaytsev-Thesis2010
http://grammarware.net/writes/index.html%23Zaytsev-Thesis2010

T T Tl T T T N O e O O L

Ada, C++, Eiffel, Modula,
MediaWiki, LLL, ISO EBNF

Grammar Hunter

Grammar text + EBNF dialect
definition — BGF

WorKks in steps

Needs XBGF to make a complete
framework.

Solves two problems:

o deal with large range of

metasyntax dialects

o disregard typographic (& other)

errors

arX1v:1107.4661v1l [cs.MM] 23 Jul 2011

MediaWiki Grammar Recovery

Vadim Zaytsev, vadim@grammarware.net
SWAT, CWI, NL

July 26, 2011

1 Introduction

Wiki is the simplest online database that could possibly work [41]. It usually
takes a form of a website or a webpage where the presentation is predefined to
some extent, but the content can be edited by a subset of users. The editing
ideally does not require any additional software nor extra knowledge, takes place
in a browser and utilises a simple notation for markup. Currently there are more
than a hundred of such notations, varying slightly in concrete syntax but mostly
providing the same set of features for emphasizing fragments of text, making
tables, inserting images, etc [10]. The most popular notation of all is the one
of MediaWiki engine, it is used on Wikipedia, Wikia and numerous Wikimedia
Foundation projects.

In order to facilitate development of new wikiware and to simplify main-
tenance of existing wikiware, one can rely on methods and tools from soft-
ware language engineering. It is a field that emerged in recent years, gen-
eralising theoretical and practical aspects of programming languages, markup
languages, modelling languages, data definition languages, transformation lan-
guages, query languages, application programming interfaces, software libraries,
etc [15, 23, 25, 70] and believed to be the successor for the object-oriented
paradigm [14]. The main instrument of software language engineering is on dis-
ciplined creation of new domain specific languages with emphasis on extensive
automation. Practice shows that automated software maintenance, analysis,
migration and renovation deliver considerable benefits in terms of costs and
human effort compared to alternatives (manual changes, legacy rebuild, etc),
especially on large scale [11, 61, 65]. However, automated methods do require
special foundation for their successful usage.

Wikiware (wiki engines, parsers, bots, etc) is a specific case of grammar-
ware (parsers, compilers, browsers, pretty-printers, analysis and manipulation
tools, etc) [25, 75]. The most straightforward definition of grammarware can
be of software which input and/or output must belong to a certain language
(i.e., can be specified implicitly or explicitly by a formal grammar). An op-
erational grammar is needed to parse the code, to get it from a textual form
that the programmers created into a specialised generational and transforma-
tional infrastructure that usually utilises a tree-like internal format. In spite

Zaytsev, MediaWiki Grammar Recovery, Wikimania 2011, CoRR.

http://arxiv.org/abs/1107.4661
http://arxiv.org/abs/1107.4661

EBNF
Dialect

Definition

EBNF Dialect Definition

program::=
| function+;
function::=

name argument® "=" expr?;

e List of indicators

e Together form a notation specification

: Zaytsev, What Have We Done About the Unnecessary Diversity of Notation for Syntactic Definitions, SAC/PL 2012.

http://grammarware.net/writes/index.html%23BNF-WAS-HERE2012
http://grammarware.net/writes/index.html%23BNF-WAS-HERE2012

LLL in LLL

. specification : rule+;

. rule ident %" disjunction %
Edigjunction : {conjunction "|"} +;

. conjunction : termt;

- term : basis repetition?;

basis - ident
: literal
alternation

group
Pepetltlon :"+" ‘ sk ‘ IIC?II;
. alternation :"{" basis basis "}" repetition:;

group sl digjunetion: 'y

LLL in EDD

defining metasymbol

definition separator
metasymbol

terminator metasymbol

postfix optionality
metasymbol

postfix star metasymbol

postfix plus metasymbol

start terminal metasymbol

end terminal metasymbol

start group metasymbol

end group metasymbol

start separator list star
metasymbol

end separator list star
metasymbol

start separator list plus
metasymbol

end separator list plus
metasymbol

- Semi-automatic

recovery

Semi-automatic recovery

Assume the absence of (notational) errors

Obtain a notation specification

Generate a parser specification (“grammar for grammars”)
Fix errors interactively as parsing errors

Effectiveness depends on IDE support

LLL in Rascal

module LLL

import util::IDE; // needed only for advanced IDE support (see last two lines)
start syntax LLLGrammar = LLLLayoutList LLLProduction* LLLLayoutList;
syntax LLLProduction = LLLNonterminal ":" {LLLDefinition "|"}+";";

syntax LLLDefinition = LLLSymbol+;

syntax LLLSymbol

= @category="Identifier" nonterminal: LLLNonterminal
@category="Constant" terminal: LLLTerminal

group: "(" LLLDefinition ")"

optional: LLLSymbol "?"

star: LLLSymbol "*"

plus: LLLSymbol "+"

sepliststar: "{" LLLSymbol LLLSymbol "} *"

seplistplus: "{" LLLSymbol LLLSymbol "} +";

lexical LLLTerminal = "\"" LLLTerminalSymbol* "\"";

lexical LLLTerminalSymbol = I[\"];

lexical LLLNonterminal = [A-Za-z_01-9\-/]+ |>> [A-Za-z_01-9\-/];
layout LLLLayoutList = LLLLayout* !>> [\t-\n \r \] !>>"#";
lexical LLLLayout = [\t-\n \r \] | LLLComment ;

lexical LLLComment = @category="Comment" "#" |[\n]* [\n];
Tree getLLL(str s,loc z) = parse(#LLLGrammar,z);

public void registerLLL() = registerLanguage("LLL","111",getLLL);

i Rascal - _;__:____ 1 Fiatform !
= J“i' J A4 J@El[E; A Jﬂ}l"{}l' L=Re=1 F P¥Rascal &llava >

' B
1 Transformer.rsc (@ Rascal Tutor (ﬁ GeneratedLLL.rsc rﬁ Hunter.rsc (IIl.edd W

[Idents: 153 A
- top: 1

- used: 152 m

defined: 145

- undefined: 8
Literals: 121

ref-or-out
: "ref"
I 'loutll

expression-unary-operator
: lex-csharp-extra/plus
| lex-csharp-extra/minus
| increment-decrement

I n ! n

I |l~"

|

Sl

increment-decrement
"++|I

expression-shift-operator
s Mt
I ">> n
3

expression-relational-operator
: lex-csharp-extra/less-than
lex-csharp-extra/greater-than

n <m "

"is
as

expression-equality-operator

I "!-ll

conversion-kind

-
-
-
-
-
-
-
.
.
.
-
-
-
-
-
-
.
-
-
-
-
-
-
-
.
-
.
-
-
-
-
-
Ll
-
-
.
-
L
-
-
-
-
-
-
-
Ld
-
-
-
-
-
-
-
-
-
-
-
-
.
-
-
-
-
-
.
-
L d
-
b
-
-
-
-
.
-
.
-
.
-
il
-
.
-
A4
-
.
-
.
-
-
-
.
-
-
-
.
-
.
-
.
-
.
-
.
.
.
.
-
.
-
.
-
.
-
-
-
.
-
.
-
.
-
.
-
-
-
-
-
-
.
-
-
-
-
-
-
-

Writable Smart Insert ’ 1 J

Automatic

recovery

Automatic recovery

Assume the notational errors will happen
Obtain a specification of the correct notation
Perform robust parsing with it

Infer heuristics and encode them in a tool
Recover from all errors automatically

Once finished, the grammar can be analysed, corrected etc

Grammar Hunter

Block 1: Selective line reading.

e Reads the file, fetches grammar fragments, applies line continuation
rules to relevant lines, filters out comments, delivers the list of
characters.

Block 2: Composition of tokens from characters.

e Transforms the list of characters into the list of tokens, while taking
quoting rules into account.

Block 3: Tokens classification.
o (lassifies each token as a terminal, nonterminal or a metasymbol.

Block 4: Token groups normalisation.

e Converts postfix/prefix to confix, delivers the list of grammar rules.

Block 5: Context-dependent reconsideration.

e Performs correction heuristics: decomposes and assembles symbols,
rebalances symmetric metasymbols, ignores negligible leftovers.

Block 1:
Selective line reading

Formal Parameters
Every function declaration includes a formal parameter list, which consists ...
The following can be simplified to:
formalParameterList
: (' normalFormalParameters (‘,” optionalFormalParameters)? ')’

optionalFormalParameters
: restFormalParameter |
namedFormalParameters
normalFormalParameters:
normalFormalParameter (',' normalFormalParameter)*

Positional Formals
A positional formal parameter is a simple variable declaration.

Bracha, The Dart Programming Language Specification, version 0.05.

http://www.dartlang.org/docs/spec/
http://www.dartlang.org/docs/spec/

Block 2:
Composition of tokens from chars

<code>continu</code><i>e
S<i>witchBlockStatementGroups</i>

<page-first-char> ::= <ucase-letter> | <digit> | <uscore> | ...?

Primaryf. Identifier|(JArgumentLis u:.]:.]j opt

Block 3:
Tokens classification

Line =[PlainText|{ PlainText } { "" { } PlainText { Pla,inText J

nonterminal metasymbol
symbol
terminal

symbol

Block 4:
Token groups normalisation

e Only terminator metasymbol is known

o the less reliable is the notation, the more errors we get

foo ::= bar iwx fwc ysk ;
UwW?P ::= WZX abg iin ync
hnl ::= pjx hwz gwo pai ;;
djr ::= bexX opVv nfx rcj
bwt ::= tbv kle gbx xik;

Block 4:
Token groups normalisation

e Only defining metasymbol is known

o better because left hand side is a nonterminal (CFG)

foo =/bar iwx fwc ysk
uwrn =)/wzx abq “iin” = ync
hnl== pjx “hwz” gwo pai
djr(=)bcx opVv nix rcj
bwii=tbv kle gbx “xik”

Block 4:
Token groups normalisation

e Both terminator and defining metasymbols are known

e additional validation leads to stability

foo =/bar iwx fwc ysk;

uwr == WzX abq “iin” = ynd;
hnl\=F pjx “hwz” gwo pai ;;
djri=)bcx opv nfx rcj
bwil=tbv kle gbx “xik™ ;

Block 4:
Token groups normalisation

e Neither terminator nor defining metasymbols are known

e infer by frequency analysis of tokens

fool::=/bar iwx fwc ysk ;
uwr(::=)wzx abq iin ynd;
hnl(::=)pjx hwz gwo pai;
djr(;:=)bcx opv nix rey ;
bwif::=tbv kle gbx xik;

Block 5:
Context-driven reconsideration

VariableDeclaratorld:
Identifier 2
VariableDeclaratorld | |

TypeArgument:

Type
ll?ll [(“eXtendS" ‘ "Super" Il)ll "Type" ||]||

Conclusion

A victory for grammar recovery
Syntactic notation specification
Semi-automatic:

e generate a parser spec from a notation spec
e work interactively

Automatic:
¢ encode heuristics and let them loose

Beyond (E)BNF?

Thank you!

rammarware.net
slps.sf.net -

http://grammarware.net
http://grammarware.net
http://slps.sf.net/
http://slps.sf.net/

