
Vadim Zaytsev, SWAT, CWI
 2012

Grammar
Composition & Extension

Symposium on Language Composition and Modularity

vadim@grammarware.net

http://grammarware.net/
http://grammarware.net/
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/
http://www.cwi.nl/
mailto:vadim@grammarware.net?subject=IPA
mailto:vadim@grammarware.net?subject=IPA
http://grammarware.net
http://grammarware.net

Introduction to
grammarware

CWI

What is a grammar?

• Structural description in software systems

• Description of structures used in software systems

P. Klint, R. Lämmel, C. Verhoef, Toward an Engineering Discipline for Grammarware. TOSEM 2005.

http://www.cs.vu.nl/grammarware/agenda/
http://www.cs.vu.nl/grammarware/agenda/

CWI

Grammar use case

• Abstract use case

• syntax definition

• exchange format

• interaction protocol

• data model

• domain model

• metamodel

• …

• Concrete use case

• parsing

• serialisation

• renovation

• refactoring

• static analysis

• reengineering

• …

P. Klint, R. Lämmel, C. Verhoef, Toward an Engineering Discipline for Grammarware. TOSEM 2005.

http://www.cs.vu.nl/grammarware/agenda/
http://www.cs.vu.nl/grammarware/agenda/

CWI

Grammarware
• Parser

• Compiler

• Interpreter

• Pretty-printer

• Scanner

• Browser

• Static checker

• Structural editor

• IDE

• DSL framework

• Preprocessor

• Postprocessor

• Model checker

• Refactorer

• Code slicer

• API

• XMLware

• Modelware

• Language
workbench

• Reverse
engineering tool

• Benchmark

• Recommender

• Renovation tool

CWI

Grammars everywhere

CWI

Grammarware

CWI

Grammarware

CWI

Grammarware

CWI

Grammarware

CWI

Grammarware

CWI

Grammarware

Grammar
decomposition

CWI

Quo usque tandem?

• Lexical syntax:

• character level
(tokenisation)

• block level
(indentation)

• Preprocessing syntax

• comments

• directives

• Base syntax

• Syntax highlighting

• Processing order

• Filtering / disambiguation

• Error handling

• Tree construction

• AST format
http://commons.wikimedia.org/wiki/File:Cicero.PNG

http://commons.wikimedia.org/wiki/File:Cicero.PNG
http://commons.wikimedia.org/wiki/File:Cicero.PNG

Grammar
composition

CWI

Behind the Screen / Unknown Chaplin

Fair (re)use, picture is the courtesy of chaplin.bfi.org.uk.

http://chaplin.bfi.org.uk/
http://chaplin.bfi.org.uk/

CWI

Grammar composition

syntax D = C*;
syntax C = “c”;

syntax A = B+;
syntax B = “b”;

syntax A = B+;
syntax D = C*;
syntax B = “b”;
syntax C = “c”;

CWI

Grammar composition

syntax D = C B;
syntax C = “c”;

syntax A = B C;
syntax B = “b”;

syntax A = B C;
syntax D = C B;
syntax B = “b”;
syntax C = “c”;

CWI

Grammar composition
syntax A = B C;
syntax B = “b”;
syntax C = “c”;

syntax A = B C;
syntax B = “b”;
syntax C = “c”;

{“bc”}

CWI

Grammar composition
syntax A = C B;
syntax B = “c”;
syntax C = “b”;

syntax A = B C;
syntax B = “b”;
syntax C = “c”;

{“bc”,
“cb”}

CWI

Grammar composition
syntax A = B | CB;
syntax B = “b”;
syntax C = “c”+;

syntax A = B | CA;
syntax B = “b”;
syntax C = “c”;

{“c b”},
n=0,1,2,…

n

CWI

Grammar composition

syntax A = AB | B;
syntax B = “b”;

syntax A = B | BA;
syntax B = “b”;

{“b ”},
n=1,2,…

n

CWI

Grammar composition
syntax C = E;
syntax E = B+;
syntax … = ε;

syntax A = B | C;
syntax C = D+;
syntax … = ε;

XML

CWI

Grammar composition

syntax A = B C {…};syntax A = B C {…};

?

CWI

Grammar composition

syntax C = D E;
syntax C ≠ “c”;

syntax A = B C;
syntax B = “b”;
syntax C = “c”;

?

Adjacent topics:
pgt gc ngt no

Programmable
Grammar

Transformations

CWI

Ad hoc megamodel shown at IPA Spring Days

Programmable G xformation

CWI

Ad hoc megamodel shown at IPA Spring Days

Programmable G xformation

Operator

• known semantics, well-defined algorithm

•rename, fold, factor, inject, remove, …

CWI

Ad hoc megamodel shown at IPA Spring Days

Programmable G xformation

Arguments

•what exactly to rename/factor/inject/…?

CWI

Ad hoc megamodel shown at IPA Spring Days

Programmable G xformationInput grammar

• determines applicability

CWI

Ad hoc megamodel shown at IPA Spring Days

Programmable G xformation

CWI

XBGF Operator Suite

• Semantic-preserving operators

• fold, unfold, extract, inline, massage, factor, deyaccify, …

• (Some) semantic-preserving operators

• permute, abstractize, concretize, designate, anonymize

• Language-increasing operators

• add, appear, widen, upgrade, unite

• Language-decreasing operators

• remove, disappear, narrow, downgrade

• Revising operators

• redefine, inject, project, replace, …
V. Zaytsev, BGF Transformation Operator Suite v.1.0, online, 2010.

http://grammarware.github.com/xbgf/
http://grammarware.github.com/xbgf/

CWI

References

• R. Lämmel. Grammar Adaptation. FME, LNCS 2021:550–570. 2001.

• R. Lämmel, G. Wachsmuth. Transformation of SDF Syntax Definitions in the ASF+SDF Meta-
Environment. LDTA, ENTCS 44. 2001.

• T. R. Dean, J. R. Cordy, A. J. Malton, K. A. Schneider. Grammar Programming in TXL. SCAM.
2002.

• R. Lämmel, Transformations Everywhere. SCP 52(1–3):1–8, 2004.

• P. Klint, R. Lämmel, C. Verhoef. Toward an Engineering Discipline for Grammarware. ACM
TOSEM 14(3):331–380, 2005.

• V. Zaytsev, BGF Transformation Operator Suite v.1.0, online, 2010.

• V. Zaytsev, Recovery, Convergence and Documentation of Languages. PhD, 2010.

• R. Lämmel, V. Zaytsev, Recovering Grammar Relationships for the Java Language Specification,
SQJ 19(2):333–378. 2011.

http://homepages.cwi.nl/~ralf/fme01/
http://homepages.cwi.nl/~ralf/fme01/
http://homepages.cwi.nl/~ralf/fst/
http://homepages.cwi.nl/~ralf/fst/
http://homepages.cwi.nl/~ralf/fst/
http://homepages.cwi.nl/~ralf/fst/
http://plg1.uwaterloo.ca/~ajmalton/ajmalton/Papers/SCAM02_GP.pdf
http://plg1.uwaterloo.ca/~ajmalton/ajmalton/Papers/SCAM02_GP.pdf
http://homepages.cwi.nl/~ralf/pt-scp/intro.html
http://homepages.cwi.nl/~ralf/pt-scp/intro.html
http://www.cs.vu.nl/grammarware/agenda/
http://www.cs.vu.nl/grammarware/agenda/
http://grammarware.github.com/xbgf/
http://grammarware.github.com/xbgf/
http://grammarware.net/writes/%23Zaytsev-Thesis2010
http://grammarware.net/writes/%23Zaytsev-Thesis2010
http://grammarware.net/writes/%23JLS-SQJ2011
http://grammarware.net/writes/%23JLS-SQJ2011

Guided
Grammar

Convergence

CWI

CWI

CWI

The most trivial case

• Equal grammars

• Algebraically equivalent grammars

• Nothing to do here

V. Zaytsev, Guided Grammar Convergence, CoRR abs/1207.6541, draft for 2013.

http://grammarware.net/writes/%23Guided2013
http://grammarware.net/writes/%23Guided2013

CWI

Structural resolution

• Nonterminal vs. value

• A vs. string

• Sequence permutations

• A B B A vs. B B A A

• Lists of symbols

• A* vs. A+

• Separator lists… irrelevant
V. Zaytsev, Guided Grammar Convergence, CoRR abs/1207.6541, draft for 2013.

http://grammarware.net/writes/%23Guided2013
http://grammarware.net/writes/%23Guided2013

CWI

Nominal resolution

cisely. It is in the tradition of grammar research to distinguish
between two kinds of repetition: the transitive closure (+) and
the reflexive-transitive closure (∗). However, both can be treated
as one for the purpose of structural matching.

It is trivial to prove that with top-down traversal of Pm and
Ps, there can be no other kinds of mismatches. Without loss of
generality, we can also advocate that the following changes do not
noticeably complicate the simplicity of this scenario:

• More starting symbols. If we allow several starting nontermi-
nals instead of just one, it is easy to add an extra nonterminal to
both grammars and complete their sets of production rules with
a choice of all of them. This will not damage the constraints we
have assumed above.

• Unreachable nonterminals. Supposing that we have differences
in the nonterminal sets such that some of them are not reachable
from S, we can remove all of them and their corresponding
production rules from the grammars without changing their
generated or intended language.

• Separator lists and other metasyntactic sugar. Since any separa-
tor list can be converted to an equivalent form that uses only +

and ∗, we did not even discuss mismatches of them, but they are
possible and relatively trivial.

3. Nominal resolution
Having established resolution of structural mismatches in nomi-
nally equivalent grammars, we can investigate the possibility of
establishing this nominal equivalence. In order to do so, let us as-
sume to have two grammars of the form Gm = �Nm,∅,Pm, Sm�
and Gs = �Ns,∅,Ps, Ss�. We also assume for simplicity that the
set of production rules of each nonterminal P|n = {p ∈ P, p =
p(l, n, rhs)} is either a singleton set or a set of chain production
rules:

∀n ∈ Nx : Px|n = {p} ∨ Px|n = {pi, pi = p(li, n, n(ni))}

(This style of production rules is known to be called ‘verti-
cal’ [44, §4.9] or ‘non-flat’ [26], which does not always imply the
need for pi to be chain production rules). Just as with the previ-
ous section, we can relax some of the assumptions, but that would
unnecessarily complicate our explanations without providing any
added value on the next stages.

Now we need to define a suitable equivalence relation that
would match any production rules for which a renaming scheme
exists, after which it will be possible to match them structurally. In
general, given two metasyntactic expressions, it is not easy to de-
termine their equivalence. Pure structural equivalence (with equal-
ity of all corresponding leaves) guarantees any other equivalence.
However, it is also very strict and thus does not occur that often.
We will now work toward defining equivalence based on produc-
tion signatures, or prodsig-equivalence.

DEFINITION 1. A footprint of a nonterminal n in an expression x
is defined as a multiset of presence indicators:

πn(x) =






{1} if x = n(n)

{?} if x = ?(n(n))

{+} if x = +(n(n))

{∗} if x = ∗(n(n))�
e∈L

πn(e) if x = seq(L)

∅ otherwise

Production rule in the master grammar Production signature
p1=p(‘’, program, +(function)) {�function,+�}
p2=p(‘’, function, seq([str, +(str), expr])) {�expr, 1�, �str, 1+�}
p3=p(‘’, expr, str) {�str, 1�}
p4=p(‘’, expr, int) {�int, 1�}
p5=p(‘’, expr, apply) {�apply, 1�}
p6=p(‘’, expr, binary) {�binary, 1�}
p7=p(‘’, expr, cond) {�cond , 1�}
p8=p(‘’, apply, seq([str, +(expr)])) {�expr,+�, �str, 1�}
p9=p(‘’, binary, seq([expr, operator, expr])) {�expr, 11�, �operator, 1�}
p10=p(‘’, cond, seq([expr, expr, expr])) {�expr, 111�}
Table 1. Production rules of the master grammar for FL, with their
production signatures.

Note how a footprint is undefined (as in, ‘meaninglessly empty’)
for choices. We will not need it, since top level choices are not
present and inner choices are invisible by definition — any triv-
ially nested subsequence is equivalent to its inlining, and for other
nesting configurations a footprint is not recursive.

DEFINITION 2. A prodsig, or a signature of a production rule
p(l,m, e) is defined as a set of tuples with nonterminals used in
its right hand side and their footprints:

σ(p(l,m, e)) = {�n,πn(e)� | n ∈ usedNs(e)}
Just like in the previous section, for the purpose of constructing

a prodsig, values (built-in syntactic categories like strings or inte-
gers) are treated as nonterminals and complex subexpressions can
be seen as pseudo-nonterminals introduced by transparent folding
transformations.

An example is shown on Table 1 where all production rules and
their signatures are shown from the master grammar of the Factorial
Language, a simple function language we use as a case study and a
running example. For the sake of brevity, we show nonterminals in
plain italics and footprints as concatenations — e.g., ‘foo’ means
‘n(foo)’, ‘1+’ means ‘{1,+}’ and ‘111’ means ‘{1, 1, 1}’.

DEFINITION 3. We say that two production rules are prodsig-
equivalent, if and only if there is a unique match between tuple
ranges of their signatures:

p � q ⇐⇒ ∀�n,π� ∈ σ(p), ∃!�m, ξ� ∈ σ(q), π = ξ

In this definition we rely on the standard definition of equality
of multisets. However, it is too strong for some of our scenarios,
so we must use a weaker form of prodsig-equivalence, which is
based on equivalence of footprints, which formalizes our intuitive
arguments from the previous section.

DEFINITION 4. Two footprints are equivalent, if they are equal
modulo repetition kinds:

π ≈ ξ ⇐⇒ π = ξ ∨ π� = ξ�,

where π� is π with all + elements replaced by ∗ elements.

DEFINITION 5. Two production rules are weakly prodsig-equivalent,
if and only if there is an equivalent match between tuple ranges of
their signatures:

p � q ⇐⇒ ∀�n,π� ∈ σ(p), ∃�m, ξ� ∈ σ(q), π ≈ ξ

Consider a simple case of exactly one production rule taken
from each of the grammars: pm from the master grammar and
ps from the servant grammar. Suppose that their left hand sides

4 2012/7/11

V. Zaytsev, Guided Grammar Convergence, CoRR abs/1207.6541, draft for 2013.

http://grammarware.net/writes/%23Guided2013
http://grammarware.net/writes/%23Guided2013

CWI

Definitions

• Nonterminal footprint

• Production signature

• Prodsig-equivalence

• Weak prodsig-equivalence

• Nominal resolution

V. Zaytsev, Guided Grammar Convergence, CoRR abs/1207.6541, draft for 2013.

http://grammarware.net/writes/%23Guided2013
http://grammarware.net/writes/%23Guided2013

CWI

Nominal resolution example

Production rule Production signature
q1=p

�
‘’,Fragment ,Expr

�
{�Expr , 1�}

q2=p
�

‘’,Program,+ (Function)
�

{�Function,+�}
q3=p (‘’,Function, seq ([str,+ (str) ,Expr])) {�str, 1+�, �Expr , 1�}
q4=p (‘’,Expr , int) {�int, 1�}
q5=p (‘’,Expr , str) {�str, 1�}
q6=p (‘’,Expr ,Expr1) {�Expr1, 1�}
q7=p (‘’,Expr ,Expr2) {�Expr2, 1�}
q8=p (‘’,Expr ,Expr3) {�Expr3, 1�}
q9=p (‘’,Expr1, seq ([Ops,Expr ,Expr])) {�Ops, 1�, �Expr , 11�}
q10=p (‘’,Expr2, seq ([Expr ,Expr ,Expr])) {�Expr , 111�}
q11=p (‘’,Expr3, seq ([str,+ (Expr)])) {�str, 1�, �Expr ,+�}

Prerequisite Match pi � qj
roots {�program,Fragment�}

p1 �� q1 {�ω,Fragment�}
roots {�program,Program�}

p1 � q2 {�function,Function�}
p2 � q3 {�str, str�, �expr ,Expr�}

{�str, str�} p3 � q5
p4 � q4 {�int, int�}

{�expr ,Expr�, �str, str�} p5 � q8 {�apply,Expr3�}
{�expr ,Expr�, �str, str�} p8 � q11

{�expr ,Expr�} p6 � q6 {�binary,Expr1�}
{�expr ,Expr�} p9 � q9 {�operator ,Ops�}
{�expr ,Expr�} p7 � q7 {�cond ,Expr2�}
{�expr ,Expr�} p10 � q10

Table 2. On the left: production rules of the servant grammar for FL, derived from the XML schema, with their production signatures. On the

right: the process of derivation of the nominal resolution relation pi � qj . Note how two hypotheses must be formed and one of them rejected,

because this servant grammar has two roots and both need to be checked for prodsig-equivalence with the root of the master grammar. Other

than that, all production rules are matched with strong equivalence.

Production rule Production signature
r1=p

�
‘’,Program,+ (Function)

�
{�Function,+�}

r2=p(‘’,Function, seq([Name,+(Name), {�CR,+�, �Expr , 1�,
Expr ,+(CR)])) �Name, 1+�}

r3=p (‘’,Expr ,Expr1) {�Expr1, 1�}
r4=p (‘’,Expr ,Expr2) {�Expr2, 1�}
r5=p (‘’,Expr ,Expr3) {�Expr3, 1�}
r6=p (‘’,Expr ,Name) {�Name, 1�}
r7=p (‘’,Expr , Int) {�Int , 1�}
r8=p (‘’,Expr1, seq ([Expr ,Ops,Expr])) {�Ops, 1�, �Expr , 11�}
r9=p (‘’,Expr2, seq ([Name,+ (Expr)])) {�Expr ,+�, �Name, 1�}
r10=p (‘’,Expr3, seq ([Expr ,Expr ,Expr])) {�Expr , 111�}

Prerequisite Match pi � rj
roots {�program,Program�}

p1 � r1 {�function,Function�}
p2 � r2 {�ω,CR�, �str,Name�,

�expr ,Expr�}
{�str,Name�} p3 � r6

p4 � r7 {�int, Int�}
{�expr ,Expr�, p5 � r4 {�apply,Expr2�}
�str,Name�}
{�expr ,Expr�, p8 � r9
�str,Name�}
{�expr ,Expr�} p7 � r5 {�cond ,Expr3�}
{�expr ,Expr�} p10 � r10
{�expr ,Expr�} p6 � r3 {�binary,Expr1�}
{�expr ,Expr�} p9 � r8 {�operator ,Ops�}

Table 3. On the left: production rules of the servant grammar for FL, derived from a corresponding SDF syntax definition, with their

production signatures. On the right: the process of derivation of the nominal resolution relation pi�rj . Note how a special lexical nonterminal

for CR nonterminal remains unmatched due to weak equivalence of production rules that contain it.

Production rule Production signature
s1=p (‘’,Expr ,Expr1) {�Expr1, 1�}
s2=p (‘’,Expr , str) {�str, 1�}
s3=p (‘’,Expr ,Expr2) {�Expr2, 1�}
s4=p (‘’,Expr ,Expr3) {�Expr3, 1�}
s5=p (‘’,Expr , int) {�int, 1�}
s6=p (‘’,Function, seq ([str, ∗ (str) ,Expr])) {�Expr , 1�, �str, 1∗�}
s7=p

�
‘’,Program, ∗ (Function)

�
{�Function, ∗�}

s8=p (‘’,Expr1, seq ([str, ∗ (Expr)])) {�str, 1�, �Expr , ∗�}
s9=p (‘’,Expr2, seq ([Ops,Expr ,Expr])) {�Ops, 1�, �Expr , 11�}
s10=p (‘’,Expr3, seq ([Expr ,Expr ,Expr])) {�Expr , 111�}

Prerequisite Match pi � sj
roots {�program,Program�}

p1 � s7 {�function,Function�}
p2 � s6 {�expr ,Expr�, �str, str�}

{�str, str�} p3 � s2
p4 � s5 {�int, int�}

{�expr ,Expr�, �str, str�} p5 � s1 {�apply,Expr1�}
{�expr ,Expr�, �str, str�} p8 � s8

{�expr ,Expr�} p6 � s3 {�binary,Expr2�}
{�expr ,Expr�} p9 � s9 {�operator ,Ops�}
{�expr ,Expr�} p7 � s4 {�cond ,Expr3�}
{�expr ,Expr�} p10 � s10

Table 4. On the left: production rules of the servant grammar for FL, derived from the Java source code produced by the JAXB data binding

framework from the XML schema, with their production signatures. On the right: the process of derivation of the nominal matching relation

pi � sj . Note how the use of more permissive constructs in this servant grammar weakens prodsig-equivalence.

6 2012/7/11

V. Zaytsev, Guided Grammar Convergence, CoRR abs/1207.6541, draft for 2013.

http://grammarware.net/writes/%23Guided2013
http://grammarware.net/writes/%23Guided2013

CWI

Nominal resolution example

Production rule Production signature
q1=p

�
‘’,Fragment ,Expr

�
{�Expr , 1�}

q2=p
�

‘’,Program,+ (Function)
�

{�Function,+�}
q3=p (‘’,Function, seq ([str,+ (str) ,Expr])) {�str, 1+�, �Expr , 1�}
q4=p (‘’,Expr , int) {�int, 1�}
q5=p (‘’,Expr , str) {�str, 1�}
q6=p (‘’,Expr ,Expr1) {�Expr1, 1�}
q7=p (‘’,Expr ,Expr2) {�Expr2, 1�}
q8=p (‘’,Expr ,Expr3) {�Expr3, 1�}
q9=p (‘’,Expr1, seq ([Ops,Expr ,Expr])) {�Ops, 1�, �Expr , 11�}
q10=p (‘’,Expr2, seq ([Expr ,Expr ,Expr])) {�Expr , 111�}
q11=p (‘’,Expr3, seq ([str,+ (Expr)])) {�str, 1�, �Expr ,+�}

Prerequisite Match pi � qj
roots {�program,Fragment�}

p1 �� q1 {�ω,Fragment�}
roots {�program,Program�}

p1 � q2 {�function,Function�}
p2 � q3 {�str, str�, �expr ,Expr�}

{�str, str�} p3 � q5
p4 � q4 {�int, int�}

{�expr ,Expr�, �str, str�} p5 � q8 {�apply,Expr3�}
{�expr ,Expr�, �str, str�} p8 � q11

{�expr ,Expr�} p6 � q6 {�binary,Expr1�}
{�expr ,Expr�} p9 � q9 {�operator ,Ops�}
{�expr ,Expr�} p7 � q7 {�cond ,Expr2�}
{�expr ,Expr�} p10 � q10

Table 2. On the left: production rules of the servant grammar for FL, derived from the XML schema, with their production signatures. On the

right: the process of derivation of the nominal resolution relation pi � qj . Note how two hypotheses must be formed and one of them rejected,

because this servant grammar has two roots and both need to be checked for prodsig-equivalence with the root of the master grammar. Other

than that, all production rules are matched with strong equivalence.

Production rule Production signature
r1=p

�
‘’,Program,+ (Function)

�
{�Function,+�}

r2=p(‘’,Function, seq([Name,+(Name), {�CR,+�, �Expr , 1�,
Expr ,+(CR)])) �Name, 1+�}

r3=p (‘’,Expr ,Expr1) {�Expr1, 1�}
r4=p (‘’,Expr ,Expr2) {�Expr2, 1�}
r5=p (‘’,Expr ,Expr3) {�Expr3, 1�}
r6=p (‘’,Expr ,Name) {�Name, 1�}
r7=p (‘’,Expr , Int) {�Int , 1�}
r8=p (‘’,Expr1, seq ([Expr ,Ops,Expr])) {�Ops, 1�, �Expr , 11�}
r9=p (‘’,Expr2, seq ([Name,+ (Expr)])) {�Expr ,+�, �Name, 1�}
r10=p (‘’,Expr3, seq ([Expr ,Expr ,Expr])) {�Expr , 111�}

Prerequisite Match pi � rj
roots {�program,Program�}

p1 � r1 {�function,Function�}
p2 � r2 {�ω,CR�, �str,Name�,

�expr ,Expr�}
{�str,Name�} p3 � r6

p4 � r7 {�int, Int�}
{�expr ,Expr�, p5 � r4 {�apply,Expr2�}
�str,Name�}
{�expr ,Expr�, p8 � r9
�str,Name�}
{�expr ,Expr�} p7 � r5 {�cond ,Expr3�}
{�expr ,Expr�} p10 � r10
{�expr ,Expr�} p6 � r3 {�binary,Expr1�}
{�expr ,Expr�} p9 � r8 {�operator ,Ops�}

Table 3. On the left: production rules of the servant grammar for FL, derived from a corresponding SDF syntax definition, with their

production signatures. On the right: the process of derivation of the nominal resolution relation pi�rj . Note how a special lexical nonterminal

for CR nonterminal remains unmatched due to weak equivalence of production rules that contain it.

Production rule Production signature
s1=p (‘’,Expr ,Expr1) {�Expr1, 1�}
s2=p (‘’,Expr , str) {�str, 1�}
s3=p (‘’,Expr ,Expr2) {�Expr2, 1�}
s4=p (‘’,Expr ,Expr3) {�Expr3, 1�}
s5=p (‘’,Expr , int) {�int, 1�}
s6=p (‘’,Function, seq ([str, ∗ (str) ,Expr])) {�Expr , 1�, �str, 1∗�}
s7=p

�
‘’,Program, ∗ (Function)

�
{�Function, ∗�}

s8=p (‘’,Expr1, seq ([str, ∗ (Expr)])) {�str, 1�, �Expr , ∗�}
s9=p (‘’,Expr2, seq ([Ops,Expr ,Expr])) {�Ops, 1�, �Expr , 11�}
s10=p (‘’,Expr3, seq ([Expr ,Expr ,Expr])) {�Expr , 111�}

Prerequisite Match pi � sj
roots {�program,Program�}

p1 � s7 {�function,Function�}
p2 � s6 {�expr ,Expr�, �str, str�}

{�str, str�} p3 � s2
p4 � s5 {�int, int�}

{�expr ,Expr�, �str, str�} p5 � s1 {�apply,Expr1�}
{�expr ,Expr�, �str, str�} p8 � s8

{�expr ,Expr�} p6 � s3 {�binary,Expr2�}
{�expr ,Expr�} p9 � s9 {�operator ,Ops�}
{�expr ,Expr�} p7 � s4 {�cond ,Expr3�}
{�expr ,Expr�} p10 � s10

Table 4. On the left: production rules of the servant grammar for FL, derived from the Java source code produced by the JAXB data binding

framework from the XML schema, with their production signatures. On the right: the process of derivation of the nominal matching relation

pi � sj . Note how the use of more permissive constructs in this servant grammar weakens prodsig-equivalence.

6 2012/7/11

V. Zaytsev, Guided Grammar Convergence, CoRR abs/1207.6541, draft for 2013.

http://grammarware.net/writes/%23Guided2013
http://grammarware.net/writes/%23Guided2013

CWI

Abstract Normal Form

(1) lack of labels for production rules

(2) lack of named subexpressions

(3) lack of terminal symbols

(4) maximal outward factoring of inner choices

(5) lack of horizontal production rules

(6) lack of separator lists

(7) lack of trivially defined nonterminals (with α, ε or φ)

(8) no mixing of chain and non-chain production rules

(9) the nonterminal call graph is connected, and its top
nonterminals are the starting symbols of the grammar
V. Zaytsev, Guided Grammar Convergence, CoRR abs/1207.6541, draft for 2013.

http://grammarware.net/writes/%23Guided2013
http://grammarware.net/writes/%23Guided2013

CWI

Grammar design mutation

• Deyaccification

• B = C B | C vs. B = C+

• Layers vs. priorities

• X = … | Y; Y = … | X; vs X = … | …;

• Associativity

• A O A vs. A (O A)*

CWI

Unresolved

• Aggregation

• Meaningful chain rules

8

antlr dcg sdf rascal txl ecore ecore2 xsd jaxb om
§V-A: One to many nonterminals − − − − − + − + − −
§V-B: Nominal mismatches + + + + + + + + + +
§V-C: More liberal definitions − − − − − − − − + +
§V-D: Superfluous nonterminals + + + + + − − − − −
§V-D: Disconnected nonterminals − − − − − − − + + +
§V-E: Maximum number of versions 1 1 1 2 2 4 1 1 1 1
§V-F: Chain production rules + − − − − + + + + +
§V-G: Permutations − − − − − ± + + + +
§V-H: Reflexive chain rules + + + + + + − − − −
§V-I: Undefined matched as... ε ε ε ε ε ϕ ε ε ε ε
§VI-A: Aggregation − − − − − + − − − −
§VI-B: Layered definitions + + − − − − − − − −
§VI-C: Meaningful chain rules − − − − − + − − − −

TABLE I
DIFFERENT ISSUES OF GUIDED GRAMMAR CONVERGENCE IN THE CASE STUDY: COLUMNS CORRESPOND TO THE GRAMMARS OF FL, ROWS IN THE

UPPER PART RELATE TO SUBSECTIONS OF §V, THE BOTTOM PART IS FOR SPECIAL CASES DISCUSSED IN §VI.

we established in §V-F. However, it is possible to let multiple
chain rules express some static semantics, like in the following
example:

Master grammar Ecore

exp:
exp op exp

BinaryExp:
PlusExp

BinaryExp:
MinusExp

BinaryExp:
EqualExp

PlusExp:
Exp Exp

MinusExp:
Exp Exp

EqualExp:
Exp Exp

The operator (a plus, a minus or an equality sign) in the
master grammar plays the role of a parameter, and its definition
is also not explicitly included in the abstract syntax definition
for the sake of extensibility and future language evolution.
However, in the Ecore model of FL the operator is hardcoded
into the structure of ASTs: there can be only three very
particular kinds of an operator, and each constitutes a separate
nonterminal. This gap cannot be easily bridged, at least not by
a transformation operator with a generally definable semantics.

However, converting a grammar with a chain-based seman-
tics to a parameterised one can be expressed as a grammar
mutation that looks for the following pattern and transforms
the grammar appropriately:

Discovered pattern XBGF actions taken Result
A:

B1
. . .
Bn

B1:
X1 . . .Xm

. . .
Bn:

X1 . . .Xm

• unchain(A: Bi)
for all i

• unlabel(Bi)
for all i

• inject(A:
�B� X1 ... Xm)

A:
B X1 . . .Xm

The newly introduced nonterminal BC represents the param-
eter (the operator in our case). Since the position at which this
parameter is inserted, is insignificant, the permutation cell in
Table I for ecore contains ± and not just +.

VII. CONCLUSION

In this paper, we have investigated an approach to grammar
convergence that involves developing a master grammar and
guiding the convergence process by it with the help of some
simple search-based algorithm forming hypotheses about pos-
sible matches and transformations and approving or disproving
them automatically. The approach was shown to be viable
at least for the case of converging several grammars of the
same intended language; it would be much less sensible and
useful for other scenarios. We have reported on all issues that
were encountered while performing the case study with several
implementations of a simple functional language in ANTLR,
Ecore, Java, Prolog, Rascal, SDF, TXL and XML Schema
(Figure 5). Most of those issues were resolved automatically
without any human intervention, others were possible to
localise and treat appropriately, thus still enabling successful
derivation of convergence steps.

We have also proposed Abstract Normal Form for context-
free grammars (§III). A grammar in such a form cannot be
used for parsing, but it is possible to use it as the abstract syn-
tax definition of a software language, if the original grammar
defined its concrete syntax. Normalisation to ANF has been
defined as a grammar mutation and presented in a readable
form. Casting all grammars from our case study to ANF
allowed us to make inference quicker and with less obstacles,
as well as to explain encountered issues more clearly.

We have also proposed a simple and elegant way to match
structurally similar production rules in different grammars and
derive nominal resemblance for nonterminals within right-
hand sides of those production rules, based on prodsig-
equivalence (§IV). We have demonstrated the power of
prodsig-equivalence by explaining how the case study was
performed (§V).

As an additional contribution, we have developed two
universally applicable grammar mutations for removing spe-
cific constructs (meaningful chain productions and priority
layers) from any grammar that can possibly have them. The
accumulated experience of applying these mutations to bigger
grammars is not reported here due to its insignificance for the
main contributions of this paper, but for the FL case study
they enabled successful guided grammar convergence.

7

separately for the sake of clarity, but in practice it does not
have to be specially checked since prodsig-equivalence is
defined in a way that automatically allows matching ϕ with ε
(both expressions have an empty prodsig).

VI. EVALUATION

To summarise, we have proposed the following automatic
process:

• Start by matching the root nonterminals
• Match multiple production rules by prodsigs
• Overcome nominal mismatches with name-aware prod-

sigs
• Schedule convergence of more nonterminals from in-

ferred matches
• Allow more liberal constructs than the master grammar
• Consider unmatched nonterminals as matched to nothing
• Unchain nonterminals to try more variants
• Be aware of permutations while matching prodsigs
• Remove reflexive chain production rules
• Match undefined nonterminals to ϕ, ε or built-ins
Table I summarises the issues solved and unsolved auto-

matically during our case study. We see that some issues
arise almost everywhere, like nominal nonterminal mismatches
or matching undefined nonterminals as ε, while others per-
sist only in a specific group of grammars. For example,
superfluous nonterminals in FL always refer to function-
separating newlines, so they need to be explicitly discarded
only for concrete syntax definitions. Disconnected nontermi-
nals unsurprisingly occur in grammars that are extracted from
generated artefacts (they are framework traces like Visitor
or ObjectFactory). Permutations are commonly found in
abstract syntax definitions.

The most problematic grammar turned out to be the one
extracted from the handcrafted Ecore model, and the most
problematic feature for guided grammar convergence was lay-
ered definitions with explicitly hardcoded priorities. We do not
have enough data to draw any conclusions about whether this
was due to the peculiar structure of the grammars themselves
or about how common such problems will occur in other case
studies. However, at this point we can already conclude that
guided grammar convergence is at least as efficient as normal
grammar convergence, and it both employs more automation
and gives more opportunities for further automation.

The guided grammar convergence tool for grammars in
ANF, implemented as a search-based algorithm with matching
rules from §V and prodsig-equivalence as defined in §IV, was
able to handle 7 FL grammars out of 10 (all those that do not
have plusses in the bottom part of the table in Table I). For the
remaining three, it produced both textual advice and grammar
transformations that made it possible to easily identify three
isolated problems reported above. Instead of doing the re-
maining steps manually, we defined grammar mutations (recall
§III and [12]) to prepare the normalised grammars for easy
guided grammar convergence. The transformation scripts are
available as topics/convergence/guided/prepare

at SLPS [14].

A. Aggregation
The simplest case that cannot be automatically resolved

by the guided convergence algorithm in a clean way (by
refactorings or other transformation steps with well-defined
semantics) is when one nonterminal is encountered at the place
where another one is expected. Consider the example:

Master grammar Ecore
exp:

STR exp
+

ApplyExp:

Function Exp
+

In the master grammar, function application is defined as
the function name and one or more arguments (simple aggre-
gation). In the Ecore model, a function application refers to
the function itself and to its arguments (composition). The fact
that any function can be identified by its name, is not known to
the grammar manipulation framework, and does not generally
hold across all software languages. Hence, we need to replace
Function with a string for guided grammar convergence to
succeed. For our study it was done by automated grammar
transformation replace(Function, STR, in ApplyExp).

B. Layered definitions
In some parsing frameworks, the grammar engineers need to

account for parsing technology idiosyncrasies explicitly. One
of these commonly encountered idiosyncratic constructions is
“layered” [9] expressions: i.e., splitting all possible kinds of
expressions among several nonterminals that correspond to
priority classes (e.g., multiplicative expressions and additive
expressions, or in our case just normal expressions and atomic
ones). An example from the dcg grammar follows:

Master grammar Definite clause grammar (Prolog)

exp:

STR

exp:

INT

exp:

STR exp
+

exp:

exp op exp

exp:

exp exp exp

expr:

atom (ops atom)
∗

expr:

name atom
+

expr:

expr expr expr

atom:

int

atom:

name

atom:

expr

Delayering expressions can be done universally by a gram-
mar mutation that looks for the specific pattern and alters the
grammar to merge the layers:

Discovered pattern XBGF actions taken Result
A:

B (X B)
∗

...

B:

A

...

• unite(B,A)
• rassoc(A: A X A)
• abridge(A: A)

A:

A X A

...

...

After the mutation is applied, the nonterminals A and B

are merged, the explicit iteration is removed, and the reflexive
chain production is gone.

C. Meaningful chain rules
Usually a chain production rule is meaningless and can be

removed or introduced without major conceptual redesign, as

CWI

Megamodel

CWI

Grammar
transformation

composition

CWI

Adaptation through tolerance

V. Zaytsev, Negotiated Grammar Transformation. Draft for XM 2012.

http://grammarware.net/writes/%23Negotiated2012
http://grammarware.net/writes/%23Negotiated2012

CWI

Adaptation through tolerance

V. Zaytsev, Negotiated Grammar Transformation. Draft for XM 2012.

http://grammarware.net/writes/%23Negotiated2012
http://grammarware.net/writes/%23Negotiated2012

CWI

Adaptation through tolerance

V. Zaytsev, Negotiated Grammar Transformation. Draft for XM 2012.

http://grammarware.net/writes/%23Negotiated2012
http://grammarware.net/writes/%23Negotiated2012

CWI

Adaptation through tolerance

V. Zaytsev, Negotiated Grammar Transformation. Draft for XM 2012.

http://grammarware.net/writes/%23Negotiated2012
http://grammarware.net/writes/%23Negotiated2012

CWI

Adaptation through adjustment

V. Zaytsev, Negotiated Grammar Transformation. Draft for XM 2012.

http://grammarware.net/writes/%23Negotiated2012
http://grammarware.net/writes/%23Negotiated2012

CWI

Adaptation through adjustment

V. Zaytsev, Negotiated Grammar Transformation. Draft for XM 2012.

http://grammarware.net/writes/%23Negotiated2012
http://grammarware.net/writes/%23Negotiated2012

CWI

Adaptation through adjustment

V. Zaytsev, Negotiated Grammar Transformation. Draft for XM 2012.

http://grammarware.net/writes/%23Negotiated2012
http://grammarware.net/writes/%23Negotiated2012

CWI

Adaptation through adjustment

V. Zaytsev, Negotiated Grammar Transformation. Draft for XM 2012.

http://grammarware.net/writes/%23Negotiated2012
http://grammarware.net/writes/%23Negotiated2012

CWI

Grammar transformations

• Suite of well-defined well-studied operators

• Partial evaluation of transformation operators

• Classic grammar transformation:

• inapplicable? error! halt!

• vacuous? error! halt!

• transform! next!

CWI

Negotiated transformations

• Negotiated grammar transformation:

• applicable & non-vacuous? transform! next!

• vacuous? suggest to do nothing!

• not applicable? suggest better arguments!

• keep negotiating until applicability or surrender

V. Zaytsev, Negotiated Grammar Transformation. Draft for XM 2012.

http://grammarware.net/writes/%23Negotiated2012
http://grammarware.net/writes/%23Negotiated2012

CWI

Negotiated transformations

• Variability limits as a part of transformation command

• Interactive transformation (ask the user)

• Display a warning and proceed with minimal adjustment

• Proceed with one, save other options for fallback

• Halt and recomment

• …

V. Zaytsev, Negotiated Grammar Transformation. Draft for XM 2012.

http://grammarware.net/writes/%23Negotiated2012
http://grammarware.net/writes/%23Negotiated2012

CWI

To summarise

• Grammars define structure

• Grammarware works on
grammars & languages

• Too much stuff in the
grammar

• Decomposition

• Composition

• Adjacent topics?

http://commons.wikimedia.org/wiki/File:Torii_kiyoshige_bando_hikosaburo_ii.jpg

http://commons.wikimedia.org/wiki/File:Torii_kiyoshige_bando_hikosaburo_ii.jpg
http://commons.wikimedia.org/wiki/File:Torii_kiyoshige_bando_hikosaburo_ii.jpg

Questions?

vadim@grammarware.net

mailto:vadim@grammarware.net?subject=IPA
mailto:vadim@grammarware.net?subject=IPA
http://grammarware.net
http://grammarware.net

