
Reverse Engineering

Grammar Relationships

Ralf Lämmel and Vadim Zaytsev
Software Languages Team

Universität Koblenz-Landau

Grammar consistency checking

! Co-existing grammars embedded in software artifacts

" e.g. parser spec, data model, language standard

! Question: do grammars describe the same language?

! Goal: reliably establish & continuously maintain that

! Not always BNF, and even then…

! Not always meant to be equal, and even then…

Example motivational scenario

Different implementations of the same language
(parsers, data models, etc.)

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsd
xsd2ecore

om jaxb

xjc

java

abstractconcrete

limit

Alternative scenario

Different versions of a language as documented by specifications

impl1 read1

jls1

impl2

read12

read2

jls2

impl3 read3

jls3

read123jls12

jls123

Grammar differences

! intended vs. accidental

! result of grammar adaptation

! result of grammar evolution

! idiosyncrasies

! presentation and understandability

! misspelling

! …etc

! nominal & structural

Grammar measurement

Language convergence method

! Grammar format free from idiosyncrasies

! Grammar extraction for notation mapping

! Grammar comparison for spotting grammar differences

! Grammar transformation:

" Refactoring; extension / restriction; revision

! Grammar measurement:

" Nominal differences; structural differences

Language evolution

! Just checking for equivalence is not enough

! Languages evolve

! IDEs/compilers/tools evolve

! Documentation evolves

! Evolution can be independent

! Consistency control must account for this

Case study:
Java Language Specification

! The official language definition

! Keeps up with language evolution

! Foundation for compilers,

pretty-printers, IDEs, …

! Freely accessible in three versions

JLS irregularities in extraction
106 Case study on recovery and convergence

impl1 impl2 impl3 read1 read2 read3 Total
Arbitrary lexical decisions 2 109 60 1 90 161 423
Well-formedness violations 5 0 7 4 11 4 31
Indentation violations 1 2 7 1 4 8 23
Recovery rules 3 12 18 2 59 47 141
◦ Match parentheses 0 3 6 0 0 0 9
◦ Metasymbol to terminal 0 1 7 0 27 7 42
◦ Merge adjacent symbols 1 0 0 1 1 0 3
◦ Split compound symbol 0 1 1 0 3 8 13
◦ Nonterminal to terminal 0 7 3 0 8 11 29
◦ Terminal to nonterminal 1 0 1 1 17 13 33
◦ Recover optionality 1 0 0 0 3 8 12

Purge duplicate definitions 0 0 0 16 17 18 51
Total 11 123 92 24 181 238 669

Table 5.4: Irregularities resolved by grammar extraction.

5.4.4 Phase 3 — Removal of doubles
The JLS documents (deliberately) repeat grammar parts. Hence, we have added a trivial
phase for removal of double alternatives. That is, when a given right-hand side nontermi-
nal is encountered several times in a source, then phase 1 accumulates all the alternatives
via one entry of the dictionary, and phase 3 compares alternatives (i.e., sequences of to-
kens) to remove any doubles.

Example 5.14 Recall the following definition from Example 5.6 [66, §8.3]:

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

The same definition appears elsewhere in the document, even though the markup is
different, but these differences are already neutralised during phase 1 [66, §14.4]:

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

Phase 3 preserves 2 alternatives out of 4. As an aside, this particular example also
required the application of Rule 5.2.b because [] must be converted to terminals.

5.4.5 Phase 4 — Precise parsing
Finally, the dictionary structure of phase 1, after the recovery of phase 2, and double
removal of phase 3, is trivially parsed according to the (E)BNF for the grammar notation;
c.f., Listing 5.1. In fact, our implementation dumps the extracted grammar immediately in
an XML-based grammar interchange format so that generic grammar tools for comparison
and transformation can take over [142].

Transformations for JLS
30

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
Number of lines 682 5114 2847 6774 10721 1639 3082 30859
Number of transformations 67 290 111 387 544 77 135 1611
◦ Semantics-preserving (§4.2.2) 45 231 80 275 381 31 78 1121
◦ Semantics-increasing/-decreasing 22 58 31 102 150 39 53 455
◦ Semantics-revising — 1 — 10 13 7 4 35

Preparation phase (§4.2.1) 1 — — 15 24 11 14 65
◦ Known bugs — — — 1 11 — 4 16
◦ Post-extraction — — — 7 8 7 5 27
◦ Initial correction 1 — — 7 5 4 5 22

Resolution phase 21 59 31 97 139 35 43 425
◦ Extension (§4.2.3) — 17 26 — — 31 38 112
◦ Relaxation (§4.2.4) 18 39 5 75 112 — 2 251
◦ Correction (§4.2.5) 3 3 — 22 27 4 3 62

Table 6 Transformation of the JLS grammars — effort metrics and categorization

Table 6 measures the extraction effort and the involved grammar transformations. This
information was obtained in an automated manner but it relies on some amount of semantic
annotation of the transformations for the classifications and phases.

The number of transformations directly refers to the number of applications of transfor-
mation operators. As one can see from Table 7, 33 different operators are used in the JLS
case; most of them were introduced in §4. About three quarters of the transformations are
semantics-preserving. The remaining quarter is mainly dedicated to semantics-increasing or
-decreasing transformations with only 2% left for semantics-revising transformations.

In Table 6, one can observe that relaxation transformations indeed occur when a more
readable and a more implementable grammar are converged. Further, one can observe that
the overall transformation effort is particularly high for jls12 — which signifies the fact
(already mentioned above) that impl1 and impl2 appear to be different developments. Fi-
nally, we have made an effort to incorporate Sun’s bug list into the picture (see “Known
bugs”). We note that some of the known bugs equally occur in both the more readable and
the more implementable grammar, in which case we cannot even discover them by grammar
convergence.

In general, we can say that grammar convergence techniques are useful for creation,
maintenance and evolution of language documentation. However, any set of guidelines that
we can produce at the moment will be questionable without proper amount of experience
gathered and several successful projects of substantial size, such as van den Brand et al
(1997). Thus, the issue will not be pursued in the paper, and the interested reader is referred
to Klusener and Zaytsev (2005) instead.

5 Related work

We organize the related work discussion in the following manner: i) grammar recovery (in-
cluding grammar inference); ii) programmable grammar transformations; iii) other grammar
engineering work; iv) coupled transformations of grammar- or schema- or metamodel-like
artifacts and grammar- or schema- or metamodel-dependent artifacts; v) comparison (in-
cluding matching) of schemas or metamodels.

Where are grammar relationships?

31

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
◦ rename 9 4 2 9 10 — 2 36
◦ reroot 2 — — 2 2 2 1 9
◦ unfold 1 10 8 11 13 2 3 48
◦ fold 4 11 4 11 13 2 5 50
◦ inline 3 67 8 71 100 — 1 250
◦ extract — 17 5 18 30 — 5 75
◦ chain 1 — 2 — — 1 4 8
◦ massage 2 13 — 15 32 5 3 70
◦ distribute 3 4 2 3 6 — — 18
◦ factor 1 7 3 5 24 3 1 44
◦ deyaccify 2 20 — 25 33 4 3 87
◦ yaccify — — — — 1 — 1 2
◦ eliminate 1 8 1 14 22 — — 46
◦ introduce — 1 30 4 13 3 34 85
◦ import — — 2 — — — 1 3
◦ vertical 5 7 7 8 22 5 8 62
◦ horizontal 4 19 5 17 31 4 4 84
◦ add 1 14 13 7 20 28 20 103
◦ appear — 8 11 8 25 2 17 71
◦ widen 1 3 — 1 8 1 3 17
◦ upgrade — 8 — 14 20 2 2 46
◦ unite 18 2 — 18 21 5 4 68
◦ remove — 10 1 11 18 — 1 41
◦ disappear — 7 4 11 11 — — 33
◦ narrow — — 1 — 4 — — 5
◦ downgrade — 2 — 8 3 — — 13
◦ define — 6 — 4 9 1 6 26
◦ undefine — 3 — 5 3 — — 11
◦ redefine — 3 — 8 7 6 2 26
◦ inject — — — 2 4 — 1 7
◦ project — 1 — 1 2 — — 4
◦ replace 3 1 2 3 6 1 1 17
◦ unlabel — — — — — — 2 2

Table 7 XBGF operators usage for JLS convergence.

5.1 Grammar recovery

The main objective of the JLS study is to discover grammar relationships, but an “important
byproduct” of the study is a consolidated Java grammar. Hence, this particular instance of
grammar convergence (perhaps more than grammar convergence in general) relates strongly
to other efforts on grammar recovery. This topic has seen substantial interest over the last
10 years because of the need for grammars in various software engineering scenarios. We
categorize this work in the following.

Recovery option 1: Parser-based testing and improvement cycle

A by now classical approach to grammar recovery is to start from some sort of documen-
tation that contains a raw grammar, which can be extracted, and then to improve the raw
grammar through parser-based testing until all sources of interest can be parsed (such as test
programs, or entire software projects) (Sellink and Verhoef, 2000; Lämmel and Verhoef,
2001a,b; de Jonge and Monajemi, 2001; Alves and Visser, 2009). The actual improvement
steps may be carried out manually (Sellink and Verhoef, 2000; de Jonge and Monajemi,

Further reading

! Ralf Lämmel and Vadim Zaytsev,
An Introduction to Grammar Convergence, iFM 2009

! Ralf Lämmel and Vadim Zaytsev,
Recovering Grammar Relationships for the JLS, SCAM 2009

! Vadim Zaytsev,
Language Convergence Infrastructure, GTTSE 2009

! Ralf Lämmel and Vadim Zaytsev,
Recovering Grammar Relationships for the JLS, SQJ

! Software Language Processing Suite:
http://slps.sf.net/

http://uni-koblenz.de/~laemmel/convergence & http://uni-koblenz.de/~laemmel/jls

http://www.uni-koblenz.de/~laemmel/jls/
http://sourceforge.net/projects/slps/
http://sourceforge.net/projects/slps/
http://www.uni-koblenz.de/~laemmel/convergence/
http://www.uni-koblenz.de/~laemmel/convergence/
http://www.uni-koblenz.de/~laemmel/jls/

Conclusion / Discussion

! Reverse engineering grammar relationships

! Straightforward analysis not possible

! Straightforward reverse engineering not possible

! We perform a transformation…

! …and reverse engineer our actions.

! Language convergence is the name

Questions?

Thank you!

