Reverse Engineering Grammar Relationships

Ralf Lämmel and <u>Vadim Zaytsev</u> Software Languages Team Universität Koblenz-Landau

Grammar consistency checking

★ Co-existing grammars embedded in software artifacts ♦ e.g. parser spec, data model, language standard \star Question: do grammars describe the same language? ★ Goal: reliably establish & continuously maintain that ★ Not always BNF, and even then... ★ Not always meant to be equal, and even then...

Alternative scenario

Different versions of a language as documented by specifications

Grammar differences

 \star intended vs. accidental \star result of grammar adaptation \star result of grammar evolution \star idiosyncrasies ★ presentation and understandability \star misspelling **★**etc

* nominal & structural

Language convergence method

★ Grammar *format* free from idiosyncrasies **★** Grammar *extraction* for notation mapping * Grammar *comparison* for spotting grammar differences ★ Grammar transformation: ✦ Refactoring; extension / restriction; revision ★ Grammar measurement: Nominal differences; structural differences

Language evolution

★ Just checking for equivalence is not enough \star Languages evolve ★ IDEs/compilers/tools evolve \star Documentation evolves \star Evolution can be independent \star Consistency control must account for this

Case study: Java Language Specification

James Gosling • Bill Joy • Guy Steele • Gilad Bracha 🔸

The Java[®] Language Specification, Third Edition

★ The official language definition
★ Keeps up with language evolution
★ Foundation for compilers, pretty-printers, IDEs, ...

 \star Freely accessible in three versions

JLS irregularities in extraction

	impl1	impl2	impl3	read1	read2	read3	Total
Arbitrary lexical decisions	2	109	60	1	90	161	423
Well-formedness violations	5	0	7	4	11	4	31
Indentation violations	1	2	7	1	4	8	23
Recovery rules	3	12	18	2	59	47	141
 Match parentheses 	0	3	6	0	0	0	9
 Metasymbol to terminal 	0	1	7	0	27	7	42
 Merge adjacent symbols 	1	0	0	1	1	0	3
 Split compound symbol 	0	1	1	0	3	8	13
 Nonterminal to terminal 	0	7	3	0	8	11	29
• Terminal to nonterminal	1	0	1	1	17	13	33
 Recover optionality 	1	0	0	0	3	8	12
Purge duplicate definitions	0	0	0	16	17	18	51
Total	11	123	92	24	181	238	669

Transformations for JLS

	jls1	jls12	jls123	jls2	jls3	read12	read123	Total
Number of lines	682	5114	2847	6774	10721	1639	3082	30859
Number of transformations	67	290	111	387	544	77	135	1611
• Semantics-preserving (§4.2.2)	45	231	80	275	381	31	78	1121
 Semantics-increasing/-decreasing 	22	58	31	102	150	39	53	455
 Semantics-revising 		1		10	13	7	4	35
Preparation phase (§4.2.1)	1			15	24	11	14	65
 Known bugs 				1	11		4	16
 Post-extraction 				7	8	7	5	27
 Initial correction 	1			7	5	4	5	22
Resolution phase	21	59	31	97	139	35	43	425
• Extension (§4.2.3)		17	26			31	38	112
• Relaxation (§4.2.4)	18	39	5	75	112		2	251
• Correction (§4.2.5)	3	3		22	27	4	3	62

Where are grammar relationships?

	jls1	jls12	jls123	jls2	jls3	read12	read123	Total
o rename	9	4	2	9	10		2	36
o reroot	2			2	2	2	1	9
o unfold	1	10	8	11	13	2	3	48
∘ fold	4	11	4	11	13	2	5	50
0 inline	3	67	8	71	100		1	250
o extract		17	5	18	30		5	75
0 chain	1		2			1	4	8
o massage	2	13		15	32	5	3	70
o distribute	3	4	2	3	6		—	18
o factor	1	7	3	5	24	3	1	44
 deyaccify 	2	20		25	33	4	3	87
o yaccify					1		1	2
0 eliminate	1	8	1	14	22			46
o introduce		1	30	4	13	3	34	85
0 import	_		2				1	3
o vertical	5	7	7	8	22	5	8	62
 horizontal 	4	19	5	17	31	4	4	84
o add	1	14	13	7	20	28	20	103
o appear		8	11	8	25	2	17	71
0 widen	1	3		1	8	1	3	17
o upgrade	_	8		14	20	2	2	46
0 unite	18	2	—	18	21	5	4	68
o remove		10	1	11	18	<u> </u>	1	41
 disappear 		7	4	11	11			33
o narrow			1		4		—	5
 downgrade 		2		8	3	_	—	13
o define		6		4	9	1	6	26
o undefine		3		5	3			11
o redefine		3		8	7	6	2	26
o inject				2	4		1	7
o project		1		1	2			4
o replace	3	1	2	3	6	1	1	17
o unlabel							2	2

ALA. 12

States and

Further reading

- ★ Ralf Lämmel and Vadim Zaytsev, An Introduction to Grammar Convergence, iFM 2009
- ★ Ralf Lämmel and Vadim Zaytsev, *Recovering Grammar Relationships for the JLS*, SCAM 2009
- ★ Vadim Zaytsev, Language Convergence Infrastructure, GTTSE 2009
- ★ Ralf Lämmel and Vadim Zaytsev, *Recovering Grammar Relationships for the JLS*, SQJ
- ★ Software Language Processing Suite: <u>http://slps.sf.net/</u>

http://uni-koblenz.de/~laemmel/convergence & http://uni-koblenz.de/~laemmel/jls

Conclusion / Discussion

★ Reverse engineering grammar relationships **★** Straightforward analysis not possible ★ Straightforward reverse engineering not possible ★ We perform a transformation... \star ...and reverse engineer our actions. \star Language convergence is the name

