
A Unified Format for
Language Documents

Vadim Zaytsev and Ralf Lämmel
Software Languages Team

Universität Koblenz-Landau

Motivation

! Formal languages are defined by formal grammars

! Real languages are defined by their specifications

! A standard is a complex artifact

! Adequate supporting technology is needed

! Co-evolution of documents and grammarware tools

! “Literate programming”

Language document engineering

Focus on grammars

!"#$%&'()*

+,-.*&-(/
0.*))*.
12345

!"#$#%
&'(()*%

!"#
16789$+&:.(9$;;;5 +,-.

<!# .+-/0/+,-.

2=4$>?$@<"#

"#1234
('"35"

%A4

6,7

;;;

8

<.*?BC:.)(/
0.*))*.
12345

+9:7

+9:7

@<"#

+,-.

2=4+,-.

%A4

+,-.

;;;

+,-.8

(D:EF->:?
.(B-.F&-F.>?0
GB-.&->:?
&:..(&->:?
BH(&>*E>I*->:?

Language document engineering

Focus on documents

!"#$%&'()*

+,-.*&-(/
/0&1)(2-
3#456

!"#$#%
&'(()*%

789$!"# +,-.

:;"#

"#/0123('"14"

<<<

;.*2=>0.)(/
/0&1)(2-
3#456

+-56

+-56

:;"#

+,-.

;(!
+,-.

40&?00@

+,-.

<<<

+,-.7

A45

-'.4+

5#89##:

(B0C1-D02
D)E.0B()(2-

<<<

Language standardization

! American National Standards Institute (ANSI, 1918)

! European Computer Manufacturers Association (ECMA, 1961)

! Institute of Electrical and Electronics Engineers Standards Association (IEEE, 1884)

! International Electrotechnical Commission (IEC, 1906)

! International Organization for Standardization (ISO, 1947)

! International Telecommunication Union (ITU, 1865)

! Internet Engineering Task Force (IETF, 1986)

! Object Management Group (OMG, 1989)

! Organization for Advancement of Structured Information Standards (OASIS, 1993)

! Website Standards Association (WSA, 2006)

! World Wide Web Consortium (W3C, 1994)

http://w3.org
http://ansi.org
http://ansi.org
http://ecma-international.org
http://ecma-international.org
http://standards.ieee.org
http://standards.ieee.org
http://iec.ch
http://iec.ch
http://open-std.org
http://open-std.org
http://itu.int
http://itu.int
http://ietf.org
http://ietf.org
http://omg.org
http://omg.org
http://oasis-open.org
http://oasis-open.org
http://websitestandards.org
http://websitestandards.org
http://w3.org

Control group (for the paper)

! IAL (Algol 58)

! JOVIAL

! Design Patterns

! ANSI Smalltalk

! IBM Informix

! ISO C♯

! OMG MOF

! W3C XPath

8 Vadim Zaytsev and Ralf Lämmel

The XML Spec Schema, available from http://www.w3.org/2002/xmlspec,
combines elements of structure and topic orientation in a manner that brings
us closer to the domain of language documentation. The XML Spec Schema
is a DTD that is used for some W3C recommendations. It is based on the
literate programming tag set SWEB and the text encoding tag set TEI Lite.
The Spec Schema covers some elements of the language documentation domain
such as tagging facilities for grammar fragments; it does not capture the rich
classification of sections in language documents.

3 Concepts of language documentation

As a preparatory step towards introducing LDF, we identify the concepts of the
language documentation domain. We set up a control group to this end, and we
also illustrate several concepts specifically for one member of the control group:
the XPath W3C Recommendation.

3.1 Control group for the domain model

As we have indicated in the introduction, we have consulted a large set of lan-
guage documents to eventually synthesize a unified format. For reasons of scala-
bility, we have selected a smaller set of documents which we use here to present
the results of our reverse-engineering efforts and to prepare the synthesis of a
unified format for language documents. The reference set of documents has been
chosen for its diversity. Table 1 shows some basic metadata about the language
documents for the reference set. We describe the reference set in more detail as
follows:

IAL Jovial Patterns Smalltalk Informix C# MOF XPath
Property [Bac60] [MIL84] [GHJV95] [Sha97] [IBM03] [Sta06] [MOF06] [BBC+07]
Body ACM DoD — ANSI IBM ECMA, ISO OMG W3C
Company IBM — Pearson — IBM Microsoft — —
Year 1960 1984 1995 1997 2003 2006 2006 2007
Pages 21 158 395 304 1344 548 88 111
Notation BNF BNF UML BNF RT BNF UML EBNF

Table 1. Some basic metadata of the standards chosen for the survey.

– IAL stands for International Algebraic Language that later became known as
Algol-58 [Bac60]. It is historically the first programming language document, and
as such it is the first time that the notation for specifying grammar productions was
explicitly defined. The majority of all other standards produced over the following
decades re-used this notation and extended it.

– JOVIAL, or J73 [MIL84] is a Military Standard of 1984, which “has been reviewed
and determined to be valid” in 1994. It is approved for use by the Department of
the Air Force and is available for use by all other Departments and Agencies of

Language documentation

! Presentation

! Adobe Framemaker, Microsoft Word, …

! Structure

! DocBook, in-house XML schema

! Topic

! DITA, Wikis

Domain concepts

! Synopsis

! Description

! Syntax

! Constraints

! References

! Relationship

! Semantics

! Rationale

! Example

! Update

! Default

! Value

! List

! Section & Subtopic

Domain concepts

! Synopsis

! Description

! Syntax

! Constraints

! References

! Relationship

! Semantics

! Rationale

! Example

! Update

! Default

! Value

! List

! Section & Subtopic

NCITS J20 DRAFT December, 1997 60
of ANSI Smalltalk Standard revision 1.9

The perform messages and #respondsTo: must be implemented to produce consistent results. A

message to perform a selector, selector, for a given receiver will result in a "message not

understood" condition if and only if the value of

receiver respondsTo: selector

is false.

Behavior is undefined if the number of elements in arguments does not match that implicitly

required by the syntactic form of the selector.

Parameters

selector <selector> unspecified

arguments <Array> unspecified

Return Value

<ANY> unspecified=
The protocol specification of the returned value of this method is not really useful for any sort of
static analysis. In practice the returned value will be treated as conforming to the return type of the
message that is dynamically constructed.

Errors

none

5.3.1.17 Message: printOn: target

Synopsis

Write a textual description of the receiver to a stream.

Definition: <Object>

The string of characters that would be the result of sending the message #printString to the

receiver is written to target. The characters appear on the stream as if each character was, in

sequence, written to the stream using the message #nextPut:.

Parameters

target <puttableStream> uncaptured

Return Value

UNSPECIFIED

Errors

none

5.3.1.18 Message: printString

Synopsis

Return a string that describes the receiver.

Definition: <Object>

A string consisting of a sequence of characters that describe the receiver are returned as the
result.

The exact sequence of characters that describe an object are implementation defined.

Return Value

<readableString> unspecified

Errors

none

Domain concepts

! Synopsis

! Description

! Syntax

! Constraints

! References

! Relationship

! Semantics

! Rationale

! Example

! Update

! Default

! Value

! List

! Section & Subtopic

NCITS J20 DRAFT December, 1997 60
of ANSI Smalltalk Standard revision 1.9

The perform messages and #respondsTo: must be implemented to produce consistent results. A

message to perform a selector, selector, for a given receiver will result in a "message not

understood" condition if and only if the value of

receiver respondsTo: selector

is false.

Behavior is undefined if the number of elements in arguments does not match that implicitly

required by the syntactic form of the selector.

Parameters

selector <selector> unspecified

arguments <Array> unspecified

Return Value

<ANY> unspecified=
The protocol specification of the returned value of this method is not really useful for any sort of
static analysis. In practice the returned value will be treated as conforming to the return type of the
message that is dynamically constructed.

Errors

none

5.3.1.17 Message: printOn: target

Synopsis

Write a textual description of the receiver to a stream.

Definition: <Object>

The string of characters that would be the result of sending the message #printString to the

receiver is written to target. The characters appear on the stream as if each character was, in

sequence, written to the stream using the message #nextPut:.

Parameters

target <puttableStream> uncaptured

Return Value

UNSPECIFIED

Errors

none

5.3.1.18 Message: printString

Synopsis

Return a string that describes the receiver.

Definition: <Object>

A string consisting of a sequence of characters that describe the receiver are returned as the
result.

The exact sequence of characters that describe an object are implementation defined.

Return Value

<readableString> unspecified

Errors

none

Domain concepts

! Synopsis

! Description

! Syntax

! Constraints

! References

! Relationship

! Semantics

! Rationale

! Example

! Update

! Default

! Value

! List

! Section & Subtopic

NCITS J20 DRAFT December, 1997 60
of ANSI Smalltalk Standard revision 1.9

The perform messages and #respondsTo: must be implemented to produce consistent results. A

message to perform a selector, selector, for a given receiver will result in a "message not

understood" condition if and only if the value of

receiver respondsTo: selector

is false.

Behavior is undefined if the number of elements in arguments does not match that implicitly

required by the syntactic form of the selector.

Parameters

selector <selector> unspecified

arguments <Array> unspecified

Return Value

<ANY> unspecified=
The protocol specification of the returned value of this method is not really useful for any sort of
static analysis. In practice the returned value will be treated as conforming to the return type of the
message that is dynamically constructed.

Errors

none

5.3.1.17 Message: printOn: target

Synopsis

Write a textual description of the receiver to a stream.

Definition: <Object>

The string of characters that would be the result of sending the message #printString to the

receiver is written to target. The characters appear on the stream as if each character was, in

sequence, written to the stream using the message #nextPut:.

Parameters

target <puttableStream> uncaptured

Return Value

UNSPECIFIED

Errors

none

5.3.1.18 Message: printString

Synopsis

Return a string that describes the receiver.

Definition: <Object>

A string consisting of a sequence of characters that describe the receiver are returned as the
result.

The exact sequence of characters that describe an object are implementation defined.

Return Value

<readableString> unspecified

Errors

none

Domain concepts

! Synopsis

! Description

! Syntax

! Constraints

! References

! Relationship

! Semantics

! Rationale

! Example

! Update

! Default

! Value

! List

! Section & Subtopic

NCITS J20 DRAFT December, 1997 57
of ANSI Smalltalk Standard revision 1.9

5.3.1.9 Message: hash

Synopsis

Return an integer hash code that can be used in conjunction with an #= comparison.

Definition: <Object>

An integer value that can be used as a hash code for the receiver is returned. The hash code is

intended for use in conjunction with an #= comparison.

The range, minimum, and maximum values of the result is implementation defined.

Any two objects that are considered equivalent using the #= message must have the same hash

value. More formally:

receiver = comparand

receiver hash = comparand hash

The hash value of an object need not be temporally invariant. Two independent invocations of

#hash with the same receiver may not always yield the same results. Note that collections that use

#= to discriminate objects may only reliably store objects whose hash values do not change while

the objects are contained in the collection.

Return Value

<integer> unspecified=
Errors

none

5.3.1.10 Message: identityHash

Synopsis

Return an integer hash code that can be used in conjunction with an #== (identity) comparison.

Definition: <Object>

An integer value that can be used as a hash code for the receiver is returned. The hash code is

intended for use in conjunction with an #== comparison.

The range, minimum, or maximum values of the result is implementation defined.

The identity hash of an object must be temporally invariant.

Return Value

<integer> unspecified=
Errors

none

Rationale

Some existing implementations use the selector #basicHash for this message. #basicHash is inappropriate because of

the convention that selectors starting with the sequence "basic" are private to the implementation of an object.

5.3.1.11 Message: isKindOf: candidateClass

Synopsis

Classify an object.

Definition: <Object>

Return true if the receiver is an instance of candidateClass or is an instance of a general

subclass of candidateClass. Otherwise return false.

The return value is unspecified if the receiver is a class object or candidateClass is not a class

object.

Parameters

Domain concepts

! Synopsis

! Description

! Syntax

! Constraints

! References

! Relationship

! Semantics

! Rationale

! Example

! Update

! Default

! Value

! List

! Section & Subtopic

3 Expressions

3.1 Basics

A VariableReference evaluates to the value to which the variable name is
bound in the set of variable bindings in the context. It is an error if the variable
name is not bound to any value in the set of variable bindings in the expression
context.

Parentheses may be used for grouping.

[14] Expr ::= OrExpr

[15] PrimaryExpr ::= VariableReference

| '(' Expr ')'

| Literal

| Number

| FunctionCall

3.2 Function Calls

A FunctionCall expression is evaluated by using the FunctionName to identify a
function in the expression evaluation context function library, evaluating each of
the Arguments, converting each argument to the type required by the function,
and finally calling the function, passing it the converted arguments. It is an error
if the number of arguments is wrong or if an argument cannot be converted to
the required type. The result of the FunctionCall expression is the result
returned by the function.

An argument is converted to type string as if by calling the string function. An
argument is converted to type number as if by calling the number function. An
argument is converted to type boolean as if by calling the boolean function. An
argument that is not of type node-set cannot be converted to a node-set.

[16] FunctionCall ::= FunctionName '(' (Argument (',' Argument)*)? ')'

[17] Argument ::= Expr

3.3 Node-sets

A location path can be used as an expression. The expression returns the set
of nodes selected by the path.

The | operator computes the union of its operands, which must be node-sets.

Predicates are used to filter expressions in the same way that they are used in
location paths. It is an error if the expression to be filtered does not evaluate to
a node-set. The Predicate filters the node-set with respect to the child axis.

NOTE: The meaning of a Predicate depends crucially on which axis
applies. For example, preceding::foo[1] returns the first foo
element in reverse document order, because the axis that applies to

XML Path Language (XPath) http://www.w3.org/TR/xpath.html

!"#. 13 $% 32 04.09.2008 15:35

Domain concepts

! Synopsis

! Description

! Syntax

! Constraints

! References

! Relationship

! Semantics

! Rationale

! Example

! Update

! Default

! Value

! List

! Section & Subtopic

MOF Core Specification, v2.0 23

Changes from MOF 1.4

None.

10.3 Property

Identifiers extends Basic::Property with the ability to designate a property as an identifier for the containing element.

Properties

isID: Boolean [0..1] - True indicates this property can be used to uniquely identify an instance of the containing Class.

Only one Property in a class may have isID==true.

Operations

No additional operations.

Constraints

[1] Property.isID can only be true for one Property of a Class.

Semantics

A Property with isID==true may be used as part of the URI identifying an object instance.

Rationale

Elements must have identity. The Property isID formalizes this capability in the metadata describing the element.

Changes from MOF 1.4

None.

10.4 URIExtent

An extent that provides URI identifiers. A URIExtent can have a URI that establishes a context that may be used in

determining identifiers for elements identified in the extent. Implementations may also use values of properties with

isID==true in determining the identifier of the element.

Properties

No additional properties.

Operations

contextURI(): String

Specifies an identifier for the extent that establishes a URI context for identifying elements in the extent. An extent has

an identifier if a URI is assigned. URI is defined in IETF RFC-2396 available at http://www.ietf.org/rfc/rfc2396.txt.

uri(element: Element): String

Returns the URI of the given element in the extent. Returns Null if the element is not in the extent.

Domain concepts

! Synopsis

! Description

! Syntax

! Constraints

! References

! Relationship

! Semantics

! Rationale

! Example

! Update

! Default

! Value

! List

! Section & Subtopic

MOF Core Specification, v2.0 23

Changes from MOF 1.4

None.

10.3 Property

Identifiers extends Basic::Property with the ability to designate a property as an identifier for the containing element.

Properties

isID: Boolean [0..1] - True indicates this property can be used to uniquely identify an instance of the containing Class.

Only one Property in a class may have isID==true.

Operations

No additional operations.

Constraints

[1] Property.isID can only be true for one Property of a Class.

Semantics

A Property with isID==true may be used as part of the URI identifying an object instance.

Rationale

Elements must have identity. The Property isID formalizes this capability in the metadata describing the element.

Changes from MOF 1.4

None.

10.4 URIExtent

An extent that provides URI identifiers. A URIExtent can have a URI that establishes a context that may be used in

determining identifiers for elements identified in the extent. Implementations may also use values of properties with

isID==true in determining the identifier of the element.

Properties

No additional properties.

Operations

contextURI(): String

Specifies an identifier for the extent that establishes a URI context for identifying elements in the extent. An extent has

an identifier if a URI is assigned. URI is defined in IETF RFC-2396 available at http://www.ietf.org/rfc/rfc2396.txt.

uri(element: Element): String

Returns the URI of the given element in the extent. Returns Null if the element is not in the extent.

Domain concepts

! Synopsis

! Description

! Syntax

! Constraints

! References

! Relationship

! Semantics

! Rationale

! Example

! Update

! Default

! Value

! List

! Section & SubtopicMOF Core Specification, v2.0 23

Changes from MOF 1.4

None.

10.3 Property

Identifiers extends Basic::Property with the ability to designate a property as an identifier for the containing element.

Properties

isID: Boolean [0..1] - True indicates this property can be used to uniquely identify an instance of the containing Class.

Only one Property in a class may have isID==true.

Operations

No additional operations.

Constraints

[1] Property.isID can only be true for one Property of a Class.

Semantics

A Property with isID==true may be used as part of the URI identifying an object instance.

Rationale

Elements must have identity. The Property isID formalizes this capability in the metadata describing the element.

Changes from MOF 1.4

None.

10.4 URIExtent

An extent that provides URI identifiers. A URIExtent can have a URI that establishes a context that may be used in

determining identifiers for elements identified in the extent. Implementations may also use values of properties with

isID==true in determining the identifier of the element.

Properties

No additional properties.

Operations

contextURI(): String

Specifies an identifier for the extent that establishes a URI context for identifying elements in the extent. An extent has

an identifier if a URI is assigned. URI is defined in IETF RFC-2396 available at http://www.ietf.org/rfc/rfc2396.txt.

uri(element: Element): String

Returns the URI of the given element in the extent. Returns Null if the element is not in the extent.

Mapping to LDF

A
U
n
ifi
ed

F
orm

at
for

L
an

gu
age

D
o
cu

m
en

ts
11

Domain IAL Jovial Design Patterns Smalltalk Informix C# MOF XPath
concept [Bac60] [MIL84] [GHJV95] [Sha97] [IBM03] [Sta06] [MOF06] [BBC+07]
synopsis — ∼ intent synopsis ∼ ∼ ∼ —
description ∼ — motivation definition usage ∼ — ∼
syntax —a syntax structure ∼ ∼ ∼ — [NN]b

constraints — constraints applicability errors restrictions ∼ constraints ∼
references — — related patterns — references ∼ — ∼
relationship — — consequences return value, related return — ∼

refinement type
semantics — semantics collaborations — important ∼ semantics ∼
rationale ∼ notes implementation rationale GLS, ESc note rationale note
example examples examples sample code, — ∼ example — ∼

known uses
update — — — — — —d changes —
default — — — — note default — —

values

value — — also known as conforms to — — — —
list ∼ — — messages, terminals — properties ∼

parameters
section ∼ — — — ∼ ∼ — ∼
subtopic — types participants — fields parameters, operations functions

methods

Coverage
of
LDF

Table 2. Mapping language definitions to domain concepts for language documentation

a The absence of syntax elements means that grammar productions only occur within the designated part of a standard.
b All productions in XPath standard are numbered and marked as [1], [2], etc.
c GLS — Global Language Support, ES — an IBM Informix database type.
d For every version of C#, there is a separate document that summarizes the changes brought to the language.

XPath case study

! Fully mapped:

! note (<note>) ! rationale

! function (<proto>) ! subtopic

! productions (<scrap>) ! syntax

! ? ! description

XPath case study

<prod id="NT-RelativeLocationPath">

<lhs>RelativeLocationPath</lhs>

<rhs><nt def="NT-Step">Step</nt></rhs>

<rhs>

| <nt def="NT-RelativeLocationPath">RelativeLocationPath</nt>

'/' <nt def="NT-Step">Step</nt>

</rhs>

<rhs>

| <nt def="NT-AbbreviatedRelativeLocationPath">AbbreviatedRelativeLocationPath</nt>

</rhs>

</prod>

XPath case study

! Partially mapped:

! first description sentence ! synopsis

! rationale with “should be” ! constraints

! rationale with “[not] the same as” ! relationship

! description bits with “for example” ! example

! …

Document transformations

! Same as grammar transformations

! Language evolution

! Language convergence with documents

! Documentation improvement

! …

Document transformations

xldf:add-section(structured-section:((title:"For Expressions",

 id:"id-for-expressions"),

 ...));

xldf:move-section(id:"section-Function-Calls",

 inside:"id-primary-expressions");

xldf:rename-id(from:"section-Function-Calls",

 to:"id-function-calls");

Related work: documentation

! LDF vs. DocBook

! LDF vs. DITA

! LDF vs. home-grown XML

! LDF vs. ???

Related work: research

! Verification techniques on documentation

! Wikis, eBooks, interactive tutorials, browsable grammars

! Information retrieval

! Natural language generation

! Knowledge reuse

! …

Conclusion / Future Work

! A unified format: LDF

! derived from real language document

! integrated with current research & infrastructure

! Language document engineering

! Round-tripping experiments

! Considerably large case study

Questions?

Thank you!

