
Recovery,
Convergence

and
Documentation 

of Languages

Doctoral defence of
Drs. ir.  Vadim V. Zaytsev













Acknowledgements

…?







Outline

Recovery,
Convergence

and
Documentation 

of Languages





cloudTag
      

      

   

    

   

   

    

  

     

    

    

    

  

    

      

    

    

     

   

    

grammar (1375)

language (783)

convergence (278)

nonterminal (291)

production (283)

transformation (334)

used (275)

case (201)

definition (232)

example (236)

expr (230) expression (216)

section (241)

syntax (202)

chapter (147)

di!erent (152)

extraction (143)

operators (169)

standard (150)

xbgf (149)

bgf (115)

defined (126)

document (130)

list (116)

name (106)

parsing (108)

programming (118) recovery (128)

specification (110)

step (117) structure (103) study (109)

terminal (111)

work (110)

abstract (78)

code (93)

engineering (97)

form (73) formal (76) format (73) generated (82) given (88)

input (73) java (84)

ldf (76) manual (80) model (87)

op (90)

parser (77) possible (73)

process (77)

result (79) schema (75)

semantics (73) software (84) source (78)

str (97)

symbol (89)

version (87) xml (84)

approach (54) argument (52) artefacts (62) automated (59) bar (61)

binary (60) bnf (64) change (53) concrete (52)

contains (69) correction (63) corresponding (54)

data (61) detail (66)

existing (71)

foo (53)

grammarware (54) infrastructure (55)

instance (62) int (64) iso (69) jls (58)

needed (62) number (62)

order (54)

presented (59)

refactoring (67) reference (57) replace (52)

research (56) rules (53) scope (55) sdf (58)

simple (58)

subsection (52) suite (54) table (72)

thesis (62) tools (56) type (59)

TagCrowd - make your own tag cloud from any text http://tagcrowd.com/

1 of 1 14.09.10 17:08



Outline

Recovery,
Convergence

and
Documentation 

of Languages



Language: Java

import types.*;
import org.antlr.runtime.*;
import java.io.*;

public class TestEvaluator {
    public static void main(String[] args) throws Exception {
        ANTLRFileStream input = new ANTLRFileStream(args[0]);
        FLLexer lexer = new FLLexer(input);
        CommonTokenStream tokens = new CommonTokenStream(lexer);
        FLParser parser = new FLParser(tokens);
        Program program = parser.program();
        input = new ANTLRFileStream(args[1]);
        lexer = new FLLexer(input);
        tokens = new CommonTokenStream(lexer);
        parser = new FLParser(tokens);
        Expr expr = parser.expr();
! Evaluator eval = new Evaluator(program);
! int expected = Integer.parseInt(args[2]);
! assert expected == eval.evaluate(expr);
}



Language: XML (BGF)

<?xml version="1.0" encoding="UTF-8"?>
<bgf:grammar xmlns:bgf="http://planet-sl.org/bgf">
! <root>Program</root>
! <root>Fragment</root>
! <bgf:production>
! ! <nonterminal>Program</nonterminal>
! ! <bgf:expression>
! ! ! <plus>
! ! ! ! <bgf:expression>
! ! ! ! ! <selectable>
! ! ! ! ! ! <selector>function</selector>
! ! ! ! ! ! <bgf:expression>
! ! ! ! ! ! ! <nonterminal>Function</nonterminal>
! ! ! ! ! ! </bgf:expression>
! ! ! ! ! </selectable>
! ! ! ! </bgf:expression>
! ! ! </plus>
! ! </bgf:expression>
! </bgf:production>
! <!-- … -->
</bgf:grammar>

http://planet-sl.org/bgf
http://planet-sl.org/bgf


Language: syntax diagram



Also a language

http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png

http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png
http://en.wikipedia.org/wiki/File:Common_Base_amplifier.png




Languages and transformations

!"#$%&

'(%

!"#

)*% $%&'

+,-+

$()*

.,!

$()* !)*%

+,-,./0".1

/0+

#2"0

)/*,$

#(%

$()*

$()*

$)3'

1.2#

$()*

$()* 4506"-

$()*$()*

1278,.

34.#5

9:*);

"(%

9('

.!#6!2#

$()*

7809,

$()* :;<;

<827#1,

3=%>-

).%

9('

4."2"+

$%*'!"(

4."2"+

4506"- <827#1,

&./#6=7>

#8%

)?@

1278,.

.!#

*$)

A/=/

!2#

4."2"+

###

&3B

0./!"

(8*

4."2"+



Outline

Recovery,
Convergence

and
Documentation 

of Languages



Language documentation



Language documentation



Language documentation



Language documentation

?



Unified model for language docs

A
U
n
ifi
ed

F
orm

at
for

L
an

gu
age

D
o
cu

m
en

ts
11

Domain IAL Jovial Design Patterns Smalltalk Informix C# MOF XPath
concept [Bac60] [MIL84] [GHJV95] [Sha97] [IBM03] [Sta06] [MOF06] [BBC+07]
synopsis — ∼ intent synopsis ∼ ∼ ∼ —
description ∼ — motivation definition usage ∼ — ∼
syntax —a syntax structure ∼ ∼ ∼ — [NN]b

constraints — constraints applicability errors restrictions ∼ constraints ∼
references — — related patterns — references ∼ — ∼
relationship — — consequences return value, related return — ∼

refinement type
semantics — semantics collaborations — important ∼ semantics ∼
rationale ∼ notes implementation rationale GLS, ESc note rationale note
example examples examples sample code, — ∼ example — ∼

known uses
update — — — — — —d changes —
default — — — — note default — —

values

value — — also known as conforms to — — — —
list ∼ — — messages, terminals — properties ∼

parameters
section ∼ — — — ∼ ∼ — ∼
subtopic — types participants — fields parameters, operations functions

methods

Coverage
of
LDF

Table 2. Mapping language definitions to domain concepts for language documentation

a The absence of syntax elements means that grammar productions only occur within the designated part of a standard.
b All productions in XPath standard are numbered and marked as [1], [2], etc.
c GLS — Global Language Support, ES — an IBM Informix database type.
d For every version of C#, there is a separate document that summarizes the changes brought to the language.



Outline

Recovery,
Convergence

and
Documentation 

of Languages



Relationships between languages

Different versions of  the same language

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsd
xsd2ecore

om jaxb

xjc

java

abstractconcrete

limit



Relationships between languages

Different versions of  the same language

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsd
xsd2ecore

om jaxb

xjc

java

abstractconcrete

limit TransformationsTransformations



Grammar convergence



JLS convergence results
30

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
Number of lines 682 5114 2847 6774 10721 1639 3082 30859
Number of transformations 67 290 111 387 544 77 135 1611
◦ Semantics-preserving (§4.2.2) 45 231 80 275 381 31 78 1121
◦ Semantics-increasing/-decreasing 22 58 31 102 150 39 53 455
◦ Semantics-revising — 1 — 10 13 7 4 35

Preparation phase (§4.2.1) 1 — — 15 24 11 14 65
◦ Known bugs — — — 1 11 — 4 16
◦ Post-extraction — — — 7 8 7 5 27
◦ Initial correction 1 — — 7 5 4 5 22

Resolution phase 21 59 31 97 139 35 43 425
◦ Extension (§4.2.3) — 17 26 — — 31 38 112
◦ Relaxation (§4.2.4) 18 39 5 75 112 — 2 251
◦ Correction (§4.2.5) 3 3 — 22 27 4 3 62

Table 6 Transformation of the JLS grammars — effort metrics and categorization

Table 6 measures the extraction effort and the involved grammar transformations. This
information was obtained in an automated manner but it relies on some amount of semantic
annotation of the transformations for the classifications and phases.

The number of transformations directly refers to the number of applications of transfor-
mation operators. As one can see from Table 7, 33 different operators are used in the JLS
case; most of them were introduced in §4. About three quarters of the transformations are
semantics-preserving. The remaining quarter is mainly dedicated to semantics-increasing or
-decreasing transformations with only 2% left for semantics-revising transformations.

In Table 6, one can observe that relaxation transformations indeed occur when a more
readable and a more implementable grammar are converged. Further, one can observe that
the overall transformation effort is particularly high for jls12 — which signifies the fact
(already mentioned above) that impl1 and impl2 appear to be different developments. Fi-
nally, we have made an effort to incorporate Sun’s bug list into the picture (see “Known
bugs”). We note that some of the known bugs equally occur in both the more readable and
the more implementable grammar, in which case we cannot even discover them by grammar
convergence.

In general, we can say that grammar convergence techniques are useful for creation,
maintenance and evolution of language documentation. However, any set of guidelines that
we can produce at the moment will be questionable without proper amount of experience
gathered and several successful projects of substantial size, such as van den Brand et al
(1997). Thus, the issue will not be pursued in the paper, and the interested reader is referred
to Klusener and Zaytsev (2005) instead.

5 Related work

We organize the related work discussion in the following manner: i) grammar recovery (in-
cluding grammar inference); ii) programmable grammar transformations; iii) other grammar
engineering work; iv) coupled transformations of grammar- or schema- or metamodel-like
artifacts and grammar- or schema- or metamodel-dependent artifacts; v) comparison (in-
cluding matching) of schemas or metamodels.



JLS convergence results
30

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
Number of lines 682 5114 2847 6774 10721 1639 3082 30859
Number of transformations 67 290 111 387 544 77 135 1611
◦ Semantics-preserving (§4.2.2) 45 231 80 275 381 31 78 1121
◦ Semantics-increasing/-decreasing 22 58 31 102 150 39 53 455
◦ Semantics-revising — 1 — 10 13 7 4 35

Preparation phase (§4.2.1) 1 — — 15 24 11 14 65
◦ Known bugs — — — 1 11 — 4 16
◦ Post-extraction — — — 7 8 7 5 27
◦ Initial correction 1 — — 7 5 4 5 22

Resolution phase 21 59 31 97 139 35 43 425
◦ Extension (§4.2.3) — 17 26 — — 31 38 112
◦ Relaxation (§4.2.4) 18 39 5 75 112 — 2 251
◦ Correction (§4.2.5) 3 3 — 22 27 4 3 62

Table 6 Transformation of the JLS grammars — effort metrics and categorization

Table 6 measures the extraction effort and the involved grammar transformations. This
information was obtained in an automated manner but it relies on some amount of semantic
annotation of the transformations for the classifications and phases.

The number of transformations directly refers to the number of applications of transfor-
mation operators. As one can see from Table 7, 33 different operators are used in the JLS
case; most of them were introduced in §4. About three quarters of the transformations are
semantics-preserving. The remaining quarter is mainly dedicated to semantics-increasing or
-decreasing transformations with only 2% left for semantics-revising transformations.

In Table 6, one can observe that relaxation transformations indeed occur when a more
readable and a more implementable grammar are converged. Further, one can observe that
the overall transformation effort is particularly high for jls12 — which signifies the fact
(already mentioned above) that impl1 and impl2 appear to be different developments. Fi-
nally, we have made an effort to incorporate Sun’s bug list into the picture (see “Known
bugs”). We note that some of the known bugs equally occur in both the more readable and
the more implementable grammar, in which case we cannot even discover them by grammar
convergence.

In general, we can say that grammar convergence techniques are useful for creation,
maintenance and evolution of language documentation. However, any set of guidelines that
we can produce at the moment will be questionable without proper amount of experience
gathered and several successful projects of substantial size, such as van den Brand et al
(1997). Thus, the issue will not be pursued in the paper, and the interested reader is referred
to Klusener and Zaytsev (2005) instead.

5 Related work

We organize the related work discussion in the following manner: i) grammar recovery (in-
cluding grammar inference); ii) programmable grammar transformations; iii) other grammar
engineering work; iv) coupled transformations of grammar- or schema- or metamodel-like
artifacts and grammar- or schema- or metamodel-dependent artifacts; v) comparison (in-
cluding matching) of schemas or metamodels.

Convergence reveals relationships





31

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
◦ rename 9 4 2 9 10 — 2 36
◦ reroot 2 — — 2 2 2 1 9
◦ unfold 1 10 8 11 13 2 3 48
◦ fold 4 11 4 11 13 2 5 50
◦ inline 3 67 8 71 100 — 1 250
◦ extract — 17 5 18 30 — 5 75
◦ chain 1 — 2 — — 1 4 8
◦ massage 2 13 — 15 32 5 3 70
◦ distribute 3 4 2 3 6 — — 18
◦ factor 1 7 3 5 24 3 1 44
◦ deyaccify 2 20 — 25 33 4 3 87
◦ yaccify — — — — 1 — 1 2
◦ eliminate 1 8 1 14 22 — — 46
◦ introduce — 1 30 4 13 3 34 85
◦ import — — 2 — — — 1 3
◦ vertical 5 7 7 8 22 5 8 62
◦ horizontal 4 19 5 17 31 4 4 84
◦ add 1 14 13 7 20 28 20 103
◦ appear — 8 11 8 25 2 17 71
◦ widen 1 3 — 1 8 1 3 17
◦ upgrade — 8 — 14 20 2 2 46
◦ unite 18 2 — 18 21 5 4 68
◦ remove — 10 1 11 18 — 1 41
◦ disappear — 7 4 11 11 — — 33
◦ narrow — — 1 — 4 — — 5
◦ downgrade — 2 — 8 3 — — 13
◦ define — 6 — 4 9 1 6 26
◦ undefine — 3 — 5 3 — — 11
◦ redefine — 3 — 8 7 6 2 26
◦ inject — — — 2 4 — 1 7
◦ project — 1 — 1 2 — — 4
◦ replace 3 1 2 3 6 1 1 17
◦ unlabel — — — — — — 2 2

Table 7 XBGF operators usage for JLS convergence.

5.1 Grammar recovery

The main objective of the JLS study is to discover grammar relationships, but an “important
byproduct” of the study is a consolidated Java grammar. Hence, this particular instance of
grammar convergence (perhaps more than grammar convergence in general) relates strongly
to other efforts on grammar recovery. This topic has seen substantial interest over the last
10 years because of the need for grammars in various software engineering scenarios. We
categorize this work in the following.

Recovery option 1: Parser-based testing and improvement cycle

A by now classical approach to grammar recovery is to start from some sort of documen-
tation that contains a raw grammar, which can be extracted, and then to improve the raw
grammar through parser-based testing until all sources of interest can be parsed (such as test
programs, or entire software projects) (Sellink and Verhoef, 2000; Lämmel and Verhoef,
2001a,b; de Jonge and Monajemi, 2001; Alves and Visser, 2009). The actual improvement
steps may be carried out manually (Sellink and Verhoef, 2000; de Jonge and Monajemi,





Outline

Recovery,
Convergence

and
Documentation 

of Languages





Grammar recovery

!"#$%&'()*

+,-.*&-(/
0.*))*.
12345

!"#$#%
&'(()*%

!"#
16789$+&:.(9$;;;5 +,-.

<!# .+-/0/+,-.

2=4$>?$@<"#

"#1234
('"35"

%A4

6,7

;;;

8

<.*?BC:.)(/
0.*))*.
12345

+9:7

+9:7

@<"#

+,-.

2=4+,-.

%A4

+,-.

;;;

+,-.8

(D:EF->:?
.(B-.F&-F.>?0
*GB-.*&->:?
&:..(&->:?
BH(&>*E>I*->:?



Grammar recovery engineering

!"#$%&'()*

+,-.*&-(/
0.*))*.
12345

!"#$#%
&'(()*%

!"#
16789$+&:.(9$;;;5 +,-.

<!# .+-/0/+,-.

2=4$>?$@<"#

"#1234
('"35"

%A4

6,7

;;;

8

<.*?BC:.)(/
0.*))*.
12345

+9:7

+9:7

@<"#

+,-.

2=4+,-.

%A4

+,-.

;;;

+,-.8

(D:EF->:?
.(B-.F&-F.>?0
*GB-.*&->:?
&:..(&->:?
BH(&>*E>I*->:?



Language document recovery

!"#$%&'()*

+,-.*&-(/
/0&1)(2-
3#456

!"#$#%
&'(()*%

789$!"# +,-.

:;"#

"#/0123('"14"

<<<

;.*2=>0.)(/
/0&1)(2-
3#456

+-56

+-56

:;"#

+,-.

;(!
+,-.

40&?00@

+,-.

<<<

+,-.7

A45

-'.4+

5#89##:

(B0C1-D02
D)E.0B()(2-

<<<





Bibliography

! Steven Klusener, Vadim Zaytsev,
Language Standardization Needs Grammarware, ISO, 2005

! Ralf  Lämmel and Vadim Zaytsev,
An Introduction to Grammar Convergence, iFM 2009

! Vadim Zaytsev,
Language Convergence Infrastructure, GTTSE 2009

! Ralf  Lämmel and Vadim Zaytsev,
Recovering Grammar Relationships for the JLS, SCAM 2009 & SQJ

! Ralf  Lämmel and Vadim Zaytsev,
Reverse Engineering Grammar Relationships, WSR 2010

! Vadim Zaytsev and Ralf  Lämmel,
A Unified Format for Language Documents, SLE 2010

! Vadim Zaytsev,
Correct C♯ Grammar too Sharp for ISO, GTTSE 2005





Conclusion

! Language recovery steps generalised

! Language convergence methodology proposed

! Language documents analysed

! Transformation languages developed

! All tools and infrastructures prototyped

! Several grammars and relationships delivered





The End


