
Recovering
Grammar Relationships

for the
Java Language Specification

Ralf Lämmel and Vadim Zaytsev
Software Languages Team

Universität Koblenz-Landau

Language convergence motivated

Different versions of a language as documented by specifications

impl1 read1

jls1

impl2

read12

read2

jls2

impl3 read3

jls3

read123jls12

jls123

Alternative convergence scenario

Different implementations of the same language
(parsers, data models, etc.)

Ralf Lämmel and Vadim Zaytsev, An Introduction to Grammar Convergence, IFM 2009,
http://www.uni-koblenz.de/~laemmel/convergence/

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsd
xsd2ecore

om jaxb

xjc

java

abstractconcrete

limit

http://www.uni-koblenz.de/~laemmel/jls/
http://www.uni-koblenz.de/~laemmel/jls/

Java Language Specification

★ The official language definition

★ Keeps up with language evolution

★ Foundation for compilers, pretty-printers, IDEs,…

★ Freely accessible in three versions

Assumptions?

Language convergence method

★ Grammar format free from idiosyncrasies

★ Grammar extraction for notation mapping

★ Grammar comparison for spotting grammar differences

★ Grammar transformation:

✦ Refactoring; extension / restriction; revision

★ Grammar measurement:

✦ Nominal differences; structural differences

Ralf Lämmel and Vadim Zaytsev, An Introduction to Grammar Convergence, IFM 2009,
http://www.uni-koblenz.de/~laemmel/convergence/

http://www.uni-koblenz.de/~laemmel/jls/
http://www.uni-koblenz.de/~laemmel/jls/

JLS irregularities in extraction
106 Case study on recovery and convergence

impl1 impl2 impl3 read1 read2 read3 Total
Arbitrary lexical decisions 2 109 60 1 90 161 423
Well-formedness violations 5 0 7 4 11 4 31
Indentation violations 1 2 7 1 4 8 23
Recovery rules 3 12 18 2 59 47 141
◦ Match parentheses 0 3 6 0 0 0 9
◦ Metasymbol to terminal 0 1 7 0 27 7 42
◦ Merge adjacent symbols 1 0 0 1 1 0 3
◦ Split compound symbol 0 1 1 0 3 8 13
◦ Nonterminal to terminal 0 7 3 0 8 11 29
◦ Terminal to nonterminal 1 0 1 1 17 13 33
◦ Recover optionality 1 0 0 0 3 8 12

Purge duplicate definitions 0 0 0 16 17 18 51
Total 11 123 92 24 181 238 669

Table 5.4: Irregularities resolved by grammar extraction.

5.4.4 Phase 3 — Removal of doubles
The JLS documents (deliberately) repeat grammar parts. Hence, we have added a trivial
phase for removal of double alternatives. That is, when a given right-hand side nontermi-
nal is encountered several times in a source, then phase 1 accumulates all the alternatives
via one entry of the dictionary, and phase 3 compares alternatives (i.e., sequences of to-
kens) to remove any doubles.

Example 5.14 Recall the following definition from Example 5.6 [66, §8.3]:

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

The same definition appears elsewhere in the document, even though the markup is
different, but these differences are already neutralised during phase 1 [66, §14.4]:

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

Phase 3 preserves 2 alternatives out of 4. As an aside, this particular example also
required the application of Rule 5.2.b because [] must be converted to terminals.

5.4.5 Phase 4 — Precise parsing
Finally, the dictionary structure of phase 1, after the recovery of phase 2, and double
removal of phase 3, is trivially parsed according to the (E)BNF for the grammar notation;
c.f., Listing 5.1. In fact, our implementation dumps the extracted grammar immediately in
an XML-based grammar interchange format so that generic grammar tools for comparison
and transformation can take over [142].

Grammar measurement

Grammar refactoring example

ClassBodyDeclarations:
 ClassBodyDeclaration
ClassBodyDeclarations:
 ClassBodyDeclarations ClassBodyDeclaration
ClassBody:
 "{" ClassBodyDeclarations ? "}"

deyaccify(ClassBodyDeclarations);
inline(ClassBodyDeclarations);
massage(
 ClassBodyDeclaration + ? ,
 ClassBodyDeclaration *);

BGF (read2)

XBGF (grammar refactoring)

ClassBody:
 "{" ClassBodyDeclaration * "}"

Grammar extension example

ClassModifier:
 "public"
 "protected"
 "private"
 "abstract"
 "static"
 "final"
 "strictfp"

unite(InterfaceModifier, Modifier);
unite(ConstructorModifier, Modifier);
unite(MethodModifier, Modifier);
unite(FieldModifier, Modifier);
… … …

BGF (read2)

XBGF (grammar optimisation)

FieldModifier:
 "public"
 "protected"
 "private"
 "static"
 "final"
 "transient"
 "volatile"

MethodModifier:
 "public"
 "protected"
 "private"
 "abstract"
 "static"
 "final"
 "synchronized"
 "native"
 "strictfp"

Grammar revision example

Expression2:
 Expression3 Expression2Rest ?
Expression2Rest:
 (Infixop Expression3)*
Expression2Rest:
 Expression3 "instanceof" Type

project(
 Expression2Rest:
 < Expression3 > "instanceof" Type
);

BGF (impl2, impl3)

XBGF (grammar correction)

Transformation statistics for JLS

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
Number of lines 682 5116 2847 6772 10715 1639 3082 30853
Number of transformations 67 298 111 395 544 77 135 1627

◦ Semantics-preserving 45 239 80 283 381 31 78 1137
◦ Semantics-increasing or -decreasing 22 58 31 102 150 39 53 455
◦ Semantics-revising — 1 — 10 13 7 4 35

Preparation phase 1 — — 15 24 11 14 65
◦ Known bugs (Ex. 3.7) — — — 1 11 — 4 16
◦ Post-extraction (Ex. 3.8) — — — 7 8 7 5 27
◦ Initial correction (Ex. 3.9) 1 — — 7 5 4 5 22

Resolution phase 21 59 31 97 139 35 43 425
◦ Extension (Ex. 3.4) — 17 26 — — 31 38 112
◦ Relaxation (Ex. 3.5) 18 39 5 75 112 — 2 251
◦ Correction (Ex. 3.6) 3 3 — 22 27 4 3 62

Figure 3. Transformation of the JLS grammars — effort metrics and categorization

Productions Nonterminals Tops Bottoms
jls1 278 132 1 7
jls2 178 75 1 7
jls3 236 109 1 7
jls12 178 75 1 7
jls123 236 109 1 7
read12 345 152 1 7
read123 438 201 1 7

Table III
Simple metrics for the derived JLS grammars.

throughout the two matching phases as well as the final
resolution phase. Fig. 2 illustrates this principle for one
specific JLS grammar and the related convergence. The
figure also visualizes that nominal differences tend to be
resolved earlier than structural differences.

Our transformation infrastructure is actually aware of the
different phases of convergence, and it checks (run-time) the
incremental reduction of differences. To this end, we rely
on an asymmetric use of convergence with pairs of input
grammars where always one grammar serves as a baseline
for the other.5

V. POST-MORTEM OF THE JLS CASE

Table III shows the same, simple metrics for the de-
rived grammars as we originally presented for the leaves
of the convergence tree; c.f., Table II. Top- and bottom-
nonterminals are consolidated now. In the case of the “com-
mon denominators” jls1–3, the numbers of nonterminals and
productions reflect that these grammars were derived to be
similar to impl1–3. Similar correlations hold for the “inter-
version” grammars in the rest of the table.

5As a concession to a simple design of the operator suite for grammar
transformations, we are also allowed to use restructuring steps that slightly
increase structural differences as long as we explicitly group them such that
the complete “transaction” still achieves reduction.

Fig. 3 measures the extraction effort and the involved
grammar transformations. This information was obtained in
an automated manner but it relies on some amount of seman-
tic annotation of the transformations for the classifications
and phases.

The number of transformations directly refers to the num-
ber of applications of transformation operators. 33 different
operators are used in the JLS case; most of them were intro-
duced in §III. About three quarters of the transformations are
semantics-preserving. The remaining quarter is mainly dedi-
cated to semantics-increasing or -decreasing transformations
with only 2% of semantics-revising transformations.

In Fig. 3, one can observe that relaxation transformations
indeed occur when a more readable and a more imple-
mentable grammar are converged. Further, one can observe
that the overall transformation effort is particularly high for
jls12 — which signifies the fact (already mentioned above)
that impl1 and impl2 appear to be different developments.
Finally, we have made an effort to incorporate Sun’s bug list
into the picture (see “Known bugs”). We note that some of
the known bugs equally occur in both the more readable and
the more implementable grammar, in which case we cannot
even discover them by grammar convergence.

VI. RELATED WORK

Broadly speaking, grammar convergence and the present
case study contribute to grammar(ware) engineering. Within
this context, our work is related to agile parsing [9] and
grammar recovery or re-engineering of syntax definitions
[5], [6], [7], [10], [11], model-driven parser development
[12] as well as grammar inference [13], [14], [15], [16],
[17]. However, such related work does not involve two
central elements of grammar convergence: comparison and
simultaneous transformation of two or more grammars. All
grammar inference and recovery methods essentially involve
code samples, which currently play no role in grammar
convergence. It is conceivable to combine methods, e.g.,

114 Case study on recovery and convergence

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
◦ rename 9 4 2 9 10 — 2 36
◦ reroot 2 — — 2 2 2 1 9
◦ unfold 1 10 8 11 13 2 3 48
◦ fold 4 11 4 11 13 2 5 50
◦ inline 3 67 8 71 100 — 1 250
◦ extract — 17 5 18 30 — 5 75
◦ chain 1 — 2 — — 1 4 8
◦ massage 2 13 — 15 32 5 3 70
◦ distribute 3 4 2 3 6 — — 18
◦ factor 1 7 3 5 24 3 1 44
◦ deyaccify 2 20 — 25 33 4 3 87
◦ yaccify — — — — 1 — 1 2
◦ eliminate 1 8 1 14 22 — — 46
◦ introduce — 1 30 4 13 3 34 85
◦ import — — 2 — — — 1 3
◦ vertical 5 7 7 8 22 5 8 62
◦ horizontal 4 19 5 17 31 4 4 84
◦ add 1 14 13 7 20 28 20 103
◦ appear — 8 11 8 25 2 17 71
◦ widen 1 3 — 1 8 1 3 17
◦ upgrade — 8 — 14 20 2 2 46
◦ unite 18 2 — 18 21 5 4 68
◦ remove — 10 1 11 18 — 1 41
◦ disappear — 7 4 11 11 — — 33
◦ narrow — — 1 — 4 — — 5
◦ downgrade — 2 — 8 3 — — 13
◦ define — 6 — 4 9 1 6 26
◦ undefine — 11 — 13 3 — — 27
◦ redefine — 3 — 8 7 6 2 26
◦ inject — — — 2 4 — 1 7
◦ project — 1 — 1 2 — — 4
◦ replace 3 1 2 3 6 1 1 17
◦ unlabel — — — — — — 2 2

Table 5.6: XBGF operators usage for JLS convergence.

Conclusion Discussion

★ Language documentation is often a mess

★ Automated extraction of grammar knowledge

★ Language convergence as a method to represent

relationships between grammars

★ Check out Software Language Processing Suite:

http://slps.sf.net/

http://sourceforge.net/projects/slps/
http://sourceforge.net/projects/slps/

