
Grammar Convergence

Ralf Lämmel and Vadim Zaytsev
Software Languages Team

Universität Koblenz-Landau

113 февраля 2009 г.

What is grammar convergence?

Think of scattered grammar knowledge (say, in language
documentation, parsers, object models, etc.) how to establish

relationships between the grammars, how to
verify that these relationships are preserved?

antlr dcg

topdown

sdf xsd

concrete

om

abstract

jaxb

java

limit

213 февраля 2009 г.

What is grammar convergence?

★ Grammar format to abstract from idiosyncrasies

★ Grammar extraction to feed into the format

★ Grammar comparison for spotting grammar deviations

★ Grammar transformation:

✦ Refactoring

✦ Extension / restriction

✦ Revision

313 февраля 2009 г.

How grammar convergence works

Grammar
artifacts

413 февраля 2009 г.

BGF: BNF–like Grammar Format

★ BNF: symbols, composition

★ EBNF: *, +, ?

★ Production labels

★ Expression selectors

★ Universal type

★ Namespaces

513 февраля 2009 г.

Grammar extract: ANTLR

g([], [
 p([], program, +n(function)),
 p([], function, (n('ID'), +n('ID'), t(=), n(expr), +n('NEWLINE'))),
 p([], expr, (n(binary);n(apply);n(ifThenElse))),
 p([], binary, (n(atom), *((n(ops), n(atom))))),
 p([], apply, (n('ID'), +n(atom))),
 p([], ifThenElse, (t(if), n(expr), t(then), n(expr), t(else), n(expr))),
 p([], atom, (n('ID');n('INT');t('('), n(expr), t(')'))),
 p([], ops, (t(==);t(+);t(–)))
])

613 февраля 2009 г.

Grammar extract: XSD

g(['Program', 'Fragment'], [
 p([], 'Program', +s(function, n('Function'))),
 p([], 'Fragment', n('Expr')),
 p([], 'Function', (s(name, v(string)), +s(arg, v(string)), s(rhs, n('Expr')))),
 p([], 'Expr', (n('Literal');n('Argument');n('Binary');n('IfThenElse');n('Apply'))),
 p([], 'Literal', s(info, v(int))),
 p([], 'Argument', s(name, v(string))),
 p([], 'Binary', (s(ops, n('Ops')), s(left, n('Expr')), s(right, n('Expr')))),
 p([], 'Ops', (s('Equal', true);s('Plus', true);s('Minus', true))),
 p([], 'IfThenElse', (s(ifExpr, n('Expr')), s(thenExpr, n('Expr')), s(elseExpr, n('Expr')))),
 p([], 'Apply', (s(name, v(string)), +s(arg, n('Expr'))))
])

713 февраля 2009 г.

Grammar extraction

★ Get out of a source format

✦ Can be ANTLR, SDF, Java, XSD, HTML

★ Abstract from idiosyncrasies

✦ XML–isms, semantic actions, etc

★ Extraction is a generic, partial operation.

813 февраля 2009 г.

An extractor for SDF

 context-free syntax
 Function+
 Name Name+ "=" Expr Newline+
 Expr Ops Expr
 Name Expr+
 "if" Expr "then" Expr "else" Expr
 "(" Expr ")"
 Name
 Int

 "–"
 "+"
 "=="

–> Program
–> Function
–> Expr {left,prefer,cons(binary)}
–> Expr {avoid,cons(apply)}
–> Expr {cons(ifThenElse)}
–> Expr {bracket}
–> Expr {cons(argument)}
–> Expr {cons(literal)}

–> Ops {cons(minus)}
–> Ops {cons(plus)}
–> Ops {cons(equal)}

913 февраля 2009 г.

An extractor for SDF

 SDF basics:
 SDF=Syntax Def. Formalism
 SDF has S–G–LR as semantics.
 Computations over SDF:

 ASF
 Stratego
 ...

 Extractor option:
 Use SDF of SDF.
 Use ASF over it.
 Construct BGF via XML.

1013 февраля 2009 г.

Available extractors

✓ANTLR

✓SDF

✓DCG

✓ Java object models

✓XML Schemas

✓Language specifications

✓…

1113 февраля 2009 г.

Applying grammar convergence
to the Java Language Specification

app1 doc1

jls1

app2

doc12

doc2

jls2

app3 doc3

jls3

doc123jls12

jls123

Ralf Lämmel and Vadim Zaytsev, Consistency of the Java Language Specification, submitted draft,
http://www.uni-koblenz.de/~laemmel/jls/

1213 февраля 2009 г.

http://www.uni-koblenz.de/~laemmel/jls/
http://www.uni-koblenz.de/~laemmel/jls/

Basic properties of the JLS sources

Grammar class Iteration style
app1 LALR(1) left-recursive
doc1 none left-recursive
app2 unclear EBNF
doc2 none left-recursive
app3 “nearly” LL(k) EBNF
doc3 none left-recursive

We list all spotted grammar-class claims; we also
add observations about iteration style (“lists”) that we
made during cursory examination. This table makes
clear that we need to bridge the gap between differ-
ent iteration styles (which is relatively simple) but also
different grammar classes (which is more involved) —
if we want to establish the correspondences between
the different grammars by effective transformations.

Fig. 1. Grammar classes and iteration style for the JLS grammars.

Productions Nonterminals Tops Bottoms
app1 282 135 1 7
doc1 315 148 1 9
app2 185 80 6 11
doc2 346 151 1 11
app3 245 114 2 12
doc3 435 197 3 14

The metrics were automatically derived from the ex-
tracted grammars. Terminology: a top nonterminal is
a nonterminal that is defined but never used; a bottom
nonterminal is a nonterminal that is used but never de-
fined; see [18,23] for these terms.

Fig. 2. Simple metrics for the extracted JLS grammars.

2.2 Simple grammar metrics

The major differences between the numbers of productions and nonterminals for the two
grammars of any given version (see Fig. 2) is mainly implied by the different grammar
classes and iteration styles. The decrease of numbers for the step from app1 to app2 is
explainable with the fact that an LALR(1) grammar was replaced by a new development
(which does not aim at LALR(1)). Otherwise, the obvious trend is that the numbers of
productions and nonterminals go up with the version number.

The difference in numbers of top-nonterminals is definitely a problem indicator.
There should be only one top-nonterminal: the actual start symbol of the Java grammar.
Any additional case of an “unused” nonterminal does not make sense. At first glance,
the difference in numbers of bottom-nonterminals may be reasonable because a bottom
nonterminal may be a lexeme class — those classes are somewhat of a grammar-design
issue. However, a review of the nonterminal symbols rapidly reveals that some of them
correspond to (undefined) categories of compound syntactic structures.

2.3 The source format for grammars

A JLS document is basically a structured text document with embedded grammar sec-
tions. The JLS is available electronically in HTML and PDF format. Neither of these
formats was designed with convenient access to the grammars in mind. We will fa-
vor the HTML format here. The grammar format slightly varies for the different JLS
grammars and versions; we collect bits from different documents and sections — in
particular from [9,10,11, §2.4] and [10,11, §18].

Grammar fragments are hosted by <pre>...</pre> blocks in the JLS documents.
Terminal symbols appear in fixed font (as in <code>class</code>). Nonterminal
symbols appear in italic type (as in <i>Expression</i>). Nonterminal symbols are

Grammar class Iteration style
app1 LALR(1) left-recursive
doc1 none left-recursive
app2 unclear EBNF
doc2 none left-recursive
app3 “nearly” LL(k) EBNF
doc3 none left-recursive

We list all spotted grammar-class claims; we also
add observations about iteration style (“lists”) that we
made during cursory examination. This table makes
clear that we need to bridge the gap between differ-
ent iteration styles (which is relatively simple) but also
different grammar classes (which is more involved) —
if we want to establish the correspondences between
the different grammars by effective transformations.

Fig. 1. Grammar classes and iteration style for the JLS grammars.

Productions Nonterminals Tops Bottoms
app1 282 135 1 7
doc1 315 148 1 9
app2 185 80 6 11
doc2 346 151 1 11
app3 245 114 2 12
doc3 435 197 3 14

The metrics were automatically derived from the ex-
tracted grammars. Terminology: a top nonterminal is
a nonterminal that is defined but never used; a bottom
nonterminal is a nonterminal that is used but never de-
fined; see [18,23] for these terms.

Fig. 2. Simple metrics for the extracted JLS grammars.

2.2 Simple grammar metrics

The major differences between the numbers of productions and nonterminals for the two
grammars of any given version (see Fig. 2) is mainly implied by the different grammar
classes and iteration styles. The decrease of numbers for the step from app1 to app2 is
explainable with the fact that an LALR(1) grammar was replaced by a new development
(which does not aim at LALR(1)). Otherwise, the obvious trend is that the numbers of
productions and nonterminals go up with the version number.

The difference in numbers of top-nonterminals is definitely a problem indicator.
There should be only one top-nonterminal: the actual start symbol of the Java grammar.
Any additional case of an “unused” nonterminal does not make sense. At first glance,
the difference in numbers of bottom-nonterminals may be reasonable because a bottom
nonterminal may be a lexeme class — those classes are somewhat of a grammar-design
issue. However, a review of the nonterminal symbols rapidly reveals that some of them
correspond to (undefined) categories of compound syntactic structures.

2.3 The source format for grammars

A JLS document is basically a structured text document with embedded grammar sec-
tions. The JLS is available electronically in HTML and PDF format. Neither of these
formats was designed with convenient access to the grammars in mind. We will fa-
vor the HTML format here. The grammar format slightly varies for the different JLS
grammars and versions; we collect bits from different documents and sections — in
particular from [9,10,11, §2.4] and [10,11, §18].

Grammar fragments are hosted by <pre>...</pre> blocks in the JLS documents.
Terminal symbols appear in fixed font (as in <code>class</code>). Nonterminal
symbols appear in italic type (as in <i>Expression</i>). Nonterminal symbols are

1313 февраля 2009 г.

Grammar extraction for JLS

★ Use HTML representation (instead of PDF)

★ Many markup/well–formedness problems

★ Some syntax errors

★ Many obvious semantic errors

1413 февраля 2009 г.

JLS irregularities in extraction

app1 doc1

jls1

app2

doc12

doc2

jls2

app3 doc3

jls3

doc123jls12

jls123

Figure 2: Convergence tree for the JLS grammars.

italic fixed default
Alphanumeric N (2341) T (173) T? (194)
| M (2) T (2) M? (29)
{,},[,],(,) M (708) T (174) T? (200)
otherwise T (198) T (165) T (205)

Figure 3: T ... terminal, N ... nonterminal, M ... metasymbol

app1 app2 app3 doc1 doc2 doc3 Total
Arbitrary lexical decisions 2 109 60 1 90 161 423
Well-formedness violations 5 0 7 4 11 4 31
Indentation violations 1 2 7 1 4 8 23
Recovery rules 3 12 18 2 59 47 141
◦ Match parentheses 0 3 6 0 0 0 9
◦ Metasymbol to terminal 0 1 7 0 27 7 42
◦ Merge adjacent symbols 1 0 0 1 1 0 3
◦ Split compound symbol 0 1 1 0 3 8 13
◦ Nonterminal to terminal 0 7 3 0 8 11 29
◦ Terminal to nonterminal 1 0 1 1 17 13 33
◦ Recover optionality 1 0 0 0 3 8 12

Purge duplicate definitions 0 0 0 16 17 18 51
Total 11 123 92 24 181 238 669

Figure 4: Irregularities resolved by grammar extraction.

2

1513 февраля 2009 г.

Consolidation of basic metrics

Productions Nonterminals Tops Bottoms
jls1 278 132 1 7
jls2 182 75 1 7
jls3 236 109 1 7
jls12 182 75 1 7
jls123 236 109 1 7
doc12 347 152 1 7
doc123 440 201 1 7

Figure 5: Metrics for the transformed grammars.

jls1 jls2 jls3 jls12 jls123 doc12 doc123 Total
Number of lines 600 4807 9469 4285 2934 1491 3072 26658
Number of transformations 62 367 538 287 120 70 133 1577
◦ semantics-preserving 40 278 398 235 87 25 73 1136
◦ semantics-increasing or -decreasing 22 78 127 50 32 38 56 403
◦ semantics-revising — 11 13 2 1 7 4 38

Number of issues 8 38 47 25 17 32 40 207
◦ recoveries — 7 8 — — 7 4 26
◦ corrections 5 22 22 2 — 10 7 68
◦ extensions — — — 17 14 15 28 74
◦ optimizations 3 9 17 6 3 — 1 39

Figure 6: Effort measurements per target in the convergence graph for the JLS.

3

Grammar class Iteration style
app1 LALR(1) left-recursive
doc1 none left-recursive
app2 unclear EBNF
doc2 none left-recursive
app3 “nearly” LL(k) EBNF
doc3 none left-recursive

We list all spotted grammar-class claims; we also
add observations about iteration style (“lists”) that we
made during cursory examination. This table makes
clear that we need to bridge the gap between differ-
ent iteration styles (which is relatively simple) but also
different grammar classes (which is more involved) —
if we want to establish the correspondences between
the different grammars by effective transformations.

Fig. 1. Grammar classes and iteration style for the JLS grammars.

Productions Nonterminals Tops Bottoms
app1 282 135 1 7
doc1 315 148 1 9
app2 185 80 6 11
doc2 346 151 1 11
app3 245 114 2 12
doc3 435 197 3 14

The metrics were automatically derived from the ex-
tracted grammars. Terminology: a top nonterminal is
a nonterminal that is defined but never used; a bottom
nonterminal is a nonterminal that is used but never de-
fined; see [18,23] for these terms.

Fig. 2. Simple metrics for the extracted JLS grammars.

2.2 Simple grammar metrics

The major differences between the numbers of productions and nonterminals for the two
grammars of any given version (see Fig. 2) is mainly implied by the different grammar
classes and iteration styles. The decrease of numbers for the step from app1 to app2 is
explainable with the fact that an LALR(1) grammar was replaced by a new development
(which does not aim at LALR(1)). Otherwise, the obvious trend is that the numbers of
productions and nonterminals go up with the version number.

The difference in numbers of top-nonterminals is definitely a problem indicator.
There should be only one top-nonterminal: the actual start symbol of the Java grammar.
Any additional case of an “unused” nonterminal does not make sense. At first glance,
the difference in numbers of bottom-nonterminals may be reasonable because a bottom
nonterminal may be a lexeme class — those classes are somewhat of a grammar-design
issue. However, a review of the nonterminal symbols rapidly reveals that some of them
correspond to (undefined) categories of compound syntactic structures.

2.3 The source format for grammars

A JLS document is basically a structured text document with embedded grammar sec-
tions. The JLS is available electronically in HTML and PDF format. Neither of these
formats was designed with convenient access to the grammars in mind. We will fa-
vor the HTML format here. The grammar format slightly varies for the different JLS
grammars and versions; we collect bits from different documents and sections — in
particular from [9,10,11, §2.4] and [10,11, §18].

Grammar fragments are hosted by <pre>...</pre> blocks in the JLS documents.
Terminal symbols appear in fixed font (as in <code>class</code>). Nonterminal
symbols appear in italic type (as in <i>Expression</i>). Nonterminal symbols are

1613 февраля 2009 г.

Grammar comparison

★ Compare grammars structurally.

★ Apply simple algebraic laws on grammars.

★ Provide suggestive input for transformation.

1713 февраля 2009 г.

Grammar transformation

★ Performing post-extraction activities

★ Refactoring for structural equivalence

★ Extension to cover missing language construct

★ Restriction to abstract away “irrelevant” constructs

★ Relaxation to abstract away “irrelevant” precision

★ Replacement to fix accidental deviations

★ Capture and document language differences

1813 февраля 2009 г.

A fragment of concrete syntax.
What if we want to derive the abstract syntax?

expr : ...;
atom : ID | INT | '(' expr ')';

Need to project
away “(“ & “)”

Need to
merge “expr”

& “atom”

Alternative
needs to go

entirely

1913 февраля 2009 г.

A transformation sequence

expr : ...;
atom : ID | INT | '(' expr ')';

expr : ...;
atom : ID;
atom : INT;
atom : expr;

expr : ...;
expr : ID;
expr : INT;
expr : expr;

expr : ...;
expr : ID;
expr : INT;

expr : ...;
atom : ID | INT | expr;

abstractize

vertical

project

unite

abridge

2013 февраля 2009 г.

XBGF Operator Suite

★ Semantics–preserving (refactoring)

✦ rename, introduce, eliminate

✦ fold, unfold, extract, inline

✦ factor, distribute, horizontal, vertical

✦ yaccify, deyaccify, massage

✦ designate, unlabel

✦ ...

2113 февраля 2009 г.

XBGF Operator Suite

★ Semantics–increasing/–decreasing

✦ appear, disappear

✦ narrow, widen

✦ add, remove

✦ upgrade, downgrade

✦ unite

✦ ...

2213 февраля 2009 г.

XBGF Operator Suite

★ Semantics–revising

✦ undefine, define, redefine

✦ inject, project, permute

✦ abstractize, concretize

✦ replace

2313 февраля 2009 г.

A more detailed convergence tree

antlr dcg

topdown

preferDcg

sdf xsd

concrete

renameSdf

om

trimXsd

jaxb

trimOm trimJaxb

defineLex

abstract

limit

mkSignature

java

reroot

removeLayers

unerase

renameXsd

massageXsdstripTerminals

permuteArgs

reroot

renameJaxb

renameOm

preferJaxb

2413 февраля 2009 г.

app1 doc1

correct

app2

correct

doc2

correct

app3

recover

doc3

recover recover

doc123

jls12

rename

jls123

jls3

jls2

jls1

refactorStatements

doc12

extendModifiers

extend

correct

correct

generalizeStatements

refactorTypes

editDeclarations

refactorExpressions

editExpressions

extend

extendDeclarations

extendExpressions

extendStatements

correct

refactor

generalizeLabels

generalizeBlock

generalize

generalizeModifiers

generalizeNames

deyaccifyStatements

refactorTypes

refactorExpressions

inlineStatements

generalizeStatements

refactorStatements

editExpressions

refactorClasses

refactorInterfaces

refactorEnums

refactorDeclarations

edit

refactor

generalizeLabels

generalizeBlock

correct

correct

generalizeModifiers

generalizeNames

deyaccifyStatements

refactorTypes

refactorExpressions

inlineStatements

generalizeStatements

editExpressions

eliminate

refactorClasses

refactorInterfaces

refactorDeclarations

edit

refactor

generalizeModifiers edit

generalizeNames

refactor

extend

2513 февраля 2009 г.

Transformation statistics for JLS

Productions Nonterminals Tops Bottoms
jls1 278 132 1 7
jls2 182 75 1 7
jls3 236 109 1 7
jls12 182 75 1 7
jls123 236 109 1 7
doc12 347 152 1 7
doc123 440 201 1 7

Figure 5: Metrics for the transformed grammars.

jls1 jls2 jls3 jls12 jls123 doc12 doc123 Total
Number of lines 600 4807 9469 4285 2934 1491 3072 26658
Number of transformations 62 367 538 287 120 70 133 1577
◦ semantics-preserving 40 278 398 235 87 25 73 1136
◦ semantics-increasing or -decreasing 22 78 127 50 32 38 56 403
◦ semantics-revising — 11 13 2 1 7 4 38

Number of issues 8 38 47 25 17 32 40 207
◦ recoveries — 7 8 — — 7 4 26
◦ corrections 5 22 22 2 — 10 7 68
◦ extensions — — — 17 14 15 28 74
◦ optimizations 3 9 17 6 3 — 1 39

Figure 6: Effort measurements per target in the convergence graph for the JLS.

3

2613 февраля 2009 г.

Conclusion and future work

★ Synchronise scattered grammar knowledge

★ Further consolidation of operator suite

★ Co–transformation of parse–trees possible

★ Semi–automatic approach desirable

★ Additional techniques for priorities

★ Alignment with metamodeling–based work

2713 февраля 2009 г.

Thank you!

★ Questions?

★ Comments?

★ Software Language Processing Suite is here:
http://sourceforge.net/projects/slps/

2813 февраля 2009 г.

http://sourceforge.net/projects/slps/
http://sourceforge.net/projects/slps/

