
U N I V E R S I T Ä T
K O B L E N Z ● L A N D A U

Institut für Informatik
Software Languages Team

Universität Koblenz–Landau ● Campus Koblenz ● Universitätsstraße 1 ● 56070 Koblenz
Telefon +49 261 287–2711 ● Fax +49 261 287–2721

Semi-Automated
Language Convergence

Grammar knowledge is ingrained in different kinds of software artifacts.

We want to establish and maintain correspondence among them.

Universal, not language-specific methodology is needed.

 Grammar convergence is lightweight verification for
 mapping, binding, implementations, dialects, etc.

	 	 	 	 	 	 	 	 	 Targets:
* convergence point
* branches converge
* grammar comparator

Sources:
*extraction
*parsing
*evalutation

(image)

XML Schema

(image)

Standard Parser Syntax Def

grammar

Syntax definitions:
* specific formalisms
* usually (E)BNF
* railroad tracks

Grammarware:
* parser source code
* compiler sources
* pretty-printer
* IDE, ...

grammar grammar grammar

Extractor:
* mapping
* abstraction
* unified
 output

Phases:
* preparation
* nominal matching
* structural matching
* extension
* relaxation
* correction

Prof.Dr.
Ralf Lämmel

grammar

instance

Dipl.-Math.
Vadim Zaytsev

Transformations:
*semi-automated
*programmable
*functional
*refactorings
*language increase
*language decrease
*editing

import fl.*;
import java.io.*;
import javax.xml.bind.*;
public class TestIO {
public static void main (String[]
args) throws Exception {
JAXBContext jaxbContext =
JAXBContext.newInstance("fl");
Unmarshaller unMarshaller =
jaxbContext.createUnmarshaller();
Program program = (Program)
unMarshaller.unmarshal(new
File(args[0]));
String s = program.prettyPrint();
FileOutputStream output = new …

context-free syntax
 Function+ -> Program
 Name Name+ "=" Expr Newline+	
	 -> Function
 Expr Ops Expr -> Expr {left,prefer}
 Name Expr+ -> Expr {avoid}
 "if" Expr "then" Expr "else" Expr	
-> Expr {cons(ifThenElse)}
 "(" Expr ")" -> Expr {bracket}
 Name -> Expr {cons(argument)}
 Int -> Expr {cons(literal)}
lexical syntax
 [a-z]+ -> Name
 ";" -> Newline
 "if" | "then" | "else" -> Name {reject}

BGF:
unified
grammar
format

Related research topics for student projects:

* IDE support for interactive grammar transformation

* Full XML Schema support for grammar extraction

* Optimization of transformations by deforestation

* Proof of correctness for coupled transformations

* Model-based grammar comparison

Coupled transformations:
* repeat with instances
* use as test cases:
* parse & evaluate

DEFINE

3-72 INFORMIX-4GL Statements

RECORD Variables

A 4GL program record is a collection of members, each of which is a variable.
The member variables of a record can be of any 4GL data type, including the
simple data types (page 3-68), the structured (ARRAY, RECORD) data types,
and the large (BYTE, and TEXT) data types.

member is a name that you declare for a member variable of the record; this
identifier must be unique within the record.

table is the identifier or synonym of a table or view in the default data-
base that was specified in the DATABASE statement.

The DATABASE statement must specify a default database (page 3-59) before
the first program block (or before the first DEFINE statement that uses LIKE to
define module-scope or global variables) in the current module.

Specify LIKE table.* to declare the record members implicitly, with identifiers
and data types that correspond to all the non-SERIAL columns of table. You do
not need the END RECORD keywords to declare a single record whose mem-
bers correspond to all the non-SERIAL columns of table:

recordname RECORD LIKE table.*

In this context, table.* cannot be a view containing an aggregate column.

Data Type Declaration
p. 3-67

member END RECORD

,
RECORD Data Type

RECORD

table .*LIKE

Table Qualifier
p. 3-361

Documentation:
* language standard
* coder’s manual
* formal specification

XML Schema:
* data model
* domain representation

