
Language
Convergence

Infrastructure

Vadim Zaytsev
Software Languages Team

U N I V E R S I T Ä T
K O B L E N Z ! L A N D A U

http://twitter.com/grammarware

http://twitter.com/grammarware
http://twitter.com/grammarware

Motivation

Does Java source code relates correctly to the model?

Is the class system serialisable to a standard schema?

Do a code analyser and a compiler agree on a dialect?

Which compiler compiler is better?

Are language documentation claims true?

Do two idiosyncratic grammars agree on a language?

http://www.google.com/search?hl=en&safe=off&rlz=1B5_____en-GBDE332DE332&ei=CuJQSsLELKaRjAfEirGvBQ&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=idiosyncratic&spell=1
http://www.google.com/search?hl=en&safe=off&rlz=1B5_____en-GBDE332DE332&ei=CuJQSsLELKaRjAfEirGvBQ&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=idiosyncratic&spell=1

Approach

Grammar convergence idea:

extract grammars

compare grammars

transform grammars

Grammar convergence methodology published
as Software Languages Team work
with Ralf Lämmel

Technical side

Software Language Processing Suite (SourceForge)

Prolog

Python

Shell scripts

XML Schema

…

Core convergence tools

Comparison

gdt left.bgf right.bgf

Transformation

xbgf script.xbgf input.bgf output.bgf

Validation

xmllint --noout --schema bgf.xsd input.bgf

Sources

Sources of grammar knowledge

Convergence sources

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsdxsd2ecore om jaxb

xjc

java

abstractconcrete

limit

Existing

relationships

Secondary

source

Heterogeneous artifacts

Sources

Sources of grammar knowledge

Convergence sources

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsdxsd2ecore om jaxb

xjc

java

abstractconcrete

limit

Extraction

Grammar properties: extraction, parsing, evaluation

Existing

relationships

Secondary

source

Heterogeneous artifacts

Sources

Sources of grammar knowledge

Convergence sources

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsdxsd2ecore om jaxb

xjc

java

abstractconcrete

limit

Extraction

Grammar properties: extraction, parsing, evaluation

Existing

relationships

Secondary

source

Heterogeneous artifacts

Sources

Sources of grammar knowledge

Convergence sources

Grammar properties: extraction, parsing, evaluation

Instance properties; testing properties

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsdxsd2ecore om jaxb

xjc

java

abstractconcrete

limit

Convergence sources

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsdxsd2ecore om jaxb

xjc

java

abstractconcrete

limit

Done during GTTSE’09!

First talk by Jim Cordy on TXL

Convergence sources

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsdxsd2ecore om jaxb

xjc

java

abstractconcrete

limit

Done during GTTSE’09!

First talk by Jim Cordy on TXL

Done during GTTSE’09!

Second talk by Jim Cordy on TXL

Extraction happens once per source

impl1 read1

jls1

impl2

read12

read2

jls2

impl3 read3

jls3

read123jls12

jls123

Convergence sources (2)

Extraction happens once per source

impl1 read1

jls1

impl2

read12

read2

jls2

impl3 read3

jls3

read123jls12

jls123

Failed extraction are marked on the diagram

Convergence sources (2)

Extraction happens once per source

impl1 read1

jls1

impl2

read12

read2

jls2

impl3 read3

jls3

read123jls12

jls123

Failed extraction are marked on the diagram

Convergence sources (2)

Snapshots and fallback

Grammar definition formalism

BGF: BNF-like Grammar Format

BNF: symbols, composition

EBNF: *, +, ?

Production labels and expression selectors

…

XML

A word on extractors

Source format ! unified format

Abstraction from idiosyncrasies

Can be intricate

Specific for the source type, not the source

Nontrivial extraction in numbers

app1 doc1

jls1

app2

doc12

doc2

jls2

app3 doc3

jls3

doc123jls12

jls123

Figure 2: Convergence tree for the JLS grammars.

italic fixed default
Alphanumeric N (2341) T (173) T? (194)
| M (2) T (2) M? (29)
{,},[,],(,) M (708) T (174) T? (200)
otherwise T (198) T (165) T (205)

Figure 3: T ... terminal, N ... nonterminal, M ... metasymbol

app1 app2 app3 doc1 doc2 doc3 Total
Arbitrary lexical decisions 2 109 60 1 90 161 423
Well-formedness violations 5 0 7 4 11 4 31
Indentation violations 1 2 7 1 4 8 23
Recovery rules 3 12 18 2 59 47 141
◦ Match parentheses 0 3 6 0 0 0 9
◦ Metasymbol to terminal 0 1 7 0 27 7 42
◦ Merge adjacent symbols 1 0 0 1 1 0 3
◦ Split compound symbol 0 1 1 0 3 8 13
◦ Nonterminal to terminal 0 7 3 0 8 11 29
◦ Terminal to nonterminal 1 0 1 1 17 13 33
◦ Recover optionality 1 0 0 0 3 8 12

Purge duplicate definitions 0 0 0 16 17 18 51
Total 11 123 92 24 181 238 669

Figure 4: Irregularities resolved by grammar extraction.

2

Available extractors

" ANTLR parser definitions

! ANTLR self-application

" Syntax Defnition Formalism

! ASF+SDF MetaEnvironment or Stratego/XT

" Definite clause grammars in Prolog

! Prolog

" Java object models

! reflection with java.lang.reflect or com.sun.source.tree

" ECore models in XMI

! XSLT

" XML Schema schemata

" Language specifications

Convergence targets

Points of convergence

 target ::= name branch+

 branch ::= input phase*

Use comparison tool at the end

Targets

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsdxsd2ecore om jaxb

xjc

java

abstractconcrete

limit

Convergence targets

Points of convergence

 target ::= name branch+

 branch ::= input phase*

Use comparison tool at the end

Targets

antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsdxsd2ecore om jaxb

xjc

java

abstractconcrete

limit

Transformations

Grammar trasformation

Initial corrections

Nominal matching

Structured matching by refactoring

Relaxation/restriction

Extension

Correction

Grammar transformation (2)

Static XBGF script

can be reused

Transformation generator

strip away all terminal symbols

eliminate unused nonterminal symbols

apply naming convention

Transformation statistics for JLS

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
Number of lines 682 5116 2847 6772 10715 1639 3082 30853
Number of transformations 67 298 111 395 544 77 135 1627

◦ Semantics-preserving 45 239 80 283 381 31 78 1137
◦ Semantics-increasing or -decreasing 22 58 31 102 150 39 53 455
◦ Semantics-revising — 1 — 10 13 7 4 35

Preparation phase 1 — — 15 24 11 14 65
◦ Known bugs (Ex. 3.7) — — — 1 11 — 4 16
◦ Post-extraction (Ex. 3.8) — — — 7 8 7 5 27
◦ Initial correction (Ex. 3.9) 1 — — 7 5 4 5 22

Resolution phase 21 59 31 97 139 35 43 425
◦ Extension (Ex. 3.4) — 17 26 — — 31 38 112
◦ Relaxation (Ex. 3.5) 18 39 5 75 112 — 2 251
◦ Correction (Ex. 3.6) 3 3 — 22 27 4 3 62

Figure 3. Transformation of the JLS grammars — effort metrics and categorization

Productions Nonterminals Tops Bottoms
jls1 278 132 1 7
jls2 178 75 1 7
jls3 236 109 1 7
jls12 178 75 1 7
jls123 236 109 1 7
read12 345 152 1 7
read123 438 201 1 7

Table III
Simple metrics for the derived JLS grammars.

throughout the two matching phases as well as the final
resolution phase. Fig. 2 illustrates this principle for one
specific JLS grammar and the related convergence. The
figure also visualizes that nominal differences tend to be
resolved earlier than structural differences.

Our transformation infrastructure is actually aware of the
different phases of convergence, and it checks (run-time) the
incremental reduction of differences. To this end, we rely
on an asymmetric use of convergence with pairs of input
grammars where always one grammar serves as a baseline
for the other.5

V. POST-MORTEM OF THE JLS CASE

Table III shows the same, simple metrics for the de-
rived grammars as we originally presented for the leaves
of the convergence tree; c.f., Table II. Top- and bottom-
nonterminals are consolidated now. In the case of the “com-
mon denominators” jls1–3, the numbers of nonterminals and
productions reflect that these grammars were derived to be
similar to impl1–3. Similar correlations hold for the “inter-
version” grammars in the rest of the table.

5As a concession to a simple design of the operator suite for grammar
transformations, we are also allowed to use restructuring steps that slightly
increase structural differences as long as we explicitly group them such that
the complete “transaction” still achieves reduction.

Fig. 3 measures the extraction effort and the involved
grammar transformations. This information was obtained in
an automated manner but it relies on some amount of seman-
tic annotation of the transformations for the classifications
and phases.

The number of transformations directly refers to the num-
ber of applications of transformation operators. 33 different
operators are used in the JLS case; most of them were intro-
duced in §III. About three quarters of the transformations are
semantics-preserving. The remaining quarter is mainly dedi-
cated to semantics-increasing or -decreasing transformations
with only 2% of semantics-revising transformations.

In Fig. 3, one can observe that relaxation transformations
indeed occur when a more readable and a more imple-
mentable grammar are converged. Further, one can observe
that the overall transformation effort is particularly high for
jls12 — which signifies the fact (already mentioned above)
that impl1 and impl2 appear to be different developments.
Finally, we have made an effort to incorporate Sun’s bug list
into the picture (see “Known bugs”). We note that some of
the known bugs equally occur in both the more readable and
the more implementable grammar, in which case we cannot
even discover them by grammar convergence.

VI. RELATED WORK

Broadly speaking, grammar convergence and the present
case study contribute to grammar(ware) engineering. Within
this context, our work is related to agile parsing [9] and
grammar recovery or re-engineering of syntax definitions
[5], [6], [7], [10], [11], model-driven parser development
[12] as well as grammar inference [13], [14], [15], [16],
[17]. However, such related work does not involve two
central elements of grammar convergence: comparison and
simultaneous transformation of two or more grammars. All
grammar inference and recovery methods essentially involve
code samples, which currently play no role in grammar
convergence. It is conceivable to combine methods, e.g.,

antlr dcg

topdown

sdf ecore

concrete

ecore2

model

xsd
xsd2ecore

om jaxb

xjc

java

abstract

limit

Coupled transformations

asfix xml

Language document is…

a (sliced) (formal) grammar

textual annotations for human understanding

source code samples

Language evolution vs
Language documentation evolution

Language documentation

Language document is…

a (sliced) (formal) grammar

textual annotations for human understanding

source code samples

Language evolution vs
Language documentation evolution

Language documentation

Extract

Language document is…

a (sliced) (formal) grammar

textual annotations for human understanding

source code samples

Language evolution vs
Language documentation evolution

Language documentation

Extract

Test

Language document is…

a (sliced) (formal) grammar

textual annotations for human understanding

source code samples

Language evolution vs
Language documentation evolution

Language documentation

Extract

Test

Converge!

The end.

More questions?

Suggestions?

Related work advice?

Discussion topics

Transformation scripts reengineering and
maintenance (XXBGF?)

Transformation generators — what input?

Extended comparison results (advice)

Defining metrics and benchmarking

Extending the infrastructure for documentation

Formal algebraic proof for operator semantics

