
A .NET-based Test-Data

Generator for Combinatorial

Grammar- and Schema-based

Testing

Vadim Zaytsev

with: Ralf Lämmel (VU), Wolfram Schulte (MSR)

14 April 2004



Grammarware

• grammars

• grammar-dependent software

• In this project:

– XML Validators

– W3C XML Schemata as grammars

http://www.cs.vu.nl/grammarware/

1



Scenarios for grammar-based testing

• testing virtual processors

– virtual machines

– just-in-time compilers

• testing front-ends

– automated software modification & analysis

• testing implementations

– optimisation of XPath

2



Combinatorial exploration

Explosion

...Term

Grammar

TermTermTerm

Term Term Term

TermTerm

Term

Term Term

Term

. . .

Adversary of stochastic testing

3



Explosion examples

Cardinalities per depth

4



Controlled explosion

...Term

Grammar

Recursion control
Depth control

TermTerm

Term Term Term

TermTerm

Term

Term Term

TermTerm

. . .

+ other mechanisms

5



Control mechanisms

• depth control

– maximum “length” of terms

• recursion control

– nested constructor application

• equivalence control

– build equivalence classes

6



Control mechanisms (contd.)

• balance control

– limit the preceding levels

• combination control

– limit Cartesian product

– pair-wise testing

• context control

– enforce context conditions

7



Emphases in this project

• The case study of XSD usage in testing XML Validators

• Implementing and using control mechanisms for test data

generation

• Developing a tool to support combinatorial testing

8



Problem

System Under Test

XML

Validator

XSD

NOYES

9



Solution

Stage A:

YES

GOOD/BAD

YES

Oracle Validator

XSDXML

TDGenerator

NO

10



Solution

Stage B:

NO

Validator

XML

TDGenerator

YES
YES

Oracle

GOOD/BAD

XSD

XSD

11



What kind of Oracle?

• Differential testing

– run two or more against one another

– if the outputs are different, something has to be wrong

– in our case: different XML Validators

∗ using Microsoft .NET API

∗ Sun Multi-Schema XML Validator (JAXB)

∗ Ant Validation Task (JBind)

12



The Tool we have

grammar terms

Tree Nil

= Nil Node-1(Nil,Nil)

| Node(Tree,Tree) ...

;

Terms as objects
Constructors of all sorts +Serialisation

13



Solution proposition

M
ap

pi
ng

X
SD

T
er

m
s

C
on

st
ru

ct
or

s

Pa
rs

in
g

Se
ri

al
is

at
io

n
M

ap
pi

ng
X

M
L

The Toolgrammar
in BNF

terms
in text

grammar test data

XSD XML

So
rt

s 
an

d

14



Problems underway

• XSD is not meant to be implemented

– (as a whole)

• YACCification

• how to deal with XML attributes

• implementing control mechanisms

• . . .

15



Conclusion

The buzzwords are:

• Test data generation

• Combinatorial testing

• Controlled explosion

• Differential testing

• The .NET Framework

16


