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Grammarware

• grammars

• grammar-dependent software

• In this project:

– XML Validators

– W3C XML Schemata as grammars

http://www.cs.vu.nl/grammarware/
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Scenarios for grammar-based testing

• testing virtual processors

– virtual machines

– just-in-time compilers

• testing front-ends

– automated software modification & analysis

• testing implementations

– optimisation of XPath
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Combinatorial exploration
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Adversary of stochastic testing
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Explosion examples

Cardinalities per depth
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Controlled explosion
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Control mechanisms

• depth control

– maximum “length” of terms

• recursion control

– nested constructor application

• equivalence control

– build equivalence classes
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Control mechanisms (contd.)

• balance control

– limit the preceding levels

• combination control

– limit Cartesian product

– pair-wise testing

• context control

– enforce context conditions

7



Emphases in this project

• The case study of XSD usage in testing XML Validators

• Implementing and using control mechanisms for test data

generation

• Developing a tool to support combinatorial testing
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Problem
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Solution
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Solution
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What kind of Oracle?

• Differential testing

– run two or more against one another

– if the outputs are different, something has to be wrong

– in our case: different XML Validators

∗ using Microsoft .NET API

∗ Sun Multi-Schema XML Validator (JAXB)

∗ Ant Validation Task (JBind)
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The Tool we have

grammar terms
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Constructors of all sorts +Serialisation
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Solution proposition
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Problems underway

• XSD is not meant to be implemented

– (as a whole)

• YACCification

• how to deal with XML attributes

• implementing control mechanisms

• . . .
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Conclusion

The buzzwords are:

• Test data generation

• Combinatorial testing

• Controlled explosion

• Differential testing

• The .NET Framework
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