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Legal stuff

• Supervisor: Prof.dr. Hendrik Brinksma, UT

• Ext.Supervisor: Dr.ing. Ralf Lämmel, VU&CWI

• Hosting organisation: Vrije Universiteit Amsterdam

• Contributes to a collaboration between Dr. Wolfram Schulte

from MSR/FSE and Dr.ing. Ralf Lämmel from VU&CWI

(Geno project).
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Contents of the project

• Testing

– Combinatorial test data generation

– Differential approach

• Grammarware

– XML Schema as grammar description formalism

– XML validators as grammar-based software

http://www.cs.vu.nl/grammarware/
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Combinatorial exploration
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Adversary of stochastic testing
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Explosion examples
Cardinalities per depth

1 2 3 4 5 6

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1

Number of generated terms grows fast with depth and eventually
explodes (becomes greater than 18446744073709551616).
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Controlled explosion

...Term

Grammar

Recursion control
Depth control

TermTerm

Term Term Term

TermTerm

Term

Term Term

TermTerm

. . .

+ other mechanisms
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Control mechanisms

• depth control

– intuitive definition

• recursion control

– nested unfolding of sorts

• equivalence control

– building equivalence classes
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Control mechanisms (contd.)

• balance control

– limit the preceding levels

• combination control

– limit Cartesian product

– pair-wise testing

• context control

– enforce context conditions
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What to test in the XML

• levels of XML file conformance

• levels of XML processor conformance

• grammar features: attributes, references, . . .

• advanced features: namespaces, schema-related markup, . . .

• secondary features: header, scalability, . . .
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Design of Geno
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Grammar-based testing tool generates terms in a combinatorial way.
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Work on Geno
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Change the input language: grammar adaptation;

change the output language: serialisation.
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Case study with Geno
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XML validators

• C# .NET-based

– wrapper written

• Sun Multi-Schema XML Validator 1.2

– used as is

• Python XSV

– wrapper written
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Results

• The infrastructure of the XML-based data generator

• The case study : XHTML Strict 1.1

— — —

• Generation process visualisation

• Illustration and rationalisation of control mechanisms
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Scenarios

• Huge valid test data set

• Grammar mutation

• Point-wise stress testing

Depth Sorts Constructors Terms Terms of
reached in the signature total the root sort

Valid 8 234 478 9914261 37240
Mutation 5 234 684 347339 64247
Stress 1000 5 6 1500 499
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BUGS — better say “differences”

• Third outcome: lax validation, warnings, etc

• Duplicate attribute drives C# and Python APIs mad

• Stress testing

— — —

• FOR cycle

• Running in parallel
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Thanks for your attention!
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