
Combinatorial

Test Set Generation:
Concepts, Implementation, Case Study

Drs. Vadim V. Zaytsev

22 June 2004



Legal stuff

• Supervisor: Prof.dr. Hendrik Brinksma, UT

• Ext.Supervisor: Dr.ing. Ralf Lämmel, VU&CWI

• Hosting organisation: Vrije Universiteit Amsterdam

• Contributes to a collaboration between Dr. Wolfram Schulte

from MSR/FSE and Dr.ing. Ralf Lämmel from VU&CWI

(Geno project).

1



Contents of the project

• Testing

– Combinatorial test data generation

– Differential approach

• Grammarware

– XML Schema as grammar description formalism

– XML validators as grammar-based software

http://www.cs.vu.nl/grammarware/

2



Combinatorial exploration

Explosion

...Term

Grammar

TermTermTerm

Term Term Term

TermTerm

Term

Term Term

Term

. . .

Adversary of stochastic testing

3



Explosion examples
Cardinalities per depth

1 2 3 4 5 6

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1

Number of generated terms grows fast with depth and eventually
explodes (becomes greater than 18446744073709551616).

4



Controlled explosion

...Term

Grammar

Recursion control
Depth control

TermTerm

Term Term Term

TermTerm

Term

Term Term

TermTerm

. . .

+ other mechanisms

5



Control mechanisms

• depth control

– intuitive definition

• recursion control

– nested unfolding of sorts

• equivalence control

– building equivalence classes

6



Control mechanisms (contd.)

• balance control

– limit the preceding levels

• combination control

– limit Cartesian product

– pair-wise testing

• context control

– enforce context conditions

7



What to test in the XML

• levels of XML file conformance

• levels of XML processor conformance

• grammar features: attributes, references, . . .

• advanced features: namespaces, schema-related markup, . . .

• secondary features: header, scalability, . . .

8



Design of Geno

Grammar

TDGenerator

Test data

Grammarware

Output

Grammar-based testing tool generates terms in a combinatorial way.

9



Work on Geno

XSD XML

Pa
rs

in
g

M
ap

pi
ng

T
er

m
s

X
SD

C
on

st
ru

ct
or

s

Se
ri

al
is

at
io

n
M

ap
pi

ng
X

M
L

grammar test data

So
rt

s 
an

d

Change the input language: grammar adaptation;

change the output language: serialisation.

10



Case study with Geno

TDGenerator

GOOD/BAD

Decider

Validator Validator

YES

XML XSD

NOYES

...
NO

11



XML validators

• C# .NET-based

– wrapper written

• Sun Multi-Schema XML Validator 1.2

– used as is

• Python XSV

– wrapper written

12



Results

• The infrastructure of the XML-based data generator

• The case study : XHTML Strict 1.1

— — —

• Generation process visualisation

• Illustration and rationalisation of control mechanisms

13



Scenarios

• Huge valid test data set

• Grammar mutation

• Point-wise stress testing

Depth Sorts Constructors Terms Terms of
reached in the signature total the root sort

Valid 8 234 478 9914261 37240
Mutation 5 234 684 347339 64247
Stress 1000 5 6 1500 499

14



BUGS — better say “differences”

• Third outcome: lax validation, warnings, etc

• Duplicate attribute drives C# and Python APIs mad

• Stress testing

— — —

• FOR cycle

• Running in parallel

15



Thanks for your attention!

16


