
Modelling of Cyber-Physical Systems through
Domain-Specific Languages: Decision, Analysis, Design

Marcus Gerhold
m.gerhold@utwente.nl

Formal Methods and Tools
University of Twente

Enschede, The Netherlands

Aliaksei Kouzel
a.kouzel@student.utwente.nl
Technical Computer Science

University of Twente
Enschede, The Netherlands

Haroun Mangal
h.mangal@student.utwente.nl
Technical Computer Science

University of Twente
Enschede, The Netherlands

Selin A. Mehmed
s.a.mehmed@student.utwente.nl
Technical Computer Science

University of Twente
Enschede, The Netherlands

Vadim Zaytsev
vadim@grammarware.net
Formal Methods and Tools

University of Twente
Enschede, The Netherlands

Abstract
Cyber-Physical Systems (CPS) integrate computational al-
gorithms and physical components, requiring sophisticated
modelling techniques to address complex interactions and dy-
namics. This paper explores the creation of Domain-Specific
Languages (DSLs) tailored for CPS, focusing on the initial
three critical phases: decision, analysis, design. We present
four key aspects to address in the decision phase, design
an ontology as a domain model for the analysis phase, and
collect some advice for the design phase. By systematically
addressing these phases, we provide a comprehensive frame-
work for developing DSLs that can efficiently model CPS,
facilitating improved design, verification, and deployment
of these intricate systems.

CCS Concepts: • Software and its engineering → Do-
main specific languages; Interoperability; Design lan-
guages; • Information systems → Ontologies; • Net-
works → Network protocol design.

Keywords: Cyber-Physical Systems, Ontological Analysis,
Domain-Specific Languages

ACM Reference Format:
Marcus Gerhold, Aliaksei Kouzel, HarounMangal, Selin A.Mehmed,
and Vadim Zaytsev. 2024. Modelling of Cyber-Physical Systems
through Domain-Specific Languages: Decision, Analysis, Design.
In ACM/IEEE 27th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS Companion ’24), 22–27
September 2024, Linz, Austria. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3652620.3688348

MODELS Companion ’24, 22–27 September 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in ACM/IEEE 27th International Conference on Model Driven Engineering
Languages and Systems (MODELS Companion ’24), 22–27 September 2024,
Linz, Austria, https://doi.org/10.1145/3652620.3688348.

1 Introduction
Cyber-Physical Systems (CPS) represent collaborations of
computational algorithms and physical components [46], cre-
ating a network where digital systems monitor and control
physical processes through sensors and actuators. These sys-
tems form a feedback loop where sensor data informs com-
putational decisions, and actuators execute these decisions
to affect the physical environment. Examples of CPS include
smart grids, autonomous vehicles, and advanced medical
monitoring systems [50, 64]. CPS hold substantial potential
across diverse domains such as smart manufacturing, robot-
ics, healthcare, intelligent transportation, and smart cities,
offering benefits like enhanced automation, improved safety,
and optimised resource usage [23, 29, 46, 55].
Realising the full potential of CPS poses significant chal-

lenges due to their inherent complexity and heterogene-
ity [64]. Integrating the continuous, concurrent physical
world with the discrete, sequential cyber world often leads to
non-deterministic behaviours, complicating the development
of reliable and dependable models. Model-Driven Engineer-
ing (MDE) addresses these complexities by breaking down
CPS into manageable components, yet the intricacies of such
systems demand specialised modelling approaches [13].

Domain-Specific Languages (DSLs) offer a promising solu-
tion for CPS modelling by providing tailored notations and
constructs specific to the domain [14, 68]. Unlike general-
purpose languages (GPLs), DSLs can encapsulate domain-
specific knowledge, simplifying the modelling process and
enhancing communication between domain experts and de-
velopers [44]. For instance, UML and VHDL are well-known
DSLs in their respective domains.

It is known from prior work that DSL development can be
conceptually split into phases of decision, analysis, design
and implementation [45]. By addressing these phases, we
wish to provide a comprehensive framework for developing
DSLs that can efficiently model CPS. Essentially we want the
answers to the following research questions:

https://orcid.org/0000-0002-2655-9617
https://orcid.org/0009-0003-8587-4152
https://orcid.org/0009-0007-0038-8841
https://orcid.org/0009-0001-5805-5288
https://orcid.org/0000-0001-7764-4224
https://doi.org/10.1145/3652620.3688348
https://doi.org/10.1145/3652620.3688348


MODELS Companion ’24, 22–27 September 2024, Linz, Austria Gerhold et al.

RQ1: What are critical aspects that DSLs must address
to ensure that modelling and implementation of CPS to be
most effective?

RQ2: How can we analyse and model the CPS domain to
understand the foundational concepts and relationships that
underpin these systems?

RQ3:What aspects are important to address for the design
of the DSLs for CPS?

Thus, the paper focuses on the creation of DSLs specifically
for the CPS domain, emphasising the initial three phases:
decision, analysis and design. For RQ1 and the decision phase,
we identify four critical aspects that DSLs for CPS must ad-
dress to ensure effective modelling and implementation. RQ2
and the analysis phase involve an ontological examination
of the CPS domain to understand the foundational concepts
and relationships that underpin these systems. Finally, for
RQ3 and the design phase we list a few pieces of DSL design
advice that seem applicable, and evaluate the impact of vari-
ous computational models on the structure and functionality
of DSLs. We skip over the implementation phase because it is
(1) not that different for CPS compared to other domains; and
(2) either not that different from implementation of GPLs, or
(3) is done with language workbenches which are relatively
well studied elsewhere [9, 15–17].

This paper is but a first humble step in the desired direc-
tion, and even though we will constantly bring up existing
DSLs to highlight effective practices and methodologies, for
the moment we avoid passing any judgement on them with
respect to applicability, effectiveness, compatibility and other
aspects, since that requires deeper examination and solid
experiments. Ultimately, with this paper we make a contribu-
tion to the field of language engineering by offering insights
and methodologies for creating specialised languages that
enhance the modelling and development of CPS.

2 Decision Phase (RQ1)
Cyber-physical systems are complex and multidisciplinary,
and thus challenging to build, however desirable they might
be as a solution. Models are a promising solution to address-
ing this as they make it possible to break down complex
systems and make concerns understandable and analysable.
Models in software engineering can serve various purposes
from code generation, system documentation, construction
of the system, exploration of solution possibilities etc [13].
This phase helps to assess if creating a DSL is justified by
providing evaluation criteria.
Important requirements for cyber-physical systems are

interoperability, predictability, reliability, and dependabil-
ity [23]. Interoperability refers to the ability of different com-
ponents to work together. The other three are related to each
other: dependability refers to the property of a system to
perform functions without degradation in performance and
outcome, predictability refers to the degree of being able to

foresee a system’s behaviour, and reliability refers to the
degree of correctness in functioning. All three are related to
the overall functioning of the system.
However, due to the complexity and heterogeneity of

cyber-physical systems, modelling itself presents several
difficulties. Physical processes and computational elements
require different ways of modelling, timing becomes more
crucial, various distributed behaviours arise, and compo-
nents are heterogeneous and interconnected. A model must
meet the requirements of reliability, predictability, depend-
ability and interoperability all while correctly expressing the
properties of the system.
The first issue in modelling CPS stems from the fact that

the physical world is continuous and concurrent where many
things are happening all at once, whereas the cyber one
is discrete and sequential [30]. Thus, different modelling
methods are utilised for the two parts of the system. For
example, continuous-time models of dynamics are good at
modelling physical processes, while state machines are good
for modelling computations. However, integrating these two
modelling paradigms is difficult [37] because it can lead to
incompatibilities during the separate design processes or
non-deterministic behaviour [14, 38]. Therefore, this is an
issue that a CPS model must be able to address. For example,
a CPS can be modelled as a hybrid system [14, 30, 72].
Another essential problem for CPS is that most models

are unequipped to deal with timing semantics. Such seman-
tics are crucial [30, 36, 38] due to the interaction with the
real world, where time cannot be abstracted away as in the
sequential cyber world. At the moment, models generally fo-
cus on increasing performance at the expense of predictabil-
ity [30, 36] — caches, for example, are unpredictable but lead
to faster execution times. This is perfectly acceptable for
sequential programs but not so ideal for CPS. For example,
if an executable model is a C program, then this program
by itself provides no meaningful timing semantics, and the
programmer must find ways around that obstacle, but meth-
ods for increased performance are plentiful. This is a failure
of abstraction as the model is unequipped to deal with be-
haviour essential to the system. One key requirement for a
CPS model is that it must be predictable, meaning it must
have precise expressions of time rather than depending on
the implementation (like a C program) to provide them.
The interaction between the physical and cyber parts of

the system itself takes time. Data is not transmitted in zero
time, there are network delays, components are separated in
space, and computations take time [14]. This also necessitates
solutions such as communication semantics, synchronous
or asynchronous message transmissions and timestamps.

CPS are also complex and made up of multiple interacting
components. Components are highly interconnected, and
models of a CPS might grow more complex with time [14].
To be able to meet the previously mentioned requirements, a
model should make it possible to ensure those components



Modelling of CPS through DSL: Decision, Analysis, Design MODELS Companion ’24, 22–27 September 2024, Linz, Austria

work together as intended. A given model must also be re-
liable when small deviations from the expected operation
occur [36]. Dealing with unexpected deviations can happen
at higher or lower levels, and a CPS model must contain
enough knowledge for it to be reliable [35] especially since
many CPS are safety-critical systems [30]. The most obvious
example of safety-critical systems are medical devices.

For the remainder of this section, we focus on four impor-
tant aspects, one per subsection, providing motivation for
them, as well as exemplifying them with existing languages
that already implement them.

2.1 Specify How Components Work Together
Interoperability is one of the crucial requirements for
CPS [23]. CPS are complex and intertwined systems; in order
for a CPS to function correctly, its interconnected compo-
nents must work together as intended. A DSL for CPS should
make it possible to achieve this by implementing the ability
to specify how the parts should work together and interact.
With a focus on interoperability specifically, there is

aDSL [6]. The language models all the systems that a CPS is
composed of, which themselves can be further broken down
into systems or concrete parts. Parts and systems both have
different requirements. For example, speed can be a require-
ment defined for a certain tractor part. Systems and parts
only operate if the requirements are met. The DSL imple-
ments a way to define components recursively — a system
can be composed of subsystems which might be composed
of subsubsystems etc. — and constraints for the systems.
Chariot [54] is a DSL focused on clear separation of con-

cerns between computation and communication, along with
explicit definitions for system goals, objectives, and function-
alities. Given that communication is a major challenge in
CPS [14], Chariot supports heterogeneous communication
middleware by maintaining a distinct separation between
communication and computation logic. Chariot can express
independent communication patterns, the system’s overall
state, available resources, known faults, as well as corre-
sponding goals, objectives, and functionalities.

For the integration of sensors specifically, there is SensOr
Interfacing Language (SOIL) [7]. It is a graphical domain-
specific programming language for defining sensor inter-
faces. It models them as trees and specifies the information
physically sensed by the sensor, any data required for opera-
tion, and functions that trigger tasks or change the internal
state of the sensor. SOIL allows for the easy definition of
required interactions between different components and the
communication of measurement results.

MuScADeL [8] is a DSL for the deployment of multi-scale
systems. Multi-scale systems are highly heterogeneous sys-
tems and are composed of various components and families
of components that interact together. While not directly re-
lated to CPS, both are complex systems of many components
that must interact as required. In a DSL we should be able

to list components, the dependencies of each component,
as well as any constraints that need to be satisfied. A less
relevant feature is the ability to define probes, which collect
data about the system for the purpose of deployment.
Chauhan et al [11] developed a framework for creating

CPS with modelling languages. They aim to address issues
such as complexity due to CPS consisting of various en-
tities like sensors and actuators, differences in platforms
that components run on, and various types of interactions
components can have. Their framework allows for specify-
ing domain-specific constructs like sensors, actuators, tags,
and storage. Sensors can be periodic (sample data at reg-
ular intervals), event-driven (have activation triggers), or
request-based (responding to users). It also supports compu-
tational services for generating results from measurements,
issuing system requests, and executing commands. It also
includes options for user interactions, such as notifications,
and deployment specifications. Overall, it enables defining
components, sensor types, computation methods, system
interactions, and deployment options.
On a more concrete level, common features in DSLs im-

plementing the ability to specify how components work
together are constraints and requirements, the ability to de-
fine the individual components and their characteristics or
functionalities, communication protocols, states and descrip-
tions of how changes in state are triggered, and interactions
between components. Structures such as graphs might also
be used to better model interactions between components
of the system.

2.2 Define Flow of Operation
In a CPS, computational elements control or monitor physi-
cal processes. A DSL can facilitate this by making it possible
to specify what to control or monitor and the appropriate
responses to changes in the physical world. For example, if
some part of the system reaches a certain temperature, a
model can define an appropriate action (such as shutting
down the system to prevent overheating) or implement con-
straints (such as the safety limit).

AMon [66] is a DSL that monitors different states and pro-
vides definitions for the data flow within the CPS. It allows
modellers to define various rules for the system, sample data
with given frequency, specify which devices check for which
rules and monitor what data, limit rules to certain devices
or the entire system, etc. AMon is ideal for adaptive moni-
toring of CPS and defining the general flow of data between
components.
Hoyos et al [26] developed a DSL for context-aware sys-

tems that interpret the context and modify the system based
on it. This is donewith context sensors, which brings context-
aware systems into CPS. The proposed language models en-
tities (people or objects) and their context, with attributes
(such as the location and time) and the source of that context
(e.g., GPS or a clock, active with certain accuracy). Rules



MODELS Companion ’24, 22–27 September 2024, Linz, Austria Gerhold et al.

define which actions to take based on context facts. The DSL
can also deal with the problem of sensors not being fully
reliable with a notion of context quality.
Another option is task-oriented programming. Steenvo-

orden et al [61] give a formalisation of task-oriented pro-
gramming. Tasks are interactive units of work based on
information sources. Koopman et al [33] present an exam-
ple DSL. It uses lightweight threads that produce immediate
results after each evaluated step. There is a well-defined eval-
uation order of tasks, which can communicate via shared
data sources. Tasks can be delayed, executed simultaneously,
be sequentially ordered, or act based on the output of other
tasks. The last part means the DSL is capable of reacting
to the physical environment. The delays give the language
some very basic timing semantics.

There are various features languages in this category im-
plement. Examples include rules to changes in the physical
world with the accompanying action to execute, definitions
of states, specifying which components monitor what, and
tasks and their timing of execution.

2.3 Express Timing Semantics
Timing is of crucial importance to cyber-physical systems.
Tasks must execute and finish at the correct time and order.
Unlike software systems, a process taking too long does not
just impact the performance of the application but might
very well be incorrect behaviour for the system. For exam-
ple, it is critical that a self-driving car applies the brakes at
just the right time and not too late; failing to do so might
well be catastrophic. In a CPS that directly controls some
physical process a delay in time is in many circumstances un-
acceptable, especially in a safety-critical system. This means
that a DSL must have some form of timing semantics to
introduce things like delays, deadlines, actions happening
simultaneously, and just general task scheduling.
Triton [69] is a DSL with real-time scheduling. It defines

scheduling blocks which contain tasks and are parametrised
by time. It additionally implements constraints and defines
the appropriate action in case a violation of the constraint
occurs. For example, using the DSL one can schedule a task to
happen in 4 milliseconds. However, in case the thermometer
reaches a certain value, the task can be permanently stopped
from executing or skipped until the temperature is within
normal range again.

Lohstroh et al [40] proposed a language that implements
timing semantics. The language accomplishes this by tak-
ing into account the relationship between logical time and
physical time and specifying program behaviour by this re-
lationship. It makes use of timestamps to create a “logical
timeline” to deal with the problem of clock synchronisa-
tion that leads to a different “physical timeline” for different
components in a system. Furthermore, periodic and once-off
timers can be specified to trigger certain functions, delays

can be induced, actions can be scheduled, and deadlines put
in place for some events.

Goknil and Peraldi-Frati [19] present another DSL for spec-
ifying four types of timing requirements: delay requirements,
synchronisation requirements, repetition requirements, and
periodic requirements. All timing requirements interact with
certain events or state changes. For example, a delay require-
ment describes how occurrences of a target event are placed
relative to a source event. This means that a target event
happens a certain amount of time after a source event, i.e. it
is delayed. Synchronisation requirements refer to how close
events can happen to each other (e.g. at the same time), repe-
tition requirements give some limits to how often events can
occur, and period requirements describe how often certain
events are repeated. The language also addresses aspects of
timing requirements such as time base, dimension, equations
and variables and allows for their explicit modelling.

There are many different ways to implement timing con-
straints. Possible concrete features in this category are task
scheduling, timelines, timestamps, and different ways to time
something (whether periodically, a certain amount of time af-
ter some event, at the same time as some event, etc). Timing
semantics are very closely related to the data flow feature
because timing semantics arise precisely due to interactions
with the physical world [10], especially when basing timing
on a certain event in the physical world.

2.4 Combine Discrete with Continuous
A DSL must have a way to capture what is happening in the
physical part of the system. However, the physical world is
continuous and must be modelled as such. Unfortunately,
this leads to incompatibilities with the model of the rest of
the system which is discrete. Thus, a DSL must capture and
model the physical world in a way that avoids this issue —
by appropriately modelling the whole system as a hybrid
one for example. This is a complex task but there are many
options to choose from when constructing a solution.
CREST [32] is a DSL for hybrid systems modelling. It is

created specifically for modelling CPS whose components
“primarily interact through the exchange of physical resource
flows such as water, heat or electricity” — that is, continu-
ous resource flows. It accomplishes this through the use of
modelling techniques such as hybrid automata, data-flow
languages, and architecture description languages. CREST
defines both diagrams for visual representation, and an in-
ternal DSL based on Python.
Another solution is xSHS [21], an executable domain-

specific language that models the hybrid behaviour of cyber-
physical systems. In this example, states in the model are
captured also by ordinary differential equations in order to
model the continuous behaviour of physical processes. It also
has semantics for representing transitions between states
and physical environment variables.



Modelling of CPS through DSL: Decision, Analysis, Design MODELS Companion ’24, 22–27 September 2024, Linz, Austria

Diderot [31] is a DSL for scientific visualisation and image
analysis. Its relevance comes from the fact that it supports the
abstractions of continuous scalars. Similarly to CPS, most
general-purpose programming language do not have the
necessary abstractions for anything non-discrete andDiderot
serves as a useful starting point to creating abstractions of
more complicated mathematical operations.
Overall, representing a continuous, physical world in a

DSL is complicated and requires the use of formalisms. For-
malisms are mathematical objects consisting of abstract syn-
tax and a formal semantics, of which the languages are a
concrete implementation [10]. For example, xSHS made use
of ordinary differential equations [21] and CREST made use
of hybrid automata [32]. Implementing this last feature re-
quires expertise on modelling physical systems as opposed
to concrete features that can be described semantically.

2.5 Takeaways for RQ1
The most important aspects that we could identify, as inter-
operability (§ 2.1), explicit flow of operations (§ 2.2), having
timing semantics (§ 2.3) and combining the discrete with
the continuous (§ 2.4). These seem to correspond to both
examples in the existing literature and the current wishes
of our industrial partners. Further investigation is needed in
the form of both detailed interviews with domain experts, as
well as systematic literature reviews, to validate and refine
this set of aspects.

3 Analysis Phase (RQ2)
Once the architectural decisions have been taken, the cre-
ation of a DSL proceeds by analysing the relevant do-
main [45]. This domain must be captured by the language
vocabulary of the DSL such that all domain constructs can be
expressed. From this point on, it is useful to start splitting the
language into its syntax and semantics: the syntax prescrib-
ing what symbols are allowed in expressions of the language
and how they can be combined into well-formed constructs;
and the semantics defining the meaning and/or the behaviour
of these symbols and their combinations. Some approaches
also explicitly split semantics into the semantic domain of
all possible meanings that can potentially be created with
this language and the semantic mapping from syntax to this
semantic domain [24].
The semantic domain is usually modelled by a domain

model [3], which can be an analysis model [12], a conceptual
model [49], a megamodel [73], or just a model in a domain-
modelling language like DSVL [60]. In this paper, we will
model the semantic domain using an ontology, which is of
the mature technologies portable across domains. Within
the context of model-based engineering, an ontology is a
representation of domain knowledge [56]. Generally speak-
ing, an ontology is denoted with (domain) concepts and the
relationships between these concepts [22]. Numerous papers

have been written about using an ontology for the develop-
ment of a DSL. To name a few, Lyadova et al described a
framework for developing DSLs by letting domain experts
develop an ontology upon which DSL developers will base
the language on [41]; Tairas et al constructed an ontology
for air traffic communication and proposed a subsequent
context-free grammar for the DSL design [63]; Utilin and
Babkin discussed the evolution of an ontology and its DSL
by adding new rules to the DSL which subsequently also
adds new concepts and relationships to the ontology [65].

Four different kinds of anomalies can occur whenmapping
an ontology to a construct (which in this paper is a DSL) [47]:

• Construct deficiency means there is no construct for an
ontological concept.

• Construct overload is when a single notation maps to
multiple ontological concepts.

• Construct redundancy is when multiple notations map
to the same concept.

• Construct excess is when a notation construct does not
map to an ontological construct.

In case there is a construct deficiency, then the DSL is
said to be ontologically incomplete. If any of the three other
cases occur, then the DSL is ontologically unclear [47]. The
goal of a good DSL is to have a one-to-one mapping from
ontological concepts to the language vocabulary.
There are different kinds of formal notations to de-

scribe ontologies. For example, the Ontology Web Language
(OWL) is a formal ontology for which Pereira et al created
OWL2DSL, an OWL to DSL converter [51]. However, OWL
is mostly used in the context of the Semantic Web. Bunge-
Wand-Weber (BWW) is a different kind of formal notation for
an ontology and is one of the leading ontology frameworks
used [47, 67].
The proposed ontology in this paper uses the following

concepts of the BWW ontology to describe CPS: Thing (an el-
ementary unit), Property (an attribute belonging to a Thing),
State (the values of all attributes of a Thing), Event (a change
in State), History (all Events of a Thing), Coupling (whether
the History of two Things are independent or not), System
(Things which are connected to each other and have depen-
dent Histories), Composition (all Things inside a System),
Environment (all Things outside a System that interact with
Things inside the System), Structure (the Coupling among
the components of the Systems and the Environment), Sub-
system (a System whose Composition and Structure are a
subset of another System), Input (a Thing in a System acted
upon by an Environmental Thing), and Output (a Thing in a
System acting on an Environmental Thing) [20, 67].

While shaping the ontology, we refine our understanding
of a CPS specification from a selection of available definitions
from prior literature and a set of generic guidelines, into a
more concrete definition. We have quite some Things from
the physical world, such as sensors and actuators which are



MODELS Companion ’24, 22–27 September 2024, Linz, Austria Gerhold et al.

connected to some network and send data in some format
towards either edge devices or remote computers. There are
also many concepts from the cyber part, like an algorithm
that is being used to process the data, usually by performing
tasks or operations, which need to be properly scheduled
to be completed as well. Previous researchers commented
that there should be an unambiguous division between the
physical and cyber parts of the system [48], but the mutual
influence is undeniable.
This leads us to one of our main contributions of this

paper, the following ontology, also visualised on Figure 1:

• Sensor represents a physical sensor that takes mea-
surements of some part of the physical world;

• Process represents a continuous process which influ-
ences the sensor (e.g., temperature changes);

• Actuator represents a physical actuator that can be
used to exert influence on the physical world;

• Protocol represents a discrete protocol which is used
to communicate to the actuator;

• Network represents a carrier of information among
other CPS entities; it is a CPS by itself and can be
viewed as a stack of its own protocols [27] or at least as
a stateful connection enabling the contact with Sensors
and Actuators;

• Format represents essentially the metamodel of the
data produced by a sensor or consumed by an actuator;

• Edge represents an edge device that receives informa-
tion from sensors and issues commands to actuators,
while being operated by some agent;

Sensor Actuator

Process Protocol

Network

Edge

Computer

FormatAlgorithm

Operation

Trigger

Guard

Schedule

Agent

Figure 1. A graphical view of a CPS ontology. Nodes rep-
resent BWW [67] Things (in regular font) and Events (in
italics), lines show Couplings. Black labelled nodes are a part
of the System, blue nodes may or may not be considered to
be a part of the System (depending on whether the focus
is on embedded systems or on pervasive computing), red
nodes are traditionally viewed as a part of the Environment.

• Computer represents a remote device accessible “in
the cloud” through a network connection and used to
carry on computations;

• Algorithm represents the purely cyber entity that
models a computation;

• Operation is an Event representing one task or part
of an algorithm that can be carried out separately;

• Schedule represents some management of operations
in time on available hardware;

• Trigger represents an operation that enables and ini-
tiates another operation;

• Guard represents an operation that prevents execu-
tion of another operation until a certain condition is
met;

• Agent represents an out-of-system entity that oper-
ates the system or interacts with it in some other way,
up to and including communicating with Sensors and
Actuators.

One can notice that we have followed our own advice
from two sections ago: interoperability (§ 2.1) is guaranteed
by making the Protocol and the Format explicit; the flow of
operation (§ 2.2) is guided by Guards and Triggers in addition
to normal Operations; the timing semantics (§ 2.3) resides in
the Schedule; and the hybrid nature (§ 2.4) of the CPS comes
to life with the distinction between a Process and a Protocol.

3.1 Takeaways for RQ2
Figure 1 is our answer to model the domain of CPS. Armed
with this ontology, we can still make very different decisions
about the constructs we want to have prominent in the DSL
(collectively known as an “abstract syntax”), and even with
more diversity make decisions about the way we want to
write these things down textually or graphically (similarly
known as the “concrete syntax”), but all those decisions can
be guided or at least informed by this ontology as means
of checking compatibility and conformance to the chosen
domain. The BWW-based ontology we have presented here,
can be compared to existing ontological frameworks for CPS
such as those based on description logics [52] and also further
refined and formalised inside frameworks like UFO [1] and
thus engage in validation activities before the syntax of the
language has crystallised.

4 Design Phase (RQ3)
Before designing a DSL, it is important to understand its
application in the domain. A well-designed DSL capable
of expressing diverse and heterogeneous CPS in a reliable,
valid and diagnosable way, should exist within some model-
driven framework, where the system’s behaviour and health
is inferred by its compositional model in comparison with ob-
served inputs and outputs [53]. Specifically, a DSL is used to
model the system and transform it into the primary language



Modelling of CPS through DSL: Decision, Analysis, Design MODELS Companion ’24, 22–27 September 2024, Linz, Austria

of the application, which is then used for further develop-
ment of diagnostic algorithms.
Feature-wise, based on the DSL’s purpose and existing

approaches to model-based design, the language can poten-
tially support the following features:
(1) Detection of faults and their root causes [5, 6, 53].
(2) Choosing CPS sensors [4, 5].
(3) Evaluating diagnosis accuracy [4–6].
(4) Evaluating diagnosis costs [53].
(5) Model extraction from existing data [5].
(6) Model visualisation [4, 6].
However, the exact features would depend on the specific

requirements of CPS stakeholders. Depending on the chosen
feature set, the design can significantly vary. For instance,
determining the root causes of CPS faults would require
the mappings between anomalies and fault indicators to be
embedded in the DSL design.
To determine the principles behind the DSL design, it is

necessary to understand its intentions [71]. In the context of
CPS diagnostics, the DSLs are expected to improve produc-
tivity during the development, maintenance, and utilisation
of diagnostic software by facilitating error detection, system
modification, and program understanding [17, 45]. The lat-
ter is especially important as code comprehension can be
time-consuming and may require more than half of the time
allocated for software maintenance [70]. Another principal
intention behind DSLs is to enhance interaction with do-
main specialists, as they are not always familiar with GPL
concepts such as algorithms and data structures [17]. Taking
this into account, we recall the following design principles
based on the existing work of Fowler and Parsons [17], Her-
mans et al [25], Karsai et al [28], Zaytsev [71], Wąsowski
and Berger [68]:
(1) Use concise and simple syntax to facilitate communi-

cation with stakeholders.
(2) Use domain-specific terminology in the syntax and

the semantic model to improve understandability for
domain experts.

(3) Use common conventions familiar to everyday coding
practices.

(4) Avoid ambiguity in definitions and reasoning.
(5) Avoid resembling a natural language, as this introduces

syntactic sugar that obscures the semantics.
(6) Separate the DSL’s semantic model and syntax, allow-

ing their independent evolution.
(7) Implement automatic migration among DSL versions.
(8) Implement testing of the DSL’s parser, scripts, and the

semantic model.
Let us zoom in on one more principle which is impor-

tant for DSL design and crucial for CPS: choosing the right
computational model. This model determines the framework
used to describe the computational processes and define the
language semantics [17]. Most popular GPLs, such as Java,

Python, and C++, utilise an imperative approach where the
program consists of statements executed step by step [59].
They provide selection statements, iterative statements, per-
haps support for object-oriented programming, and other
constructs [59]. For many domains, this approach is known
to be badly suitable and unnecessarily complex for domain
experts, which is why many DSLs explore alternative com-
putation models like a decision table, a state machine, or a
production rule system, instead [17].

Imagine a thermostat system, one of the simplest possible
cyber-physical systems. Within this system, the diagnosis is
based on conditions such as temperature readings (T), sensor
status (S), and error codes (E). Also, the system adheres to
the following rules consecutively:

• If 𝐸 = 1, then the output is “system failure”.
• If 𝑆 ≠ OK, then the output is “sensor failure”.
• If 𝑇 > 30, then the output is “high temperature”.
• Otherwise the system functions normally.

If we translate this into a decision table, it will look similar
to the following:

1 T>30 ; S=OK ; E=0 ; D=high_temperature

2 T=_ ; S!=OK ; E=0 ; D=sensor_failure

3 T=_ ; S=_ ; E=1 ; D=system_failure

As can be observed, this approach is efficient in combin-
ing the outputs of multiple interacting conditions. It is also
well understood by both software engineers and domain
experts [17]. This model can be used to define the correct
system behaviour in diagnostics as a set of conditions leading
to either fault/non-fault states or the probabilities of failures.
An example of this model’s usage can be found in thework by
Barbini et al [4], which introduces a model-based approach
for computing the system’s diagnosability by generating
Bayesian networks. However, the drawback of this model
is that defining input conditions can be time-consuming,
especially for complex systems [17].

Another alternative is translating the thermostat example
to a state machine, which defines the system as a set of states
and transitions between them, as shown below.

1 normal -> sensor_failure

2 when E = 0 and S != OK

3 normal -> high_temperature

4 when E = 0 and S = OK and T > 30

5 normal -> system_error

6 when E = 1

This approach can be used to describe CPS diagnos-
tics with “normal” states and transitions that lead to
“faulty” states. Its application can be found in DSLs such
as SHIFT [2], which focuses on describing complex systems,
and Facile [58], which is used for micro-architecture simula-
tions.
The last alternative is the production rule system. It is

similar to the decision table, but the difference is that it
focuses on the behaviour of individual rules rather than the
whole table [17].



MODELS Companion ’24, 22–27 September 2024, Linz, Austria Gerhold et al.

1 E = 1 => D = system_failure

2 S != OK => D = sensor_failure

3 T > 30 => D = high_temperature

This model is more compact than the decision table, but
engineers should also consider how rules interact with each
other.

Besides these three, other computational models also exist,
and can also turn out to be suitable for the domain of CPS
diagnostics. For example, Petri Nets [18] are known to be suit-
able for the description and analysis of systems characterised
by concurrency, synchronisation, and resource sharing; or
fault trees [57] for representing and analysing the causes
of system failures through a visually representable hierar-
chical decomposition. Formal temporal logics (recall § 2.3)
such as LTL have also been reported to be effective when
used together with powerful system modelling languages
like SysML [39].

4.1 Takeaways for RQ3
There are many principles and good practices in DSL design,
and most of them can be made applicable to DSLs for CPS.
When assigning priority to them, one should remember the
results we collected for previous phases: for instance, the
ontology from Figure 1 can help to stick to the expected
terminology, and the main aspects of § 2 can guide the de-
signers in choosing the right underlying computation model
— which, as we have demonstrated, can have tremendous
immediate effect on the overall design of a DSL.

5 Conclusion
In conclusion, the development of Domain-Specific Lan-
guages for reliable and diagnosable Cyber-Physical Systems
presents a challenge with many aspects. Addressing it re-
quires careful consideration of domain-specific requirements,
computational models, as well as stakeholder needs, which
we plan to do in the scope of a larger project with five indus-
trial partners. The design of such DSLsmust balance between
providing expressive power for capturing intricate system
behaviours and maintaining simplicity for domain experts to
effectively utilise their knowledge and interpret the models
written in the DSL. Key features such as interoperability,
flow of operation, timing semantics, and hybrid system mod-
elling are critical in ensuring that DSLs accurately represent
CPS complexities while facilitating efficient diagnostics and
system analysis.
In this paper we have traversed some existing literature

on the topic, which, albeit not exhaustive, provided us with a
number of concrete insights which informed the next steps.
We have also proposed a conceptual model of this domain in
a form of Bunge-Wand-Weber-based ontology, and explored
various computational models including decision tables, state
machines, and production rule systems, each offering distinct
advantages in modelling CPS diagnostics. Decision tables
excel in combining multiple conditions into clear diagnostic

outputs, state machines provide visual clarity on system
states and transitions, while production rule systems offer
concise rule-based logic closer to the rules domain experts
use in their daily lives. The choice of computational model
should align with the specific diagnostic requirements and
the expertise of stakeholders involved.

Leveraging formal ontologies such as Bunge-Wand-Weber
provided us with a structured approach to defining CPS com-
ponents and their relationships, ensuring consistency and
clarity in future DSL design. We believe that this ontology-
driven approach facilitates validation and refinement of DSLs
before their implementation, enhancing their utility in real-
world CPS applications.

Overall, the upcoming design and implementation (as the
next two phases) of DSLs for CPS diagnostics will require
a systematic approach that integrates domain knowledge,
computational modelling techniques, and validation method-
ologies. By addressing these aspects comprehensively, DSLs
can effectively support the development, deployment, main-
tenance, operation and optimisation of CPS systems, ulti-
mately enhancing their reliability, performance and safety
in diverse application domains.

Acknowledgments
This publication is part of the project ZORRO
with project number KICH1.ST02.21.003 of the
research programme Key Enabling Technologies
(KIC) which is (partly) financed by the Dutch Re-
search Council (NWO). [34, 42, 43, 62]

References
[1] João Paulo A. Almeida, Giancarlo Guizzardi, Tiago Prince Sales, and

Ricardo A. Falbo. 2019. gUFO: A Lightweight Implementation of the
Unified Foundational Ontology (UFO). http://purl.org/nemo/doc/gufo.

[2] Marco Antoniotti and Aleks Göllü. 1997. SHIFT and SMART-AHS:
A Language for Hybrid System Engineering Modeling and Sim-
ulation. In Proceedings of the Conference on Domain-Specific Lan-
guages (DSL). USENIX Association, Santa Barbara, CA, USA, 171–
182. https://www.usenix.org/conference/dsl-97/shift-and-smart-ahs-
language-hybrid-system-engineering-modeling-and-simulation

[3] Colin Atkinson and Thomas Kühne. 2008. Reducing Accidental Com-
plexity in Domain Models. Journal of Software & Systems Modeling 7,
3 (01 Jul 2008), 345–359. https://doi.org/10.1007/s10270-007-0061-0

[4] Leonardo Barbini, Carmen Bratosin, and Thomas Nägele. 2021. Em-
bedding Diagnosability of Complex Industrial Systems Into the Design
Process Using a Model-Based Methodology. In PHM Society European
Conference. PHM Society, 9. Issue 6. https://doi.org/10.36001/phme.
2021.v6i1.2806

[5] Anup Barve. 2005. Model-Based Diagnosis — An ASML Case
Study. Master’s thesis. Delft University of Technology, The Nether-
lands. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&
doi=6435e31cee1b1a7c4b1d481abc5fd8a41e27c51f

[6] Freek van den Berg, Vahid Garousi, Bedir Tekinerdogan, and
Boudewijn R. Haverkort. 2018. Designing Cyber-Physical Systems
with aDSL: a Domain-Specific Language and Tool Support. In Proceed-
ings of the 13th Annual Conference on System of Systems Engineering
(SoSE) (Paris, France). IEEE, 225–232. https://doi.org/10.1109/SYSOSE.
2018.8428770

https://zorro-project.nl
http://purl.org/nemo/doc/gufo
https://www.usenix.org/conference/dsl-97/shift-and-smart-ahs-language-hybrid-system-engineering-modeling-and-simulation
https://www.usenix.org/conference/dsl-97/shift-and-smart-ahs-language-hybrid-system-engineering-modeling-and-simulation
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.36001/phme.2021.v6i1.2806
https://doi.org/10.36001/phme.2021.v6i1.2806
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6435e31cee1b1a7c4b1d481abc5fd8a41e27c51f
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6435e31cee1b1a7c4b1d481abc5fd8a41e27c51f
https://doi.org/10.1109/SYSOSE.2018.8428770
https://doi.org/10.1109/SYSOSE.2018.8428770


Modelling of CPS through DSL: Decision, Analysis, Design MODELS Companion ’24, 22–27 September 2024, Linz, Austria

[7] M. Bodenbenner, M. P. Sanders, B. Montavon, and R. H. Schmitt. 2021.
Domain-Specific Language for Sensors in the Internet of Production.
In Production at the Leading Edge of Technology, Bernd-Arno Behrens,
Alexander Brosius, Wolfgang Hintze, Steffen Ihlenfeldt, and Jens Peter
Wulfsberg (Eds.). Springer, Berlin, Heidelberg, 448–456. https://doi.
org/10.1007/978-3-662-62138-7_45

[8] Raja Boujbel, Sam Rottenberg, Sébastien Leriche, Chantal Taconet,
Jean-Paul Arcangeli, and Claire Lecocq. 2014. MuScADeL: A De-
ployment DSL Based on a Multiscale Characterization Framework.
In Proceedings of the 38th IEEE International Computer Software and
Applications Conference Workshops. IEEE, 708–715. https://doi.org/10.
1109/COMPSACW.2014.120

[9] Mark van den Brand. 2023. A Personal Retrospective on Language
Workbenches. Journal of Software and System Modeling 22, 3 (2023),
847–850. https://doi.org/10.1007/S10270-023-01101-9

[10] David Broman, Edward A. Lee, Stavros Tripakis, and Martin Törn-
gren. 2012. Viewpoints, Formalisms, Languages, and Tools for Cyber-
Physical Systems. In Proceedings of the Sixth International Workshop
on Multi-Paradigm Modeling (Innsbruck, Austria) (MPM). ACM, New
York, NY, USA, 49–54. https://doi.org/10.1145/2508443.2508452

[11] Saurabh Chauhan, Pankesh Patel, Flávia C. Delicato, and Sanjay
Chaudhary. 2016. A Development Framework for Programming
Cyber-Physical Systems. In Proceedings of the Second International
Workshop on Software Engineering for Smart Cyber-Physical Systems
(Austin, Texas) (SEsCPS). ACM, New York, NY, USA, 47–53. https:
//doi.org/10.1145/2897035.2897039

[12] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, He-
lena Gilchrist, Fiona Hayes, and Paul Jeremaes. 1994. Object-Oriented
Development: The Fusion Method. Prentice Hall.

[13] Benoît Combemale, Robert W. France, Jean-Marc Jézéquel, Bernhard
Rumpe, Jim Steel, and Didier Vojtisek. 2016. Engineering Modeling
Languages: Turning Domain Knowledge into Tools. CRC Press. https:
//doi.org/10.1201/b21841

[14] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni Vincentelli.
2012. Modeling Cyber–Physical Systems. Proc. IEEE 100, 1 (2012),
13–28. https://doi.org/10.1109/JPROC.2011.2160929

[15] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Ric-
cardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido
Wachsmuth, and Jimi van der Woning. 2015. Evaluating and Compar-
ing Language Workbenches: Existing Results and Benchmarks for the
Future. Computer Languages, Systems and Structures 44 (2015), 24–47.
https://doi.org/10.1016/J.CL.2015.08.007

[16] Martin Fowler. 2005. Language Workbenches: The Killer-App for
Domain Specific Languages? MartinFowler.com. https://martinfowler.
com/articles/languageWorkbench.html

[17] Martin Fowler and Rebecca Parsons. 2007. Domain-Specific Languages.
Addison-Wesley Professional.

[18] Claude Girault and Rüdiger Valk. 2003. Petri Nets for Systems Engi-
neering — A Guide to Modeling, Verification, and Applications. Springer.
https://doi.org/10.1007/978-3-662-05324-9

[19] Arda Goknil andMarie-Agnès Peraldi-Frati. 2012. A DSL for Specifying
Timing Requirements. In Proceedings of the Second IEEE International
Workshop on Model-Driven Requirements Engineering (MoDRE). IEEE,
49–57. https://doi.org/10.1109/MoDRE.2012.6360074

[20] Boryana Goncharenko and Vadim Zaytsev. 2016. Language Design and
Implementation for the Domain of Coding Conventions. In Proceedings
of the Ninth International Conference on Software Language Engineering
(SLE), Tijs van der Storm, Emilie Balland, and Dániel Varró (Eds.). ACM,
90–104. https://doi.org/10.1145/2997364.2997386

[21] Chunlin Guan, Yi Ao, Dehui Du, and Frédéric Mallet. 2018. xSHS: An
Executable Domain-Specific Modeling Language for Modeling Stochas-
tic and Hybrid Behaviors of Cyber-Physical Systems. In Proceedings of
the 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE,
683–687. https://doi.org/10.1109/APSEC.2018.00090

[22] Nicola Guarino. 1995. Formal Ontology, Conceptual Analysis and
Knowledge Representation. International Journal of Human Computer
Studies 43, 5-6 (1995), 625–640. https://doi.org/10.1006/IJHC.1995.1066

[23] Volkan Gunes, Steffen Peter, Tony Givargis, and Frank Vahid. 2014. A
Survey on Concepts, Applications, and Challenges in Cyber-Physical
Systems. KSII Transactions on Internet and Information Systems 8, 12
(Dec. 2014), 4242–4268. https://doi.org/10.3837/tiis.2014.12.001

[24] David Harel and Bernhard Rumpe. 2000. Modeling Lan-
guages: Syntax, Semantics and All That Stuff Part I: The Ba-
sic Stuff. Technical Report MCS00-16. Weizmann Institute.
https://www.se-rwth.de/staff/rumpe/publications/Modeling-
Languages-Syntax-Semantics-and-All-That-Stuff.pdf

[25] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2009.
Domain-Specific Languages in Practice: A User Study on the Suc-
cess Factors. In Proceedings of the 12th International Conference on
Model Driven Engineering Languages and Systems (LNCS, Vol. 5795),
Andy Schürr and Bran Selic (Eds.). Springer, 423–437. https://doi.org/
10.1007/978-3-642-04425-0_33

[26] José R. Hoyos, Davy Preuveneers, Jesús J. García-Molina, and Yolande
Berbers. 2011. A DSL for Context Quality Modeling in Context-aware
Applications. In Ambient Intelligence-Software and Applications: 2nd
International Symposium on Ambient Intelligence (ISAmI). Springer,
41–49. https://doi.org/10.1007/978-3-642-19937-0_6

[27] ISO 07498 1994. ISO/IEC 7498-1:1994. Information technology — Open
Systems Interconnection — Basic Reference Model: The Basic Model.
https://www.iso.org/standard/20269.html.

[28] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe,
Martin Schindler, and Steven Völkel. 2014. Design Guidelines
for Domain Specific Languages. https://arxiv.org/abs/1409.2378.
arXiv:1409.2378 [cs.SE]

[29] Siddhartha Kumar Khaitan and James D. McCalley. 2015. Design
Techniques and Applications of Cyberphysical Systems: A Survey.
IEEE Systems Journal 9, 2 (2015), 350–365. https://doi.org/10.1109/
JSYST.2014.2322503

[30] Kyoung Dae Kim and Panganamala R. Kumar. 2013. An Overview and
Some Challenges in Cyber-Physical Systems. Journal of the Indian
Institute of Science 93, 3 (July 2013), 341–352. https://journal.iisc.ac.
in/index.php/iisc/article/view/1693

[31] Gordon Kindlmann, Charisee Chiw, Nicholas Seltzer, Lamont Samuels,
and John Reppy. 2016. Diderot: a Domain-Specific Language for
Portable Parallel Scientific Visualization and Image Analysis. IEEE
Transactions on Visualization and Computer Graphics 22, 1 (2016), 867–
876. https://doi.org/10.1109/TVCG.2015.2467449

[32] Stefan Klikovits and Didier Buchs. 2021. Pragmatic Reuse for DSML
Development. Software and Systems Modeling 20, 3 (01 Jun 2021),
837–866. https://doi.org/10.1007/s10270-020-00831-4

[33] Pieter Koopman, Mart Lubbers, and Rinus Plasmeijer. 2018. A Task-
Based DSL for Microcomputers. In Proceedings of the Real World Do-
main Specific Languages Workshop (Vienna, Austria) (RWDSL2018).
ACM, New York, NY, USA, Article 4, 11 pages. https://doi.org/10.1145/
3183895.3183902

[34] Aliaksei Kouzel. 2024. Developing a DSL Design Methodology for CPS
Diagnostics. Bachelor’s thesis. Universiteit Twente, Enschede, The
Netherlands. http://purl.utwente.nl/essays/100776

[35] Edward A. Lee. 2007. Computing Foundations and Practice for Cyber-
Physical Systems: A Preliminary Report. Technical Report UCB/EECS-
2007-72. Electrical Engineering and Computer Sciences; University of
California at Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/
2007/EECS-2007-72.html

https://doi.org/10.1007/978-3-662-62138-7_45
https://doi.org/10.1007/978-3-662-62138-7_45
https://doi.org/10.1109/COMPSACW.2014.120
https://doi.org/10.1109/COMPSACW.2014.120
https://doi.org/10.1007/S10270-023-01101-9
https://doi.org/10.1145/2508443.2508452
https://doi.org/10.1145/2897035.2897039
https://doi.org/10.1145/2897035.2897039
https://doi.org/10.1201/b21841
https://doi.org/10.1201/b21841
https://doi.org/10.1109/JPROC.2011.2160929
https://doi.org/10.1016/J.CL.2015.08.007
https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1109/MoDRE.2012.6360074
https://doi.org/10.1145/2997364.2997386
https://doi.org/10.1109/APSEC.2018.00090
https://doi.org/10.1006/IJHC.1995.1066
https://doi.org/10.3837/tiis.2014.12.001
https://www.se-rwth.de/staff/rumpe/publications/Modeling-Languages-Syntax-Semantics-and-All-That-Stuff.pdf
https://www.se-rwth.de/staff/rumpe/publications/Modeling-Languages-Syntax-Semantics-and-All-That-Stuff.pdf
https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.1007/978-3-642-19937-0_6
https://www.iso.org/standard/20269.html
https://arxiv.org/abs/1409.2378
https://arxiv.org/abs/1409.2378
https://doi.org/10.1109/JSYST.2014.2322503
https://doi.org/10.1109/JSYST.2014.2322503
https://journal.iisc.ac.in/index.php/iisc/article/view/1693
https://journal.iisc.ac.in/index.php/iisc/article/view/1693
https://doi.org/10.1109/TVCG.2015.2467449
https://doi.org/10.1007/s10270-020-00831-4
https://doi.org/10.1145/3183895.3183902
https://doi.org/10.1145/3183895.3183902
http://purl.utwente.nl/essays/100776
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-72.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-72.html


MODELS Companion ’24, 22–27 September 2024, Linz, Austria Gerhold et al.

[36] Edward A. Lee. 2008. Cyber Physical Systems: Design Challenges.
In 2008 11th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC). IEEE, 363–369.
https://doi.org/10.1109/ISORC.2008.25

[37] EdwardA. Lee. 2010. CPS Foundations. In Proceedings of the 47th Design
Automation Conference (Anaheim, California) (DAC). ACM, New York,
NY, USA, 737–742. https://doi.org/10.1145/1837274.1837462

[38] Edward A. Lee. 2015. The Past, Present and Future of Cyber-Physical
Systems: A Focus on Models. Sensors 15, 3 (2015), 4837–4869. https:
//doi.org/10.3390/s150304837

[39] Marcos V Linhares, Romulo S. de Oliveira, Jean-Marie Farines, and
Francois Vernadat. 2007. Introducing the Modeling and Verification
Process in SysML. In Proceedings of the IEEE Conference on Emerging
Technologies and Factory Automation (EFTA). IEEE, 344–351. https:
//doi.org/10.1109/EFTA.2007.4416788

[40] Marten Lohstroh, Christian Menard, Alexander Schulz-Rosengarten,
Matthew Weber, Jeronimo Castrillon, and Edward A. Lee. 2020. A
Language for Deterministic Coordination Across Multiple Timelines.
In Proceedings of the Forum for Specification and Design Languages
(FDL) (Kiel, Germany). IEEE, 1–8. https://doi.org/10.1109/FDL50818.
2020.9232939

[41] Lyudmila N. Lyadova, Alexander O. Sukhov, and Marsel R. Nureev.
2021. An Ontology-Based Approach to the Domain Specific Languages
Design. In 2021 IEEE 15th International Conference on Application of
Information and Communication Technologies (AICT). IEEE, Baku, Azer-
baijan, 1–6. https://doi.org/10.1109/AICT52784.2021.9620493

[42] HarounMangal. 2024. CSPL: A Domain-Specific Language for Modelling
the Behaviour of Cyber-Physical Systems. Bachelor’s thesis. Universiteit
Twente, Enschede, The Netherlands. https://purl.utwente.nl/essays/
101433

[43] Selin Mehmed. 2024. Domain-Specific Language for Cyber-Physical
Systems: A Survey. Bachelor’s thesis. Universiteit Twente, Enschede,
The Netherlands. http://purl.utwente.nl/essays/100883

[44] Josh G. M. Mengerink., Bram van der Sanden., Bram C. M. Cappers.,
Alexander Serebrenik., Ramon R. H. Schiffelers., and Mark G. J. van
den Brand. 2018. Exploring DSL Evolutionary Patterns in Practice —
A Study of DSL Evolution in a Large-scale Industrial DSL Repository.
In Proceedings of the Sixth International Conference on Model-Driven
Engineering and Software Development (MODELSWARD). INSTICC,
SciTePress, 446–453. https://doi.org/10.5220/0006605804460453

[45] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and
How to Develop Domain-Specific Languages. Comput. Surveys 37, 4
(Dec. 2005), 316–344. https://doi.org/10.1145/1118890.1118892

[46] Mustafa Abshir Mohamed, Geylani Kardas, and Moharram Challenger.
2021. Model-Driven Engineering Tools and Languages for Cyber-
Physical Systems —A Systematic Literature Review. IEEE Access 9
(2021), 48605–48630. https://doi.org/10.1109/ACCESS.2021.3068358

[47] Daniel Moody. 2009. The “Physics” of Notations: Toward a Scientific
Basis for Constructing Visual Notations in Software Engineering. IEEE
Transactions on Software Engineering 35, 6 (Nov. 2009), 756–779. https:
//doi.org/10.1109/TSE.2009.67

[48] Dmitry Morozov, Mario Lezoche, and Hervé Panetto. 2018. Multi-
Paradigm Modelling of Cyber-Physical Systems. IFAC-PapersOnLine
51, 11 (2018), 1385–1390. https://doi.org/10.1016/j.ifacol.2018.08.334
Proceedings of the 16th IFAC Symposium on Information Control
Problems in Manufacturing (INCOM).

[49] Mark A. Musen, Lawrence M. Fagan, David M. Combs, and Edward H.
Shortliffe. 1987. Use of a Domain Model to Drive an Interactive
Knowledge-Editing Tool. International Journal of Man-Machine Studies
26, 1 (1987), 105–121. https://doi.org/10.1016/S0020-7373(87)80039-1

[50] Sascha Julian Oks, Albrecht Fritzsche, and Kathrin M. Möslein. 2017.
An Application Map for Industrial Cyber-Physical Systems. In Indus-
trial Internet of Things: Cybermanufacturing Systems, Sabina Jeschke,
Christian Brecher, Houbing Song, and Danda B. Rawat (Eds.). Springer,

Cham, 21–46. https://doi.org/10.1007/978-3-319-42559-7_2
[51] Maria João Varanda Pereira, João Fonseca, and Pedro Rangel Hen-

riques. 2016. Ontological Approach for DSL Development. Com-
puter Languages, Systems & Structures 45 (April 2016), 35–52. https:
//doi.org/10.1016/j.cl.2015.12.004

[52] Leonard Petnga and Mark Austin. 2016. An Ontological Framework
for Knowledge Modeling and Decision Support in Cyber-Physical
Systems. Advanced Engineering Informatics 30, 1 (2016), 77–94. https:
//doi.org/10.1016/j.aei.2015.12.003

[53] Jurryt Pietersma, Arjan J. C. van Gemund, and A. Bos. 2005. A Model-
Based Approach to Sequential Fault Diagnosis. In IEEE Autotestcon.
IEEE, 621–627. https://doi.org/10.1109/AUTEST.2005.1609208

[54] Subhav M. Pradhan, Abhishek Dubey, Aniruddha Gokhale, and Martin
Lehofer. 2015. CHARIOT: A Domain Specific Language for Extensible
Cyber-Physical Systems. In Proceedings of the Workshop on Domain-
Specific Modeling (Pittsburgh, PA, USA) (DSM). ACM, 9–16. https:
//doi.org/10.1145/2846696.2846708

[55] Ragunathan Rajkumar. 2012. A Cyber–Physical Future. Proc. IEEE 100,
Special Centennial Issue (2012), 1309–1312. https://doi.org/10.1109/
JPROC.2012.2189915

[56] Michael Rosemann, Iris Vessey, Ron Weber, and Boris Wyssusek. 2004.
On the Applicability of the Bunge-Wand-Weber Ontology to Enterprise
Systems Requirements. In Proceedings of ACIS. AISeL, 10 pages. https:
//aisel.aisnet.org/acis2004/78

[57] Enno Ruijters and Mariëlle Stoelinga. 2015. Fault Tree Analysis: A
Survey of the State-of-the-Art in Modeling, Analysis and Tools. Com-
puter Science Review 15 (2015), 29–62. https://doi.org/10.1016/j.cosrev.
2015.03.001

[58] Eric C. Schnarr, Mark D. Hill, and James R. Larus. 2001. Facile: A
Language and Compiler for High-Performance Processor Simulators.
In Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation (Snowbird, Utah, USA) (PLDI).
ACM, New York, NY, USA, 321–331. https://doi.org/10.1145/378795.
378864

[59] RobertW. Sebesta. 2001. Concepts of Programming Languages. Pearson.
[60] Jonathan Sprinkle and Gabor Karsai. 2004. A Domain-Specific Visual

Language for Domain Model Evolution. Journal of Visual Languages
& Computing 15, 3 (2004), 291–307. https://doi.org/10.1016/j.jvlc.2004.
01.006

[61] Tim Steenvoorden, Nico Naus, and Markus Klinik. 2019. TopHat: A
Formal Foundation for Task-Oriented Programming. In Proceedings of
the 21st International Symposium on Principles and Practice of Declara-
tive Programming (Porto, Portugal) (PPDP). ACM, New York, NY, USA,
Article 17, 13 pages. https://doi.org/10.1145/3354166.3354182

[62] Mariëlle Stoelinga et al. 2023. Zorro: Zero Downtime in Cyber-Physical
Systems. https://zorro-project.nl.

[63] Robert Tairas, Marjan Mernik, and Jeff Gray. 2009. Using Ontologies
in the Domain Analysis of Domain-Specific Languages. In Models in
Software Engineering, Michel R. V. Chaudron (Ed.). LNCS, Vol. 5421.
Springer, Berlin, Heidelberg, 332–342. https://doi.org/10.1007/978-3-
642-01648-6_35

[64] Amit Kumar Tyagi and N. Sreenath. 2021. Cyber Physical Systems:
Analyses, Challenges and Possible Solutions. Internet of Things and
Cyber-Physical Systems 1 (2021), 22–33. https://doi.org/10.1016/j.
iotcps.2021.12.002

[65] Boris Ulitin and Eduard Babkin. 2017. Ontology and DSL Co-evolution
Using Graph Transformations Methods. In Perspectives in Business
Informatics Research, Björn Johansson, Charles Møller, Atanu Chaud-
huri, and Frantisek Sudzina (Eds.). LNBIP, Vol. 295. Springer, Cham,
233–247. https://doi.org/10.1007/978-3-319-64930-6_17

[66] Michael Vierhauser, Rebekka Wohlrab, Marco Stadler, and Jane
Cleland-Huang. 2023. AMon: A Domain-Specific Language and Frame-
work for Adaptive Monitoring of Cyber–Physical Systems. JSS 195
(2023), 111507. https://doi.org/10.1016/j.jss.2022.111507

https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1145/1837274.1837462
https://doi.org/10.3390/s150304837
https://doi.org/10.3390/s150304837
https://doi.org/10.1109/EFTA.2007.4416788
https://doi.org/10.1109/EFTA.2007.4416788
https://doi.org/10.1109/FDL50818.2020.9232939
https://doi.org/10.1109/FDL50818.2020.9232939
https://doi.org/10.1109/AICT52784.2021.9620493
https://purl.utwente.nl/essays/101433
https://purl.utwente.nl/essays/101433
http://purl.utwente.nl/essays/100883
https://doi.org/10.5220/0006605804460453
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1109/ACCESS.2021.3068358
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1016/j.ifacol.2018.08.334
https://doi.org/10.1016/S0020-7373(87)80039-1
https://doi.org/10.1007/978-3-319-42559-7_2
https://doi.org/10.1016/j.cl.2015.12.004
https://doi.org/10.1016/j.cl.2015.12.004
https://doi.org/10.1016/j.aei.2015.12.003
https://doi.org/10.1016/j.aei.2015.12.003
https://doi.org/10.1109/AUTEST.2005.1609208
https://doi.org/10.1145/2846696.2846708
https://doi.org/10.1145/2846696.2846708
https://doi.org/10.1109/JPROC.2012.2189915
https://doi.org/10.1109/JPROC.2012.2189915
https://aisel.aisnet.org/acis2004/78
https://aisel.aisnet.org/acis2004/78
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1145/378795.378864
https://doi.org/10.1145/378795.378864
https://doi.org/10.1016/j.jvlc.2004.01.006
https://doi.org/10.1016/j.jvlc.2004.01.006
https://doi.org/10.1145/3354166.3354182
https://zorro-project.nl
https://doi.org/10.1007/978-3-642-01648-6_35
https://doi.org/10.1007/978-3-642-01648-6_35
https://doi.org/10.1016/j.iotcps.2021.12.002
https://doi.org/10.1016/j.iotcps.2021.12.002
https://doi.org/10.1007/978-3-319-64930-6_17
https://doi.org/10.1016/j.jss.2022.111507


Modelling of CPS through DSL: Decision, Analysis, Design MODELS Companion ’24, 22–27 September 2024, Linz, Austria

[67] Yair Wand and Ron Weber. 1990. An Ontological Model of an Infor-
mation System. IEEE Transactions on Software Engineering 16, 11 (Nov.
1990), 1282–1292. https://doi.org/10.1109/32.60316

[68] Andrzej Wąsowski and Thorsten Berger. 2023. Domain-Specific Lan-
guages: Effective Modeling, Automation, and Reuse. Springer. https:
//doi.org/10.1007/978-3-031-23669-3

[69] Bradley Wood and Akramul Azim. 2021. Triton: a Domain Specific
Language for Cyber-Physical Systems. In Proceedings of the 22nd IEEE
International Conference on Industrial Technology (ICIT), Vol. 1. IEEE,
810–816. https://doi.org/10.1109/ICIT46573.2021.9453575

[70] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan,
and Shanping Li. 2018. Measuring Program Comprehension: A Large-
Scale Field Study with Professionals. IEEE Transactions on Software
Engineering 44, 10 (2018), 951–976. https://doi.org/10.1109/TSE.2017.
2734091

[71] Vadim Zaytsev. 2017. Language Design with Intent. In Proceedings of
the ACM/IEEE 20th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS), Don Batory, Jeff Gray, and Vinay
Kulkarni (Eds.). IEEE, 45–52. https://doi.org/10.1109/MODELS.2017.16

[72] Vadim Zaytsev. 2017. Megamodelling with NGA Multimodels. In
Proceedings of the 2nd International Workshop on Comprehension of
Complex Systems, Christoph Bockisch and Michael L. Van De Vanter
(Eds.). ACM, 1–6. https://doi.org/10.1145/3141842.3141843

[73] Vadim Zaytsev and Anya Helene Bagge. 2014. Parsing in a Broad Sense.
In Proceedings of the 17th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2014) (LNCS, Vol. 8767),
Jürgen Dingel, Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and
Emilio Insfran (Eds.). Springer, 50–67. https://doi.org/10.1007/978-3-
319-11653-2_4

https://doi.org/10.1109/32.60316
https://doi.org/10.1007/978-3-031-23669-3
https://doi.org/10.1007/978-3-031-23669-3
https://doi.org/10.1109/ICIT46573.2021.9453575
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1109/MODELS.2017.16
https://doi.org/10.1145/3141842.3141843
https://doi.org/10.1007/978-3-319-11653-2_4
https://doi.org/10.1007/978-3-319-11653-2_4

	Abstract
	1 Introduction
	2 Decision Phase (RQ1)
	2.1 Specify How Components Work Together
	2.2 Define Flow of Operation
	2.3 Express Timing Semantics
	2.4 Combine Discrete with Continuous
	2.5 Takeaways for RQ1

	3 Analysis Phase (RQ2)
	3.1 Takeaways for RQ2

	4 Design Phase (RQ3)
	4.1 Takeaways for RQ3

	5 Conclusion
	Acknowledgments
	References

