
Surpassing Threshold Barriers: Evaluating the Efficacy of
Nature-Inspired Algorithms in Detecting Applied Refactorings

Iman Hemati Moghadam
iman.hematimoghadam@utwente.nl

University of Twente
Enschede, The Netherlands

Matthias Sleurink
matthias.sleurink@gmail.com

University of Twente
Enschede, The Netherlands

Vadim Zaytsev
vadim@grammarware.net

University of Twente
Enschede, The Netherlands

ABSTRACT
Refactoring is a pervasive activity in software development, and
identifying refactorings applied to a program is crucial to under-
stand its evolution. Currently, automated tool support for identify-
ing applied refactorings is available for different programming lan-
guages (e.g., Kotlin, Java, C++, Go, JavaScript and Python). However,
majority of the proposed approaches relies on similarity thresholds,
where choosing proper thresholds that work in all projects, if not im-
possible, remains to be challenging. To overcome such limitations,
in this paper we propose a search-based algorithm implemented on
top of RefDetect to mitigate its dependency on similarity thresh-
olds. In this proposed approach, we pay less attention to choosing
a proper threshold value and instead employ a nature-inspired al-
gorithm called the Andean Condor Algorithm (ACA) to eliminate
refactoring instances that have been erroneously identified due to
an employed lower similarity threshold value.

The performance of the proposed approach was evaluated on 513
commits of 185 open-source Java applications and comparedwith an
existing NSGA-based multi-objective approach, a greedy algorithm,
and the original version of RefDetect and also RefactoringMiner,
a state-of-the-art refactoring detection tool that operates without
relying on thresholds. The obtained results show the effectiveness
of the employed search-based algorithm, where it outperformed
the other search-based approaches, particularly outperforming the
NSGA-based approach with a notable 17% improvement in F-score.
The proposed approach also obtained a slightly better F-score com-
pared with the other two tools not based on computational search
and uncovered 238 true refactorings not detected by those tools.

KEYWORDS
Automated refactoring mining, Andean condor algorithm, Java

ACM Reference Format:
Iman Hemati Moghadam, Matthias Sleurink, and Vadim Zaytsev. 2024.
Surpassing Threshold Barriers: Evaluating the Efficacy of Nature-Inspired
Algorithms in Detecting Applied Refactorings. In Proceedings of the 10th
International Conference on Computer Technology Applications (ICCTA 2024).
ACM, New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Refactoring, the process of changing the internal structure of the
program without changing its behaviour, is known as an essential

ICCTA 2024, 15–17 May, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 10th International Conference on Computer Technology Applications (ICCTA 2024),
https://doi.org/XXXXXXX.XXXXXXX.

activity in software development [1]. If refactorings are applied cor-
rectly, it will facilitate the program’s comprehension and its future
adaption. Identifying refactorings applied to a program is also a
known important activity in software development [2]. Knowledge
about applied refactorings can help developers to better understand
their program’s evolution, which in turn facilitates the program’s
maintenance activities. This knowledge can also assist developers
of refactoring tools to better understand how refactorings are ap-
plied in real-world scenarios, which in turn can result in designing
refactoring tools that better match the developers’ needs.

Currently, automated tool support for identifying applied refac-
torings is available for different programming languages includ-
ing Java [3–6], Python [7, 8], Kotlin [9], Go [10], C [4, 6], and
JavaScript [6]. Among the existing tools, RefactoringMiner [3]
exhibits the best accuracy in terms of precision compared to other
refactoring detection tools. RefactoringMiner’s superiority arises
from its unique characteristic of not requiring any similarity thresh-
olds for identifying refactorings [3]. RefactoringMiner employs
a replacement technique and uses some predefined heuristics to
match statements in the method body, without requiring user-
specified thresholds. However, in recent studies [4, 6], it was ob-
served that in cases where no replacement or heuristic is defined
for a particular situation in the code, there exists a possibility that
RefactoringMiner cannot detect the applied refactorings. How-
ever, defining all possible replacement types and heuristics even
within a specific programming language (e.g. Java) is challenging.

Silva et al. [6] and Hemati Moghadam et al. [4] have recently
introduced language-neutral techniques not restricted to the speci-
fication of programming languages. However, their proposed ap-
proaches rely on similarity thresholds to identify refactorings. As
acknowledged by both papers [4, 6], chosen thresholds may neg-
atively affect the accuracy of the approach especially when the
project has undergone a significant number of refactoring as well
as non-refactoring changes. While employing strong thresholds
can prevent the detection of some valid refactorings, employing
weak thresholds may result in false positive cases. To overcome
such limitations, we propose a search-based algorithm built upon
RefDetect to mitigate its dependency on similarity thresholds.

In the proposed approach, we pay less attention to choosing a
proper threshold value and employ a low similarity threshold value
which allows identifying refactorings that their corresponding enti-
ties changed significantly. Additionally, we employ a search-based
algorithm to eliminate refactoring instances that have been erro-
neously identified due to the employed threshold. The presented
search-based algorithm is an adaption of the recently introduced
Andean Condor Algorithm [11] which is inspired by the natural
food-search behaviour of Andean condors. In this study, we mimic

https://orcid.org/0000-0002-5478-9858
https://orcid.org/0000-0001-7764-4224
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ICCTA 2024, 15–17 May, 2024, Vienna, Austria Iman Hemati Moghadam, Matthias Sleurink, and Vadim Zaytsev

the search behaviour of the Andean condor in its search for food
to identify valid refactorings from a pool of candidate refactorings,
in which the possibility of false positive cases can be high.

It is worth mentioning that while presenting the refactoring
identification process as an optimisation problem has been pre-
viously investigated [12–18], no prior research applies Andean
Condor Algorithm (ACA) for identifying applied refactorings. The
most similar approach to ours is one presented by Fadhel et al. [14],
who proposed a mono-objective genetic algorithm to identify the
applied refactorings. The authors later extended their approach by
incorporating a new objective in the fitness function and used the
non-dominated sorting genetic algorithm (NSGA-II) to find the best
tradeoff between objectives [16]. The study revealed the strength
of the new algorithm, where NSGA-II produces refactorings with
higher correctness compared to the mono-objective algorithm [16].

To assess the effectiveness of our approach, we conducted ex-
periments on 513 commits of 185 open-source Java applications
and compared its performance with the approach introduced by
Kessentini et al. [16], and a greedy algorithm. We also compared
the performance of our approach against RefactoringMiner [3],
and RefDetect [4] which are considered state-of-the-art refactor-
ing detection tools in Java. The results of our approach, including
the detected refactorings and the software applications used in the
experiments are provided as an online appendix [19].

In summary, our contributions are as follows:

(1) We propose a novel approach that employs the Andean Condor
Algorithm to diminish the reliance of RefDetect on the selection
of suitable similarity thresholds for refactoring identification.

(2) We identify and address shortcomings in the existing Andean
Condor Algorithm, and enhance its optimisation.

(3) We compared our approach against a greedy algorithm, an exist-
ingmulti-objective genetic algorithm and two non-metaheuristic
tools – RefDetect and RefactoringMiner, providing a com-
parison of their respective performance and effectiveness.

Following this part, we discuss our search-based approach in
Section 2, present experiment results in Section 3, and provide
a survey of related work in Section 4. We discuss threats to the
validity in Section 5 and conclude with future work in Section 6.

2 PROPOSED APPROACH
In this section, we begin by providing a general overview of the
Andean Condor Algorithm, highlighting its key attributes, and
discussing the adapted version for identifying refactorings.

2.1 Andean Condor Algorithm
TheAndeanCondor Algorithm (ACA) is a nature-inspired swarm in-
telligence algorithm developed based on the food-search behaviour
of male Andean condors [11]. The behaviour of this bird varies
depending on the seasons of the year. While in the autumn and
winter seasons, the birds will stay close to their nest, in the spring
and summer months, they fly further to find food [20]. The funda-
mental concept upon which the ACA is developed is the ability to
adapt the search behaviour depending on the conditions that are
defined by the direction of changes (improvement or reduction)

applied to the fitness value. In its original study, the ACA exhib-
ited superiority over BAT [21], MBO [22] and PSO [23] algorithms,
and demonstrated a convergence pattern that adeptly avoids local
optimums [11].

The ACA is a population-based algorithm where each solution
in the population is represented as a condor. Each condor can either
have Intensification or Exploration status, and themovement pattern
of the condors is determined according to their respective statuses.
Whilst the specifics of intensification and exploration need to be
customised to suit the specific problem being investigated, the
overall idea is that, in intensification, small(er) changes are made
to a condor to generate or move to a neighbouring solution (local
search), and in exploration, large(r) changes are made to a condor
to explore new regions of the search space (global search).

Deciding on the status of condors, between intensification or
exploration, is of crucial importance. To decide on the number
of condors that will perform intensification or exploration, the
algorithm employs two parameters: the Distribution Parameter (DP)
which determines the percentage of condors that engage in the
exploration process (e.g., 60%), and the Percentage of Change (PC)
which determines the magnitude of change in DP in each iteration
of the algorithm (e.g., 10%) [11]. In the first iteration of the algorithm,
the solutions in the initial population are sorted from the best to
the worst based on their fitness and then the potion of lower-ranked
solutions, determined by DP, are engaged in the exploration process,
and the remaining high-quality solutions will participate in the
intensification process. Subsequently, at the end of each iteration of
the algorithm, the status of the condors will be updated according
to the direction of changes (improvement or reduction) made to
the average fitness value.

As depicted in Algorithm 1, at the end of each iteration of the
algorithm, the average fitness value of the resulting solutions is
calculated (Line 1), and the value of DP is updated depending on
whether the new average fitness value shows an improvement or
reduction compared to the average fitness value of the previous
population (Lines 2–12). The ACAwill dedicate more condors to the
exploration process if there is no improvement in the average fitness
value (Lines 2–6 and 13). Consequently, it results in a reduction in
the intensification rate (Line 14). In this case, the algorithm changes
the status of the worst condors with an intensification status to
the exploration status (Lines 19–21). This can be advantageous,
as it allows the lower-performing condors, with an intensification
status, to be moved further away in search of better solutions while
encouraging the high-performing condors to intensify their search
further. Nevertheless, what happens if the high-performing condors
are trapped in local optimums or if the lower-performing condors
are already in the area of improvement through local search but are
forced to move away from it? Furthermore, the algorithm makes
an erroneous decision if the reduction in the fitness value resulted
from the exploratory condors, and while some improvements in
the fitness value resulted from condors involved in the intensifi-
cation process, this improvement is less than the negative value
caused by the exploration. In subsection 2.3, we will discuss how
the proposed ACA is adapted to prevent such issues and ensure
effective optimisation.



Surpassing Threshold Barriers: Evaluating the Efficacy of Nature-Inspired Algorithms in Detecting Applied Refactorings ICCTA 2024, 15–17 May, 2024, Vienna, Austria

Algorithm 1 Calculate and Update States
Inputs: Andean Conder Population (ACP), Population Size (N), Population Average

Fitness (AF), Distribution Parameter (DP), Percentage of Change (PC)
Outputs: New Average Fitness (AF𝑛𝑒𝑤 ), Updated Andean Conder Population, and

Updated Distribution Parameter (DP)

- Calculate the average fitness of the newly generated population.

1: 𝐴𝐹𝑛𝑒𝑤 ← 1
𝑁

∑𝑁
𝑖=1 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝐴𝐶𝑃𝑖 )

- Compare the new average fitness with the old one and adjust DP accordingly. A
higher average fitness value indicates better outcomes.

2: if (𝐴𝐹𝑛𝑒𝑤 ≤ 𝐴𝐹 ) then
3: 𝐷𝑃 ← 𝐷𝑃 + 𝑃𝐶 ⊲ The exploration rate ↑, and the intensification rate ↓
4: if DP > 1 then
5: 𝐷𝑃 ← 1
6: end if
7: else
8: 𝐷𝑃 ← 𝐷𝑃 − 𝑃𝐶 ⊲ The exploration rate ↓, and the intensification rate ↑
9: if DP < 0 then
10: 𝐷𝑃 ← 0
11: end if
12: end if
- Calculate Quantity of Exploration (QE) and Quantity of Intensification (QI)
13: 𝑄𝐸 ← 𝑁 ∗𝐷𝑃

14: 𝑄𝐼 ← 𝑁 − 𝑄𝐸

- Sort the new population from best to worst.
15: 𝐴𝐶𝑃 ← 𝑆𝑜𝑟𝑡 (𝐴𝐶𝑃 )
- Update the status of condors based on the QI and the QE.
16: for (𝑖 ← 1; 𝑖 ≤ 𝑄𝐼 ; 𝑖 + +) do
17: 𝐴𝐶𝑃𝑖 ← intensification status;
18: end for
19: for (𝑖 ← 𝑄𝐼 + 1; 𝑖 ≤ 𝑄𝐼 +𝑄𝐸; 𝑖 + +) do
20: 𝐴𝐶𝑃𝑖 ← exploration status;
21: end for
22: return AF𝑛𝑒𝑤 , DP, ACP

In contrast, when the average fitness increases, the exploration
rate will be decreased (Lines 7–12) and the status of the best ex-
ploratory condors will be updated to intensification (Lines 16–18).
This can be beneficial as the well-performing condors that success-
fully explored new solutions gain an opportunity to be improved
through local search. However, what happens if an exploring con-
dor is moved into an area that other condors with an intensification
status are already in? In this case, the intensification effort might be
useless. In subsection 2.3, we will discuss how the proposed ACA
is adapted to prevent such issues.

2.2 Identfying Applied Refactoring using ACA
Our proposed approach, which shall be referred to as ACA through-
out the rest of the paper, will be discussed in this section. The
proposed algorithm as depicted in Fig. 1 is composed of two phases:
Refactoring Identification and Refactoring Validation.

While the first phase is the same as the one implemented in
RefDetect, the second phase is an extension to RefDetect. To re-
call the point mentioned earlier, as a low similarity threshold is
used to identify refactorings, the likelihood of false positive refac-
torings depending on the project being investigated may be high.
Therefore, as a follow-up to the first phase, the second phase uses
the Andean Condor Algorithm to identify the valid refactorings
from a pool of candidate refactorings detected in the first phase.

Phase i: Refactoring Identification:The aim of this phase is to
identify the initial list of candidate refactorings. This phase consists
of four steps, which are discussed briefly due to page limitations,
and directing readers to Hemati Moghadam et al. [4] for full details.

Table 1: Parameter Initialisation: Values and Domains

Parameter Domain Initial value

Entity similarity threshold [0, 1] ∈ R+ 0.3
Distribution Parameter (DP) [0, 1] ∈ R+ 0.5
Percentage of Change (PC) [0, 1] ∈ R+ 0.1
Population Size (N) 50
Quantity of Exploration (QE) [0, 𝑁 ] ∈ N+ QE = N * DP
Quantity of Intensification (QI) [0, 𝑁 ] ∈ N+ QI = N - QE
Termination Criteria: iterations without fitness improvement 3

(1) Initialise Parameters: as the first step, as depicted in Fig. 1, the
parameters of the algorithm including entity similarity thresh-
old are initialised. Entity similarity threshold shows the least
similarity that two entities (i.e., classes, fields, or methods) must
have to identify them as the same. As shown in Table 1, the
threshold for entity similarity used in this paper is 0.3, which
means if two entities have a similarity of more than 0.3 they
are deemed to be the same. This value is more than twice as
low as RefDetect’s original threshold [4].

(2) Inconsistency Detection: as the second step, the two input
program versions are comparedwith each other, and their incon-
sistency in terms of entities deleted from the previous version
and those introduced in the new version are determined. The al-
gorithm compares entities of the same type (e.g., class, field, etc.)
and identifies discrepancies if an entity exists in one version but
does not have a corresponding one in another version. Entities
of the same type are compared based on their signatures. For
instance, methods are compared based on their names, input
parameters, and return types [4].

(3) Entity Matching: the goal of this step is to establish associa-
tions between inconsistent entities identified in the previous
step. Indeed, entities differing between the two versions are
compared for similarity, and those exceeding the predefined
threshold are considered to be the same [4]. Note that as a low
similarity threshold value is used, each entity can be matched
with more than one entity in its corresponding program. Not all
matches are correct, and depending on the number of changes
applied to the program, the number of mismatches can vary.

(4) Refactoring Identification: in this step, candidate refactor-
ings are identified by applying some predefined rules to the
entities that have been matched in the previous step. For in-
stance, a Move Method refactoring is detected if a method in the
first version is matched with a method in the second version,
but their classes differ. A Move and Rename Method refactoring
is detected if the name of the methods is also different [4].
Phase ii: Refactoring Validation: The result of the first phase

of the algorithm is a set of candidate refactorings. However, as
a low similarity threshold value is used, the possibility of false
positive cases is high. Hence, it is the goal of the second phase of
the algorithm to eliminate erroneously detected refactorings and
to achieve this goal, a search-based algorithm based on the Andean
Condor Algorithm is employed. This phase consists of five steps:
(5) Initialise Parameters: the parameters of the ACA including the

distribution parameter (DP), the percentage of change (PC), the
population size (N), and termination conditions are initialised.



ICCTA 2024, 15–17 May, 2024, Vienna, Austria Iman Hemati Moghadam, Matthias Sleurink, and Vadim Zaytsev

Figure 1: RefDetect Workflow: Steps in Refactoring Detection

The quantity of exploration (QE) and the quantity of intensifi-
cation (QI) are also calculated as presented in Table 1.

(6) Generate Initial Population: in this step, the initial popu-
lation is constructed, where each solution in the population
comprises a sequence of refactorings randomly selected from
the feasible search space (i.e., list of candidate refactorings de-
tected in the first phase). Subsequently, each solution’s fitness
value is measured and the solutions are sorted according to
their fitness from best to worst. A detailed description of the
implemented approach is provided in subsection 2.3.

Steps 7–9 are repeated sequentially until termination:

(7) Perform ACA Operators: the search space is explored using
intensification and exploration operators for better solutions
in terms of the employed fitness function and simultaneously
promoting solutions diversity. The operators are elaborately
described in subsection 2.3.

(8) Generate Next Generation: the resulting solutions are sorted
based on their fitness, and formed the next generation by replac-
ing the previous population. The parameters of the algorithm
including DP, QE and QI, are updated according to the direc-
tion of change (improvement or reduction) made to the average
fitness value. The approach employed to update the quantity of
intensification and exploration is discussed in subsection 2.3.

(9) Termination: if the termination conditions are fulfilled, the
algorithm is terminated and the best solution according to the
fitness value is returned. Otherwise, proceed to step 7. In the
implemented approach the termination criteria is defined as the
number of conservative iterations without improving the aver-
age fitness value and the fitness value of the best solution found
so far. As shown in Table 1, if no improvement is observed after
three conservative iterations, the algorithm terminates and the
best solution across all iterations is returned.

2.3 Elaborating on the Phase II: ACA in Detail
This section describes in detail the proposed Andean Condor Algo-
rithm employed for eliminating erroneously detected refactorings
resulting from using a low similarity threshold.

Generating Initial Population: Initially, as discussed above,
the initial population is constructed. Each solution in the population
comprises a sequence of refactorings randomly selected from the
feasible search space which is indeed the list of potential candidate
refactorings. The number of refactorings each solution includes is
an important factor that may differ for each application. Ideally,
when the changes are all caused by refactorings, a value equal to

the number of candidate refactorings is preferable, and in a scenario
where changes are resulted due to non-refactoring changes, a lower
value is preferable. However, as we have no prior knowledge about
the type of changes, we employ a formula to estimate the size of
solutions depending on the number of candidate refactorings. We
ensure the size of the solution should be at least half the number of
candidate refactorings and exhibits a rising trend as the number of
candidate refactorings increases. It is worthmentioning that the size
of solutions is not fixed and changes as the algorithm progresses.

Measuring Solution Fitness through Simulation: Following
the generation of the initial population, the fitness value of each
solution is measured. For each solution, its refactorings are sequen-
tially applied to the initial version of the program, and their effect
on reducing dissimilarity between the initial and final versions of
the program is measured. In this way, the fitness function assigns a
higher value to solutions that achieve a higher degree of similarity
between the resulting program and the final version of the program.

One point to consider is that the similarity between two entities
(e.g., classes or methods) is measured based on their name and
type, as well as their relationships with the other entities (e.g., be-
longing to the same class/package, invoking/accessing by similar
fields/methods, etc.), and the programming instructions (e.g., while
loop, if-else statements etc.) are not taken into account. This method
of measuring fitness is adapted due to the manner in which infor-
mation is extracted from the source code by RefDetect. In fact,
RefDetect avoids extracting language-specific details, and only
extracts information found in all object-oriented programming lan-
guages. Taking methods as an example, RefDetect only extracts
information about the signature of the method as well as fields and
methods accessed by the method and it does not extract any details
about programming language-specific statements (e.g., if, switch,
for loop, return, try-catch, etc.) used in the method body [4].

Adapting Intensification and Exploration Rates: Upon as-
sessing the degree of suitability of the initial solutions, they are
sorted according to their fitness from best to worst. Subsequently, a
portion of the lower-ranked solutions, determined by the DP, are
selected to engage in the exploration process, and the remaining
high-quality solutions take part in the intensification process. On
the first iteration, as detailed in Table 1, we set the value of DP
to 0.5 [11], which means 50% of solutions involved in the inten-
sification process and the remaining involved in the exploration
process. However, with the beginning of the second iteration, the
intensification and exploration rates are updated according to how
the average fitness value is changed compared to the previous
population’s average fitness value (refer to Algorithm 1 for details).



Surpassing Threshold Barriers: Evaluating the Efficacy of Nature-Inspired Algorithms in Detecting Applied Refactorings ICCTA 2024, 15–17 May, 2024, Vienna, Austria

As explained in subsection 2.1, in the original version of ACA
more condors will be dedicated to the exploration process if no
improvement or a reduction in the average fitness value is observed.
In contrast, if the new average fitness is better than the previous
one, more condors will be dedicated to the intensification process
(refer to Algorithm 1 for more) [11]. The idea is that when no
more improvement is found, the worst intensifying condors can
be employed for exploratory purposes, to find new areas in the
search space for improvement (global search). However, when the
condors find improvement, it means that their overall location is a
favourable one, and they should search that area more (local search)
[11]. Nevertheless, it is possible that the reduction in the average
fitness resulted from the exploratory condors, and while some im-
provements in the fitness resulted from condors involved in the
intensification process, this improvement is less than the negative
value caused by the exploration. In the worst case, improvement
may have resulted from the lower-performing intensifying con-
dors, and these condors may be already in the area of improvement
through local search but are forced to move away from it.

To address this issue, our proposed solution is that if the condors
involved in the intensification process result in better solutions,
then more focus should be directed towards the intensification, and
if more improvement is found by exploration, then the condors are
better served by doing more exploration in the next iteration. Im-
portantly, at the end of each iteration, the solutions are sorted based
on their fitness and if an exploratory solution shows a substantial
fitness improvement, it will be shifted towards the beginning of
the list of solutions, where it is more probable that its state will
be modified to intensification, and the search for this solution will
be directed towards a localised improvement. Subsequent sections
detail the intensification and exploration operators.

Proposed Intensification Operator: Empirical studies reveal
that refactorings are often applied in batches and they are not truly
independent [24–26]. Two types of relationships may exist between
refactorings: dependency and conflict. A dependency occurs if the ex-
ecution of one refactoring is dependent on the execution of another
refactoring, and a conflict arises if the execution of one refactoring
prevents the execution of another one [27]. While in practice con-
flict between refactorings is not as frequent as dependency exists
between them, in our study, as a low similarity threshold is used,
the conflict between candidate refactorings can be substantial.

We use dependency and conflict relationships between candi-
date refactorings as a basis for implementing the intensification.
In the intensification process, if a refactoring, such as ref𝑖 within
a solution, depends on a refactoring that is not currently a part
of the solution, or if a refactoring not included in the solution, is
dependent on ref𝑖 , they will be added to the solution if they improve
the fitness value. In addition, between two refactorings with a con-
flict, the one with a lower fitness value will be removed from the
solution. To measure the effect of each refactoring on fitness, the
refactoring and its dependents included in the solution are sequen-
tially applied to the initial version of the program, and their effect
on reducing dissimilarity is measured. Note that removing a refac-
toring eliminates its dependent refactorings as they will no longer
be applicable. For instance, removing an Extract Class refactoring

also eliminates its dependent refactorings, such as those moving
methods and fields to the class created by Extract Class refactoring.

Proposed Exploration Operator: The exploration operator is
designedwith the primary objective of increasing the chance of find-
ing an optimal solution and escaping from the local optima which
may result due to the proposed intensification operator. To reach
these goals, two types of exploration are implemented. Initially,
to explore the search space, for each solution with an exploration
status, one refactoring from the list of candidate refactorings will
be randomly selected and added to the solution. In the exploration
process, we prevent duplicate refactorings to be included in the
solution. In addition, if the newly added refactoring results in two
similar solutions in the population, it will not be accepted.

However, applying this operator alone may suffer the drawback
of slow convergence, especially when the investigated program
has undergone significant refactoring and non-refactoring changes,
leading to a plethora of candidate refactorings. Moreover, in the pre-
liminary experiments carried out in this study, we observed that the
application of the aforementioned intensification and exploration
operators can potentially lead to good solutions in the population
containing different correctly detected refactorings, especially when
the program being investigated has undergone significant changes.

While increasing the algorithm’s iteration count or choosing a
large solution size can mitigate the aforementioned problem, these
approaches have their drawbacks. Worth mentioning that the origi-
nal version of the Andean condor algorithm [11] cannot explore the
search space by combining different solutions, as the crossover does
in other metaheuristic approaches such as the genetic algorithm. To
alleviate the aforementioned issues, we introduce a second explo-
ration operator that occurs with a certain probability. The proposed
operator allows weaker solutions with an exploration status to be
combined with solutions with an intensification status, randomly
selected from the population. The resulting solution will replace its
weaker parent in the next generation.

We acknowledge that expanding the proposed operator to all
exploratory solutions, and not limiting that to weaker exploratory
solutions, may speed up the process of finding out an optimal
solution. However, our primary goal is to adhere to the fundamental
principles of the original Andean condor algorithm, except when it
proves impractical in our context. The Andean condor algorithm
is inspired by the movement pattern of the Andean condor when
it searches for food. Hence, it is probable that condors with fewer
food resources (lower fitness value) follow other condors with
greater food resources (higher fitness value). However, it seems
less likely that condors with moderate food resources follow this
behaviour, as it is more reasonable for them to prefer to explore
their immediate search space for new sources of food instead of
moving far from their current location. Therefore, the proposed
exploration operator is consistent with the movement pattern of
the condor when it searches for food [20]. The second point is that
if the new solution’s fitness improves, it will be shifted towards
the beginning of the list of solutions, where it is more probable
that in the next iteration, its state will change to intensification,
and the search for this solution will be directed towards localised
improvement. This may help to escape from the local optima that
may exist in the existing solutions with an intensification status.



ICCTA 2024, 15–17 May, 2024, Vienna, Austria Iman Hemati Moghadam, Matthias Sleurink, and Vadim Zaytsev

3 EVALUATION
To assess the value of our approach (ACA), we conducted a set of
experiments based on a dataset containing 513 commits of 185 Java
applications. The dataset was originally created by Tsantalis et al.
[3] and has been subsequently extended by Hemati Moghadam et al.
[4]. To validate the efficiency of our proposed approach, initially, we
compare ACA with an existing search-based algorithm introduced
by Kessentini et. al [16]. The aim of this experiment is to show the
distinctive features employed in both search-based approaches and
provide an understanding of their strengths and weaknesses. We
also compared ACA with a Greedy Algorithm in order to determine
to what extent our approach is capable of outperforming a simpler
heuristic-based algorithm. Additionally, we compared ACAwith two
existing state-of-the-art refactoring detection tools: RefDetect [4]
and RefactoringMiner [3]. While RefDetect relies on similarity
thresholds to identify applied refactorings [4], RefactoringMiner
does not require any similarity thresholds to operate [3]. Overall,
we designed our experiments with the aim of addressing the three
following research questions:
• RQ1: Is ACA effective in identifying applied refactorings compared
to an existing multi-objective search-based approach?
• RQ2: Is ACA effective in identifying applied refactorings compared
to RefactoringMiner, and RefDetect, which are not based on
metaheuristic search?
• RQ3: How does ACA perform in terms of execution time compared
to the other approaches we are comparing it with?
To answer RQ1 and RQ2, the effectiveness of the employed ap-

proaches is evaluated using precision, recall, and F-score.

3.1 Approach Comparison for RQ1
To address RQ1, the efficiency of ACA is evaluated through a compar-
ative analysis with a search-based method proposed by Kessentini
et al. [16]. We begin by describing the employed approach [16], and
then discuss the evaluation setup. Subsequently, we present the re-
sults and discuss the strengths and weaknesses of both approaches.

3.1.1 Algorithm Overview. In their recent research, Kessentini
et al. [16] introduced a novel search-based algorithm capable of
detecting and ordering refactorings applied to Java applications.
What makes their approach uniquely significant is its independence
from any reliance on a similarity threshold to identify refactorings.

The proposed approach is divided into two phases: refactoring
detection and refactoring refining [16]. In the detection phase, all
refactorings applicable to the initial version of the investigated
program are identified. As an example, a method in a class can be
moved to all other classes in the program using some candidate
Move Method refactorings, provided that the pre-conditions of
the refactoring are satisfied. For example, the Move Method refac-
toring requires as a pre-condition that no method with a similar
signature is defined in the target class. However, this technique
hugely increases the number of candidate refactorings and makes
the space of possible refactoring sequences too large including a
large number of false positive cases and not efficient to be explored
exhaustively [16]. To overcome this issue, Kessentini et al. employed
a search-based technique in the refining phase to determine the
right refactorings among candidates.

The proposed refining phase is an adaptation of theNon-dominated
Sorting Genetic Algorithm (NSGA-II) introduced by Deb et al. [28].
The proposed approach takes as input the list of candidate refac-
torings proposed in the first phase and produces as output the best
refactoring sequence that represents a good compromise between
the two conflicting objectives: (i)maximising the similarity between
the initial and final versions of the program and (ii) minimising
the number of refactorings in the solution [16]. In the proposed
approach, each solution is represented as a sequence of refactorings.

While the population size (number of solutions) is a constant
value and is specified at the beginning of the algorithm (e.g., 500),
the length of each solution (number of refactorings) is a variable
value. The solution size can be determined at random or by a person
familiar with the system.1 In the solution creation process, for
each solution depends on its size a number of refactorings are
randomly selected from the list of candidate refactorings. During
the solution creation process in order to prevent the creation of non-
performing refactorings, some pre-conditions are also examined.
For instance, the pull-up refactoring requires as a pre-condition that
the original class has a superclass or to be created before the pull-up
refactoring can be applied. After generating the initial solutions,
they are evolved over a series of iterations using the crossover and
mutation operators, and the best solution in terms of the employed
fitness function will be selected at the end of the algorithm (i.e.,
100,000 solution evaluations).

In the proposed approach, a single-point crossover and a sub-
stitution technique as the mutation operator are used to generate
new solutions. In the proposed crossover operator, for every pair of
selected solutions (referred to as parents), a random point within
the two solutions is identified and two new solutions are generated
from their respective parents split at the identified crossover point.
As mentioned, a substitution technique as the mutation operator
is also used to replace some random number of refactorings in the
solution with new refactorings. The mutation operator can modify
the controlling elements of the selected refactorings (e.g., alter-
ing the method that is to be moved in a Move Method refactoring
operation), but cannot replace the selected refactoring type with
a new one (e.g., substituting a Move Method refactoring with an
Extract Class refactoring). The crossover and mutation only occur
with certain probabilities. Moreover, duplicated refactorings result-
ing from these operators are deleted and the pre-conditions of the
refactorings must be met. At the end of each iteration, the worst
solutions in the population will be replaced by the new solutions
resulting from genetic operators, namely crossover and mutation.

3.1.2 Evaluation Setup. To investigate RQ1, ACA is compared
with the search-based approach proposed by Kessentini et al. [16],
referred to as the NSGA approach throughout the rest of the paper.
We also compared ACA with a Greedy Algorithm (GR). The imple-
mented GR starts with an empty list of refactoring and on each
iteration randomly selects a refactoring from the list of candidate
refactorings and includes it in the solution if the application of
refactoring results in an improvement in the fitness. The algorithm
terminates when no further fitness-enhancing refactoring is found.2

1Maximum 600 refactorings per solution [16].
2We used a GR algorithm, selecting the best fitness-enhancing refactoring per iteration,
but simulating all refactorings each time led to impractical execution time.



Surpassing Threshold Barriers: Evaluating the Efficacy of Nature-Inspired Algorithms in Detecting Applied Refactorings ICCTA 2024, 15–17 May, 2024, Vienna, Austria

We conducted the experiments on 513 commits of 185 open-
source Java applications sourced from the datasets provided by
Tsantalis et al. [3] and Hemati Moghadam et al. [4]. Worth mention-
ing that due to the stochastic nature of search-based approaches,
we ran ACA, NSGA and GR three times each for each commit and
presented the ones with median F-score results in the paper.

We ran NSGA according to the configuration specified by Kessen-
tini et al. in their original paper (i.e., “crossover probability = 0.6;
mutation probability = 0.4 where the probability of gene modifica-
tion is 0.2; stopping criterion = 100,000 evaluations" [16]). However,
in two cases, we made our assumptions as values provided in the
paper were tailored for studied applications and not given as gen-
eral values. We set the population size (number of solutions) to
500 and determined the solution size (number of refactorings) to a
random number, ranging from half to twice the true refactorings
included in the dataset for the application under investigation.

In the original version of NSGA [16], the search space comprises
all refactorings applicable to the initial version of the program,
regardless of whether the classes are changed or not. However,
our pilot experiments have shown that apart from making the
process very time-consuming, it also leads to weak accuracy. To
ensure a fair comparison with ACA, we restricted the search space
to classes which are changed between two versions of the program.
As a result, the search spaces that ACA and NSGA operate within are
nearly identical. Furthermore, in our pilot experiments with NSGA,
we observed having no threshold to match entities, as proposed by
Kessentini et al. [16], resulting in a very weak accuracy. To illustrate
the issue, assume a situation that which a method named foo is
deleted from a class and a new method called bar is created in that
class. However, as no threshold is used the algorithm can incorrectly
associate foo with bar and identifies an incorrect refactoring which
is the renaming of the method foo to bar. Thus, to prevent obvious
incorrect candidate refactorings, we selected a very weak threshold
(i.e., 0.15) which is half than one used by ACA. A discussion of how
this threshold affects the results is provided in the next section.

3.1.3 Results for RQ1. Table 2 shows a comparison of the per-
formance of ACA with the other approaches namely NSGA and GR.
In total, 5,098 true refactorings of 23 different refactoring types
were included in the dataset. As shown in Table 2, ACA outperforms
the other two approaches, and achieving a 17% and 5% improve-
ment in F-score when compared with NSGA and GR respectively.
The Wilcoxon signed rank test (with p < 0.05) reveals that for all
23 refactoring types, ACA performs better than both NSGA (F-score:
p-value = 0.00001), and GR (F-score: p-value = 0.00148). However, to
gain further insight into factors that affect the performance of the
employed approaches, we examined the results, as detailed below.

With the employed GR, an essential aspect needs to be brought
to attention. As described earlier, in each iteration, GR adds a new
refactoring in the solution if its application improves fitness. Ob-
viously, if the refactoring is dependent on any other refactorings
which have not yet been included in the solution, the refactoring
will not be accepted as it is inapplicable. Therefore, GR adheres to
the dependency between refactorings. However, the strength of
ACA is that it comprehensively evaluates the combined effects of
dependent refactorings. In fact, between two mutually exclusive
refactorings which both have a positive impact on fitness, ACA gives

Table 2: Comparison of ACA with NSGA and GR

#TP Precision Recall F-score
ACA 4,494 0.87 0.80 0.83
GR 4,260 0.81 0.76 0.78
NSGA 3,454 0.83 0.58 0.66

more chance to the one that more refactorings are dependent on,
while GR accepts the first selection it makes. Therefore, if the false
positive refactoring is selected by GR, it will result in a reduction in
both recall and precision.

With the employed NSGA, we found that the employed fitness
function and utilised pre-conditions may have a negative impact on
the recall of NSGA. We observed that these factors can also have a
positive effect on the precision of NSGA. However, due to the higher
magnitude of their negative impact compared to their positive
impact, it results in a reduction in the accuracy of the algorithm.

NSGA evaluates solutions based on two objectives: (i) maximising
the similarity between the initial and final versions of the investi-
gated program and (ii) minimising the number of refactorings in
the solution. Since the NSGA generates multiple results, commonly
referred to as the Pareto front, the algorithm employs a knee point
strategy to effectively balance both objectives (i and ii) and select
the final solution from the list of candidates [16]. However, there
exist both benefits and drawbacks to the employed techniques.
In the experiments, we frequently observed NSGA showing weak
recall in cases where a large number of refactorings, with few non-
refactoring changes, are applied to the program. For instance, while
ACA demonstrated high recall for the java-algorithms and eucalyp-
tus, NSGA only identified half of the actual refactorings. Upon closer
inspection, we found that although NSGA identified almost all refac-
torings in some Pareto front solutions, its emphasis on solution
size led it to select a solution that balanced both objectives, some-
times ignoring true refactorings especially those with low impact
on similarity. The aforementioned aspects, however, help NSGA to
achieve a high precision. Indeed, NSGA prioritises solutions with
a few candidate refactorings and gives precedence to those with
a higher impact on similarity, avoiding large solutions containing
false positive cases with minor impact on similarity as observed
in facebook-buck, hibernate-orm and Signal-Android. Worth men-
tioning selecting an appropriate solution size, as demonstrated by
Kessentini et al. [16], can improve the accuracy of the algorithm.
However, determining appropriate value can be challenging. Note
that selecting an appropriate solution size is also an important fac-
tor in ACA. However, as the size of the solution is not considered as
an objective in the fitness function, ACA achieved positive results
more often than negative outcomes compared to NSGA.

In the experiments, we also observed situations where due to the
employed pre-conditions, true refactorings included in the initial
solutions were rejected by both ACA and NSGA. For instance, in
bitcoinj, a method is extracted from methods in different classes
using Extract and Move Method refactorings. However, among the
detected refactorings only one can be applied as after applying
the first refactoring, the subsequent ones are rejected because a
similar method already exists in the class. While it is common
practice to extract a method from different classes, relaxing this
precondition might result in false positive cases. Changing the
precondition to allow replacing a method only if the extracted

https://github.com/phishman3579/java-algorithms-implementation/commit/ab98bcacf6e5bf1c3a06f6bcca68f178f880ffc9
https://github.com/eucalyptus/eucalyptus/commit/5a38d0bca0e48853c3f7c00a0f098bada64797df
https://github.com/eucalyptus/eucalyptus/commit/5a38d0bca0e48853c3f7c00a0f098bada64797df
https://github.com/facebook/buck/commit/6ed4cf9e83fe24fc6ab6fc9ebede016c777c9725
https://github.com/hibernate/hibernate-orm/commit/44a02e5efc39c6953ca6dd631669d91293ab67f6
https://github.com/WhisperSystems/Signal-Android/commit/99528dcc3b4a82b5e52a87d3e7aed5c6479028c7
https://github.com/bitcoinj/bitcoinj/commit/2fd96c777164dd812e8b5a4294b162889601df1d


ICCTA 2024, 15–17 May, 2024, Vienna, Austria Iman Hemati Moghadam, Matthias Sleurink, and Vadim Zaytsev

methods are identical, could be a potential solution. However, this
is not always feasible, as the lines deleted from places the method
extracted might be different. Overall, relaxing the pre-conditions
can be a double-edged sword, as it might solve one problem but
introduce new issues.

In our analysis, we also observed that while the employ thresh-
olds help both ACA and especially NSGA to identify more valid refac-
torings, there are still valid refactorings not detected as the sim-
ilarity between their corresponding entities were lower than the
employed thresholds. In the majority of these cases, the refactored
entities are changed significantly by non-refactoring changes, and
only an extremely small threshold can help to match entities and
identify the applied refactorings. However, using an extremely
small threshold may result in a reduction in the precision of the
algorithm as observed in the Move and Rename Class/Field/Method
refactorings discussed in RQ2.

Findings: Incorporating interdependence between candidate
refactorings during validation enables ACA to apply dependent
refactorings simultaneously, and reduces the risk of accepting po-
tentially erroneous and mutually exclusive changes. The utilised
pre-conditions and thresholds generally enhance the accuracy
of both ACA and NSGA, though negative impacts were also noted.
Minimizing the number of refactorings in the solution, integrated
into the fitness function employed by NSGA, proves effective in
filtering false positive refactorings, but it results in a reduction in
recall if the program undergoes few non-refactoring changes.

3.2 Approach Comparison for RQ2
To address RQ2, the efficiency of ACA is comparedwith RefDetect [4]
and RefactoringMiner [3]. We used the configurations mentioned
in their respective published papers to run each of these tools. We
conducted experiments on a dataset with 513 commits from 185
Java applications. Both RefactoringMiner and RefDetect were
previously evaluated on this dataset.

3.2.1 Results for RQ2. Table 3 presents a summary of the number
of valid refactorings detected by ACA, as well as those that were not
detected. Overall, ACA accurately detected 4,494 refactorings which
are 88% of the total number of refactorings in the dataset. In fact,
ACA detects 4% and 8% more valid refactorings in comparison to
RefDetect, and RefactoringMiner, respectively.

A closer look reveals that out of all refactorings present in the
dataset, 238 refactorings were only detected by ACA, and 187 refac-
torings were only detected by both ACA and RefactoringMiner,
but not detected by RefDetect. Indeed, employing a low similarity
threshold value enables the ACA to identify 425 valid refactorings
not detected by RefDetect. RefDetect failed to detect these refac-
torings as significant changes that were applied to the refactored
entities, leading to their similarity being lower than the thresholds
used by RefDetect. However, as illustrated in Table 3, more than
600 valid refactorings were not detected by ACA, but detected at least
by one of the other four tools. Remarkably, half of these refactor-
ings, as shown in Table 3, are detected by RefDetect. Within this
set of 302 undetected refactorings, some of them have arisen due to
the limitations of the implemented pre-conditions, while others are
because of the inefficacy of the implemented intensification and
exploration operators.

To further discuss the factors that affect the efficiency of ACA,
we focus on comparing ACA with the other two tools. The accuracy
of each tool in detecting specific types of refactorings is presented
in Table 4. The table presents the results for precision, and recall
for each refactoring type. Overall, 23 refactoring types including
composite ones (denoted by an asterisk) are supported in this study.
As highlighted in Table 4 (shaded in grey), while ACA achieved the
best average value in terms of recall for all class/field/method level
refactorings, it achieved the weakest average precision value for
class/method level refactorings. It is worth mentioning that ACA
improved the average recall (+4%) compare to RefDetect, but by
sacrificing some precision (−4%). Overall, across 23 refactoring
types, ACA gained an average F-score of 83%, surpassing RefDetect
and RefactoringMiner by 1% and 2%, respectively. However, we
found no significant difference in the ranks of the F-scores being
compared using the Friedman test. We found several reasons that
can negatively affect the accuracy of ACA, but due to page limita-
tions, we focus on briefly discussing the most important ones.

In our analysis, we found out that the main reason for the ma-
jority of false positives in Move and Rename Class/Field/Method
refactorings is the employ threshold. In the majority of these cases,
the original entity (class/field/method) is deleted from the program,
but a new entity of the same type but a different name is created
in the refactored program. However, as there are some similarities
between these entities, such as both the deleted and new fields
being invoked by some similar methods, which surpass the em-
ployed threshold, and the absence of dependencies and conflicts
with other refactored entities, the algorithm incorrectly identifies
them as matched and identifies an incorrect refactoring.

As presented in Table 4, in the seven refactoring types (i.e., 2, 3,
4, 8, 14, 20 and 23), ACA has a less favourable recall than RefDetect.
This reduction partly happens as a result of the employed simulation
function. As described earlier, the impact of each refactoring on
fitness is measured by applying it to the program. Refactoring can
be applied to the program if its pre-conditions have been validated.
However, our observations, especially in composite refactorings,
reveal instances where two entities (classes/fields/methods) with
similar nameswere (renamed and)moved to a similar destination. In
this case, while both refactorings were valid, only one of them was
accepted. In fact, after applying the first refactoring, the second one
will be rejected due to its precondition which forbids overwriting
an existing entity in the target class.

We also observed a limitation in the intensification operator. We
observed that while conflict (due to a low threshold) and depen-
dency between candidate refactorings occur frequently, there were
applications where no relationships exist between candidate refac-
torings. In such cases, the intensification operator has no impact on
the algorithm convergence. This shows the importance of exploring
a more comprehensive operator incorporating additional factors.
Findings: The employed low threshold value enables ACA to iden-
tify 425 refactorings not detected by RefDetect. However, we
observed instances where the threshold either exceeded the re-
quirement for valid refactoring or fell short, resulting in false
positive cases. We also observed applications where no interde-
pendency exists between refactorings, resulting in the intensifi-
cation operator having no impact on the algorithm convergence.



Surpassing Threshold Barriers: Evaluating the Efficacy of Nature-Inspired Algorithms in Detecting Applied Refactorings ICCTA 2024, 15–17 May, 2024, Vienna, Austria

Table 3: Comparison of ACA Performance in Detecting Refactorings

Total ACA Detected Refs. ACA-Only Detected Refs. Exclusively ACA & RefactoringMiner Detected Refs. ACA Not Detected Refs. RefDetect-Detected, ACA-Missed Refs.
4,494 238 187 615 302

Table 4: The Precision (P) and Recall (R) Results

ACA RefDetect RefactoringMiner

Refactoring Type #TP P R P R P R

1. Rename Class 54 0.89 0.89 0.94 0.81 1 0.82

2. Move Class 1052 1 0.96 1 0.98 1 0.98

3. Move & Rename Class∗ 23 0.55 0.74 0.79 0.83 0.95 0.83

4. Extract Superclass 32 1 0.88 1 0.91 1 0.97

5 Extract Subclass 5 1 0.80 1 0.60 1 0.60

6. Extract Class 91 0.84 0.84 0.78 0.76 0.91 0.23

7. Extract Interface 23 1 0.74 1 0.65 1 0.65

Class-Level Refactorings 1,280 0.90 0.84 0.93 0.80 0.98 0.73

8. Rename Field 126 0.85 0.75 0.87 0.78 0.98 0.71

9. Move & Rename Field∗ 13 0.45 0.38 0.36 0.29 1 0.38

10. Move Field 193 0.9 0.93 0.96 0.74 0.90 0.90

11. Push Down Field 27 0.96 0.89 1 0.89 1 0.85

12. Pull Up Field 132 1 0.87 1 0.85 1 0.92

Field-Level Refactorings 491 0.84 0.77 0.84 0.71 0.98 0.76

13. Rename Method 363 0.85 0.79 0.94 0.71 0.97 0.74

14. Move & Rename Method∗ 47 0.65 0.36 0.83 0.85 1 0.51

15. Move Method 194 0.81 0.88 0.89 0.88 0.97 0.86

16. Push Down Method 37 1 0.73 1 0.65 1 0.84

17. Pull Up Method 292 0.99 0.92 1 0.87 1 0.93

18. Extract & Move Method∗ 177 0.78 0.62 0.9 0.45 0.99 0.41

19. Extract Method 719 0.96 0.89 0.98 0.84 0.99 0.89

20. Inline Method 175 0.84 0.84 0.96 0.91 0.98 0.55

21. Move & Inline Method∗ 54 0.78 0.83 0.73 0.35 1 0.22

22. Change Method Parameters 1,238 0.98 0.92 0.96 0.92 0.96 0.87

23. Move&Change Method Par’s∗ 31 0.87 0.87 0.91 0.94 0.91 0.68

Method-Level Refactorings 3,327 0.87 0.79 0.92 0.77 0.98 0.69

All Refactoring Types 5,098 0.87 0.80 0.91 0.76 0.98 0.72

3.3 Results for RQ3
RQ3 relates to the performance of our approach in terms of exe-
cution time. Table 5 shows details of the time used by the five em-
ployed approaches to find refactorings applied in 513 commits. The
most noteworthy observation is that RefactoringMiner outper-
forms the other approaches, with a total execution time of around
11 minutes. On the other hand, NSGA shows the weakest results,
with a total time of 16 hours. Among the employed search-based
approaches, ACA exhibits better results with 36 minutes in total.
Indeed, ACA was able to find a solution in an average of 4.2 seconds,
which is an acceptable time, and notably 66% of commits were
processed by ACA in less than 1 second.

To gain further insight into possible performance bottlenecks
of ACA, we closely reviewed 11 commits with an execution time
higher than 1 minute. We observed that in these commits, several
classes were removed from the program, andmany new classeswere
introduced in the program. These changes resulted in significant
differences between the two versions of the programs, and using
a weak similarity threshold resulted in inconsistent entities being
matched with more than one entity. Consequently, the algorithm
spent more time identifying the final refactoring candidates.

Table 5: Execution Time Comparison
Min. (s) Max. (s) Avg. (s) Median (s) Total (min)

ACA 0.1 291 4.2 0.5 36
RefDetect 0.06 78 1.5 0.4 12
RefactorMiner 0.002 58 1.3 0.1 11
GR 0.1 2054 12.9 0.5 110
NSGA 0.03 3367 113 7.9 966

This circumstance becomes even more notable in the amount
of time expended by GR. While GR exhibits good performance in
67% of commits, its total time was almost three times more than
ACA. In fact, in a significant majority of commits (67%), the number
of non-refactoring changes is low and also there is no significant
dependency between the applied refactorings. Therefore, ACA does
not show any advantage over GR. However, with an increase in
the number of non-refactoring changes or with an increase in the
dependency between refactorings, the ACA shows its superiority by
producing more highly accurate results at an acceptable time.

Findings: On average, ACA achieves an acceptable perfor-
mance of 4.2 seconds, which is three times longer than that of
RefactoringMiner and RefDetect, but three and 26 times faster
than GR and NSGA respectively. While 66% of commits were pro-
cessed by ACA in less than 1 second, we observed the amount of
non-refactoring changes can negatively affect the performance of
ACA, where it takes around 5 minutes to process cordova-plugin.

4 RELATEDWORK
Using the differencing algorithms to identify changes applied be-
tween two versions of a program is the most employed technique
for detecting refactoring. In this category, Xing and Stroulia develop
UMLDiff capable of detecting refactorings in Java applications [5].
Their approach to refactoring detection was notably novel as they
extracted UML models from the source code, and the refactoring
detection process was defined on the extracted models, allowing
the extension of the approach to support new programming lan-
guages. Silva et al. [6] and Hemati Moghadam et al. [4] also propose
language-neutral refactoring detection tools capable of detecting
refactorings in multiple programming languages including Java
and C. Both these tools employed an intermediate representation of
the source code and implemented the refactoring detection process
based on this representation of the source code. All these three tools
also share a similarity in their reliance on thresholds to match enti-
ties in different versions of programs. While their employed thresh-
old values enable them to uncover refactorings not detected by
other tools, it also results in lower precision levels. In the context of
threshold-related challenges, the only tool unaffected by these lim-
itations is RefactoringMiner. RefactoringMiner employs tech-
niques such as argumentisation and replacement to match state-
ments in two versions of the program. For instance, two method
invocations with different names are considered identical if they
have a similar receiver and a similar list of parameters [3]. Yet,
defining all possible rules proves challenging and any omissions
negatively impact the tool’s recall [4, 6].

https://github.com/katzer/cordova-plugin-local-notifications/commit/51f498a96b2fa1822e392027982c20e950535fd1


ICCTA 2024, 15–17 May, 2024, Vienna, Austria Iman Hemati Moghadam, Matthias Sleurink, and Vadim Zaytsev

Search-based strategies offer an alternative approach to detect
applied refactorings, primarily utilising pre- and post-conditions to
guide the search and prioritising candidate refactorings based on
minimising dissimilarity between programs. While early studies
employed graph-based algorithms [12, 13], recent studies favour
the genetic algorithm, where the fitness function exhibits signif-
icant variations among different approaches. For instance, while
Mahouachi et al. [18] emphasised reducing metrics differences be-
tween two versions of the program, Fadhel et al. [14] focused on
minimising structural discrepancies, and Kessentini et al. [29] exam-
ined both structural and textual similarities. Our approach closely
aligns with Kessentini et al. [16]. However, while both approaches
aim to minimise differences between programs, our approach in-
corporates interdependency between refactorings in the fitness
function, whereas Kessentini et al. emphasise minimising the num-
ber of refactorings in solutions.

5 THREATS TO VALIDITY
The first threat to this study lies in the way we compare our ap-
proach with NSGA. As mentioned the implementation of NSGA is
not publicly available, and we implemented this approach our-
selves. While we follow the instructions provided by Kessentini et
al. [16], there is a possibility that certain aspects might have been
overlooked during implementation. Another concern is related to
running each search-based algorithm three times on every commit
and presenting the results with the median F-score in the paper.
However, running each algorithm extensively, for instance, 30 times,
may change the median result. The reason for selecting this strat-
egy is to reduce the possibility of inaccurately validating newly
introduced refactorings, consequently minimizing the potential for
experimenter bias. To mitigate experimenter bias each new refac-
toring was validated by the first two authors of this study. However,
the completeness of the employed dataset is not guaranteed, since
there may be true positive refactorings not included in the dataset,
and not detected by the employed search-based approaches.

Another concern is related to the introduced intensification and
exploration operators.While the proposed operations were designed
to address shortcomings in the existing Andean Condor Algorithm
and enhance its optimisation, a more profound comprehension of
potential weaknesses of the algorithm may lead to the development
of more effective operators. Additionally, the parameters of the ACA
are determined through a process of trial and error, and may not
necessarily represent the optimal choices. Moreover, predefined
pre-conditions for identifying refactorings, while beneficial, pose a
risk to validity by potentially overlooking some valid cases.

6 CONCLUSIONS AND FUTUREWORK
In this work, we have presented ACA, a search-based refactoring
detection algorithm built upon RefDetect to reduce its dependency
on similarity thresholds. ACA mimicked the search behaviour of the
Andean condor in its search for food to identify applied refactorings.
To better align the algorithm with the goals of our study, we cus-
tomised optimisation operators presented in the original version of
the algorithm. ACA was compared with a multi-objective algorithm,
a greedy algorithm and two other tools not rely on metaheuris-
tic search. The results showed the superiority of ACA compared

to the search-based algorithms and also achieved a slightly bet-
ter F-score compared to RefDetect and RefactoringMiner. We
reported cases in which ACA fails to detect the refactorings, and
refinement is required to improve the precision. These concerns
outline the roadmap for our possible future work.

REFERENCES
[1] M. Fowler, Refactoring: Improving the Design of Existing Code. Addison-Wesley,

1999.
[2] Q. D. Soetens, R. Robbes, and S. Demeyer, “Changes as First-Class Citizens: A

Research Perspective on Modern Software Tooling,” ACM Comput. Surv., vol. 50,
no. 2, 2017.

[3] N. Tsantalis, A. Ketkar, and D. Dig, “RefactoringMiner 2.0,” IEEE Trans. Softw.
Eng., vol. 48, no. 3, 2020.

[4] I. Hemati Moghadam,M. Ó. Cinnéide, F. Zarepour, andM. A. Jahanmir, “RefDetect:
A Multi-Language Refactoring Detection Tool based on String Alignment,” IEEE
Access, vol. 9, 2021.

[5] Z. Xing and E. Stroulia, “Differencing Logical UML Models,” J. Autom. Softw. Eng.,
vol. 14, no. 2, 2007.

[6] D. Silva, J. Silva, G. Santos, R. Terra, and M. T. Valente, “RefDiff 2.0: A Multi-
language Refactoring Detection Tool,” Trans. Softw. Eng., vol. 47, no. 12, 2020.

[7] M. Dilhara, A. Ketkar, N. Sannidhi, and D. Dig, “Discovering Repetitive Code
Changes in Python ML Systems,” in Proc. Int. Conf. Softw. Eng. IEEE/ACM, 2022.

[8] H. Atwi, B. Lin, N. Tsantalis, Y. Kashiwa, Y. Kamei, N. Ubayashi, G. Bavota, and
M. Lanza, “PyRef: Refactoring Detection in Python Projects,” in Proc. Int. Conf.
on Source Code Analysis and Manipulation. IEEE, 2021.

[9] Z. Kurbatova, V. Kovalenko, I. Savu, B. Brockbernd, D. Andreescu, M. Anton,
R. Venediktov, E. Tikhomirova, and T. Bryksin, “RefactorInsight: Enhancing IDE
Representation of Changes in Git with Refactorings Information,” in Proc. Int.
Conf. on Autom. Softw. Eng. IEEE, 2021.

[10] R. Brito and M. T. Valente, “RefDiff4Go: Detecting Refactorings in Go,” in Proc.
Brazilian Symp. on Software Components, Architectures, and Reuse. ACM, 2020.

[11] B. Almonacid and R. Soto, “Andean Condor Algorithm for Cell Formation Prob-
lems,” Natural Computing, vol. 18, 2019.

[12] J. Pérez and Y. Crespo, “Exploring a Method to Detect Behaviour-Preserving
Evolution using Graph Transformation,” in Proc. Int. ERCIMWorkshop on Software
Evolution, 2007.

[13] S. Hayashi, Y. Tsuda, and M. Saeki, “Detecting Occurrences of Refactoring with
Heuristic Search,” in Proc. Asia-Pacific Softw. Eng. Conf. IEEE, 2008.

[14] A. ben Fadhel, M. Kessentini, P. Langer, and M.Wimmer, “Search-based Detection
of High-Level Model Changes,” in Proc. Int. Conf. on Softw. Maintenance, 2012.

[15] I. Hemati Moghadam and M. Ó Cinnéide, “Automated Refactoring Using Design
Differencing,” in Proc. Eur. Conf. on Softw. Maintenance and Reeng. IEEE, 2012.

[16] M. Kessentini, U. Mansoor, M. Wimmer, A. Ouni, and K. Deb, “Search-based
Detection of Model Level Changes,” Empirical Softw. Eng., vol. 22, no. 2, 2017.

[17] W. Kessentini, H. Sahraoui, and M. Wimmer, “Automated Metamodel/Model
Co-Evolution: A Search-based Approach,” Inf. Softw. Technol., vol. 106, 2019.

[18] R. Mahouachi, M. Kessentini, and M. Ó. Cinnéide, “Search-based Refactoring
Detection using Software Metrics Variation,” in Proc. Int. Symp. on Search Based
Softw. Eng. Springer, 2013.

[19] “Dataset,” https://doi.org/10.5281/zenodo.10971389.
[20] E. F. Pavez, “Patrón de movimiento de dos cóndores andinos vultur gryphus

(aves: Cathartidae) en los andes centrales de chile y argentina,” Boletín Chileno de
Ornitología, vol. 20, no. 1-2, 2014.

[21] X.-S. Yang, “A New Metaheuristic Bat-Inspired Algorithm,” in Nature inspired
cooperative strategies for optimization. Springer, 2010.

[22] E. Duman, M. Uysal, and A. F. Alkaya, “Migrating Birds Optimization: A New
Metaheuristic Approach and Its Performance on Quadratic Assignment Problem,”
Information Sciences, vol. 217, 2012.

[23] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proc. Int. Conf. on
Neural Networks, vol. 4. IEEE, 1995.

[24] T. Ferreira, J. Ivers, J. J. Yackley, M. Kessentini, I. Ozkaya, and K. Gaaloul, “De-
pendent or Not: Detecting and Understanding Collections of Refactorings,” IEEE
Trans. Softw. Eng., vol. 49, 2023.

[25] I. Hemati Moghadam and M. Ó Cinnéide, “Resolving Conflict and Dependency
in Refactoring to a Desired Design,” e-Inform. Softw. Eng. J., vol. 9, no. 1, 2015.

[26] E. Murphy-Hill, C. Parnin, and A. P. Black, “How We Refactor, and How We
Know It,” IEEE Trans. Softw. Eng., vol. 38, no. 1, 2012.

[27] H. Liu, G. Li, Z. Y. Ma, and W. Z. Shao, “Conflict-Aware Schedule of Software
Refactorings,” IET Software, vol. 2, no. 5, 2008.

[28] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II,” IEEE Trans. on Evolutionary Computation, vol. 6,
no. 2, 2002.

[29] M. Kessentini and H. Wang, “Detecting Refactorings among Multiple Web Service
Releases: A Heuristic-Based Approach,” in Proc. Int. Conf. on Web Services, 2017.

https://doi.org/10.5281/zenodo.10971389

	Abstract
	1 Introduction
	2 Proposed Approach
	2.1 Andean Condor Algorithm
	2.2 Identfying Applied Refactoring using ACA
	2.3 Elaborating on the Phase II: ACA in Detail

	3 Evaluation
	3.1 Approach Comparison for RQ1
	3.2 Approach Comparison for RQ2
	3.3 Results for RQ3

	4 Related Work
	5 Threats to Validity
	6 Conclusions and Future Work
	References

