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Abstract
The context of this work is specification, detection and ultimately removal of harmful patterns in source

code that are associated with defects in design and implementation of software. In particular, we investigate
five code smells and four antipatterns previously defined in literature. Our inquiry is about detecting those
nine design defects in source code written in Python programming language, which is substantially different
from all prior research, most of which concerns Java and other C-like languages. Our approach was that of
software engineers: we have processed existing research literature on the topic, extracted both the abstract
definitions of defects and their concrete implementation specifications, programmed them all in a tool and
let it loose on a huge test set obtained from open source code from thousands of GitHub projects. When
it comes to knowledge, we have found that more than twice as many methods in Python can be considered
too long (statistically extremely longer than their neighbours within the same project) than in Java, but
long parameter lists are seven times less likely to be found in Python code than in Java code. We have also
found that Functional Decomposition, the way it was defined for Java, is not found in Python code at all, and
Spaghetti Code and God Classes are extremely rare there as well. The grounding and the confidence in these
results comes from the fact that we have performed our experiments on 32,058,823 lines of Python code, which
is by far the largest test set for a freely available Python parser. We have also designed the experiment in such
a way that it aligned with prior research on design defect detection in Java in order to ease the comparison if
we treat our own actions as a partial replication. Thus, the importance of the work is both in the unique open
Python grammar of highest quality, applied to millions of lines of code, and in the design defect detection
tool which works on something else than Java.

NB: This is the authors’ version of the paper which might differ slightly from the official published version
available at http://programming-journal.org/2017/1/11/.
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1 Introduction

It is a well-known and widely accepted fact of programmers’ lives that maintenance
activities take up significant fraction of software development time. Software design
defects — bad smells, antipatterns, bug patterns, pitfalls, convention violations, simply
bad practices — are fragments of source code that have a noticeable negative impact
on software maintenance. Most of the research conducted in the field of design defect
detection is focused on Java source code. Java is certainly a popular language as it
has held the first place in the well-known TIOBE programming community index [60]
for a long time. However, other languages exist and matter, and in this paper we go
down to number 5 in that list — namely, Python. It is significantly different from all
languages above it (Java, C, C++ and C#) in many aspects, especially in those that
influence detection of design defects. We wanted to investigate whether there are any
notable differences from Java-based findings.
To detect design defects in Python, we have developed a tool called Design Defect

Detector [61]. This tool is compatible with any Python version used as of 2017, from
Python 2.5 up to Python 3.6. To achieve this, we have engineered a Python grammar
in ANTLR4 [50, 51], converging several available grammars from various sources. To
answer our questions (see § 1.2), this tool was used on a data set of 4,121 GitHub
repositories, consisting of 32,058,823 lines of Python code. As a result, we have found
that 8 out of 9 design defects we chose for our study, were detectable in Python.
We also found that code smells were more common in Python than antipatterns.
Comparing our results to DECOR [41], we have found that the density of detected
design defects was slightly lower in Python code than in Java code.
There exist initiatives similar to ours, such as Pylint [59], which detects devia-

tions from coding standards and looks for code smells. However, to the best of our
knowledge, there is currently no scientific study of detecting design defects in Python.

1.1 Motivation

Most software systems go through constant evolution derived from the need to keep
up with the changing requirements. Since design flaws are known to have a large
negative impact on maintenance [7], this introduces a requirement for quality design
of software. There exist multiple well-known, industry established design practices,
such as design patterns [17, 19], design heuristics [53], best practices [6, 35, 38, 39],
language design patterns [24, 49, 65, 66, 70], implementation patterns [5, 50], all
existing to aid the process of creating a good design.
In our work, we focus on the counterparts of good design practices, calling them

design defects, since the earlier term “pitfall” [63] is too vague. Moha et al. defined
design defect as “the embodiment of bad design practices in the source code of
programs” [42]. This means that design defects span across all levels of software
design. They include low level issues such as code smells [18], but also architectural
issues, such as antipatterns [7]. Somewhere between them there are also design defects
that violate coding conventions [20], but they are even less researched, understood
and classified yet.
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Detection of the different types of design practices aids in determination of the
quality of software design. The work that has been done in this field is described in
further detail in § 1.3. Design defect detection is challenging for numerous reasons. It is
difficult to do manually due to the analysed systems often being very large. Most of the
used techniques therefore employ various levels of automation. They can span across
different subsystems, so they cannot be detected locally [11]. However, the largest
difficulty with detecting design defects is that they are defined in a very loose manner.
Unlike design patterns, which have concrete descriptions and precise UML definitions,
design defects descriptions are mostly textual, written in a natural language and
often contain phrases open to interpretation, such as “class with a large number of
attributes, operations, or both” [7]. Such definitions are not only ambiguous, but
also very context dependent — a normal sized class in one project or programming
language can be considered a large class in another project or language. Brown et al.
actually define an antipattern as a “pattern in an inappropriate context” [7].
Most of the design defect detection studies that currently exist, have focused on

Java in their experiments [14, 15, 16, 25, 26, 40, 41, 42, 43, 46, 47, 48, 57, etc]. There
are a couple of approaches that claim language independence, such as the ones by
Llano and Pooley [33] and Cortellessa [12] — however, neither of them seems to have
gained a lot of popularity.
We consider the context of a programming language to be a significant one. Java

is a relatively statically typed and relatively strictly object-oriented language known
for its verbosity. Python can occasionally be used for solving the same tasks, but
it is much more concise, significantly more volatile when it comes to types, and it
allows freeform switching between the scripting, imperative, functional and object-
orientation paradigms. Thus, the ambition behind this paper is to partially fill the gap
in design defect detection research in programming languages other than Java.

1.2 Goals and Expectations

The main goal of this project is to create a tool, Design Defect Detector [61], which
automatically detects design defects in Python, and use it in an experiment. For the
development of this tool, there are numerous considerations to be taken into account.
Detecting design defects requires a top-down approach, meaning the design defects

to be detected have to be specified upfront, along with their characteristics. This
is due to a simple reason — using a bottom-up approach yields information about
abnormal metrics, however it is very difficult to tell what design defect they actually
point towards [37].
As already mentioned, design defects are often defined in a very loose manner.

Therefore, in order to automatically detect them, it is necessary to first transform
their loose, textual definitions into quantifiable, concrete rules. Operating on the level
of source code has the benefit of full availability of technical information. However,
design defects are defined on a design level. Thus, to detect design level problems in
the source code, it is necessary to first abstract from the concrete implementation [3,
11, 22].
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Chapter 2

Problem & Approach

2.1 Problem Statement

The main goal of this project is to create a tool, Design Defect Detector, which automatically detects
design defects in Python, and use it in an experiment. For the development of this tool, there are
numerous considerations to be taken into account.
Detecting design defects requires a top-down approach, meaning the design defects to be detected

have to be speci�ed upfront, along with their characteristics. This is due to a simple reason � using
a bottom-up approach yields information about abnormal metrics, however it is very di�cult to tell
what design defect they actually point towards [25].
As previously mentioned in Chapter 1.1, design defects are often de�ned in a very loose manner.

Therefore, in order to automatically detect them, it is necessary to �rst transform their loose, textual
de�nitions into quanti�able, concrete rules.
Operating on the level of source code has the bene�t of full availability of technical information.

However, design defects are de�ned on a design level. Thus, to detect design level problems in the
source code, it is necessary to �rst abstract from the concrete implementation [6].
A relevant consideration for the Design Defect Detector is which Python version(s) should be

supported. Python as a language is still evolving and at the present time, multiple di�erent versions
are being actively used by the developers. An online survey [3] about the year 2014 with 6 746
respondents has shown, that although Python 2.7 and Python 3.4 were the most widely used versions
of Python, other versions were still rather common at that time. For the exact results of the survey,
see Figure 2.1.
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Figure 2.1: Usage of Python versions among software developers in 2014; source: [3]
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Figure 1 Usage of Python versions among programmers in 2014 [8].

A central consideration in the design of the Design Defect Detector is which Python
version(s) should be supported. Python as a language is still evolving and as of
2017, multiple different versions are being actively used by the developers. An online
survey [8] about the year 2014 with 6,746 respondents has shown, that although
Python 2.7 and Python 3.4 were the most widely used versions of Python at that time,
other versions were still rather common, as can be seen in figure 1.
Some of the available Python versions have major differences between them: for

instance, Python 3.x is not backwards compatible with Python 2.x. Distinguishing
between the versions is a very time consuming task which seems impossible to au-
tomate. Most projects on GitHub, which is the source of our data set, do not state
which precise version of Python are they written in. Many projects on PyPi, which
we crawl to get the relevant GitHub projects, belong to 5–10 different categories of
“Programming Language :: Python :: . . . ”, which are not reliable for at least these four
reasons:

1. The categories are added manually by the authors and not checked automatically.
2. A particular version not being listed simply means the authors did not try that

version, so the project cannot be used as a negative test case.
3. It is not uncommon for projects to contains several loosely connected scripts, in

which case some of them may use a different Python version than others.
4. Many projects strive to support both Python 2 and Python 3. Their codebases are

either compatible with both, or moving in that direction.

There are no automatic tools that perform this task, and there cannot be, since some
constructs like print(’a’,) are parsable as either Python 2 or Python 3, but with different
semantics. All these issues have forced us to develop an over-approximating parser
for a superset covering all currently used versions of Python. The process around this
endeavour is explained in § 2.
Within this project, we intend to seek answers to the following research questions:

1. Which of the well known design defects can be detected in Python code?
2. Do Java code and Python code have comparable design defects?
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3. What is the density of these design defects in Python code?
4. Do Java code and Python code have comparable design defect density?

These research questions will be answered in § 5.2. For now, we follow up with
§ 1.3 which explains the line of prior research that this paper strives to continue
and contribute to. § 2 will explain the process of grammar engineering to deliver an
over-approximating ANTLR4 grammar capable of parsing millions of lines of code
written in Python of different versions. § 3 contains information about the source
code model that is built from the parse trees and forms the foundation for the design
defects to be found. The harmful patterns themselves are explained, defined and
formalised in § 4 — we mostly borrow the definitions from classic books [7, 18] and
construct specifications based on implementations from previously published papers
or inspired by them. Evaluating our tool starts in § 5: we explain how the huge test
data set of Python modules was harvested and filtered, and present the result of the
evaluation in table 5. Traditionally, § 5.3 lists some possible threats to validity, while
§ 6 concludes the paper by recalling the main contributions, discussing them and
sketching possible future work initiatives.

1.3 Related Work

The commonly mentioned and researched design defects are code smells [18] and
antipatterns [7]. Since their introduction, multitude of different methods for their
detection (and sometimes also correction) has been proposed in the literature. They
range from manual approaches to semi-automatic or automatic ones.
Mäntylä et al. [36] use one of the manual approaches for detecting bad code smells.

They evaluate developer questionnaires about their occurrence and then explore
correlation between the smells. A different manual approach was used by Moha et
al. [46], who have classified design pattern defects into groups. Their work is based
on the definition of design defects being design patterns implemented in a wrong way.
They have shown presence of these design defects by having students look for design
patterns in code and examining the distortion of these design patterns.
Dhambri et al. [14] propose a semi-automatic method for detecting design flaws.

They automatically detect certain symptoms and visualise them, but rely on a human
analyst to draw final conclusions.
Ciupke [11] proposes an automatic method which queries a metamodel of the

source code for design problems. Guéhéneuc and Albin-Amiot [23] introduce a method
for automatically detecting and correcting inter-class design defects. They identify
distorted forms of design patterns by using constraint relaxation on a source code
meta-model and apply transformation rules based on the relaxed constraints to fix
the defects.
An automatic method, which includes visualisation of the results, was proposed

by van Emden and Moonen [15]. It is based on a source code model, which stores
primitive smell aspects. Alternative approaches for detecting design defects based on
source code metrics were proposed by Marinescu [37], Munro [47], and Fontana and
Maggioni [16].
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The extensive work of Moha et al. lays out an automatic way to detect design defects
using so called “rule cards” and a DSL [42] and results in DECOR [40, 41, 43, 44], the
state of the art method to automatically generate design defect detection algorithms.
Khomh et al. [26] propose an approach which extends DECOR and accommodates for
uncertainty by using Bayesian Belief Networks to rank and prioritise classes based on
their probability of being part of an antipattern.
Oliveto et al. [48] automatically identify antipatterns through using B-Splines —

interpolation curves built using a set of metrics and their values for a given class.
Antipatterns are detected based on the class’ B-Spline distance from known antipattern
classes’ B-Splines and known good quality classes’ B-Splines.
A logic-based approach was proposed by Stoianov and Sora [57] who define Prolog

rules to automatically detect design patterns and antipatterns.
An approach to automatically detect and correct design defect based on genetic

programming has been proposed by Kessentini et al. [25] This approach, unlike most
others, does not require upfront definition of detection rules.
Most of the methods proposed in the literature, are heavily language dependent.

One of the pleasant exceptions is an approach proposed by Llano and Pooley [33],
who define UML specifications for antipatterns at a design level and guidelines for
manual refactoring of these antipatterns. Another language independent approach
was developed by Cortellessa et al. [12]. They formalise performance antipatterns
and use the OCL specification language to describe expressions on UML models and
query them. Lastly, an approach to automatic refactoring of design defects based on
relational algebra is described by Moha et al. [45].

2 Parsing Python

The first step in the Design Defect Detector workflow performs parsing the source
code of the Python projects. Parsing in a broad sense means recognising structure in
textual input [71], so creating a code model that we will explain in the next section,
is also a part of the same process, but this section will be about parsing in a narrow
sense: creating a hierarchical (tree-like) representation of the flat textual input — in
our case, Python programs. Since writing a parser manually is a tedious and a time
consuming task [1, 2, 21, 22], an automatic parser generator was used for this purpose.
It should be noted that this does not make parsing less challenging, but just automates
simpler and more tedious aspects of the work, making the result less error-prone.
There are many parser generators available, but we decided to use ANTLR4 [50, 51],
as there was an available Python 3.3.5 grammar, written by Bart Kiers [27].
However, this grammar alone was insufficient for the Design Defect Detector, because

as explained before, supporting a single version of Python would make the tool
applicable only under very specific conditions, which are apriori undetectable. To
achieve wider support, we have combined the grammars for different Python versions
into a single grammar. Bart Kiers’ version was used as a baseline. The remaining
resources include the official Python documentation pages [54, 55], which offer
grammar specifications for the different Python versions (complete yet not executable),
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Python 2.7 Python 2.7 Python 3.3 Converged 2.7 & 3.3
specification ANTLR grammar ANTLR grammar ANTLR grammar
small_stmt small_stmt small_stmt small_stmt
: ( expr_stmt : expr_stmt : expr_stmt : expr_stmt
| print_stmt | print_stmt | print_stmt
| del_stmt | del_stmt | del_stmt | del_stmt
| pass_stmt | pass_stmt | pass_stmt | pass_stmt
| flow_stmt | flow_stmt | flow_stmt | flow_stmt
| import_stmt | import_stmt | import_stmt | import_stmt
| global_stmt | global_stmt | global_stmt | global_stmt
| exec_stmt | exec_stmt | exec_stmt

| nonlocal_stmt | nonlocal_stmt
| assert_stmt | assert_stmt | assert_stmt | assert_stmt
) ; ; ;

Table 1 Convergence of Python 2.7 and Python 3.3 grammars, a simple case.

and ANTLR3 grammar for Python 2.5 authored by Frank Wierzbicki [64] which was
in turn based on the ANTLR2 grammar for Python 2.3.3 by Terence Parr and Loring
Craymer [52]. The original grammar was automatically migrated from Python 2
documentation [54], combined with Craymer’s lexer and hand tweaked for lookahead
correctness by Parr [52].
To create a grammar that covers all versions of Python starting from 2.5, we used

a grammar adaptation method known as grammar programming [13]. Essentially,
this iterative process consists of converging two existing grammars into a single,
over-approximating one. The resulting grammar covers a superset of both languages
described by the original grammars. The techniques of grammar adaptation and gram-
mar convergence are highly non-trivial and explained in greater detail by Lämmel [28],
Lämmel and Zaytsev [30] and Zaytsev [69]. In short, programming a grammar is a
more robust and maintainable way of building a parser and ultimately a compiler, but
it does not completely let one abstract away from the problem complexity.
The Kiers’ grammar [27] served as a baseline to be extended. To combine the

grammars together, we translated the available Python 2.5 grammar [64] from ANTLR3
into ANTLR4 and subsequently merged it with the base grammar of Python 3.3.
Afterwards, all the other grammar specifications from the documentation of Python
2 [54] and Python 3 [55] were compared to the base grammar, the necessary parts were
translated to ANTLR4 and merged in as well. In case of conflicts we would always as
a matter of principle choose the larger alternative or program an over-approximation,
since our grammar is meant to be used for analysis and not for correctness verification
of source code.
In general, the difficulty of the combination varied. Some parts were very straight-

forward, such as the definition of small_stmt rule, see table 1. However, some of the
rules differed more from each other and the differences did not span across a single
rule, but also its subrules and/or rules dependent on it, see table 2.
There is also an issue with reserved keywords: print and exec are reserved keywords

in Python 2.x, but not in Python 3.x, while nonlocal is a reserved keyword in Python 3.x
but not in Python 2.x. In addition, Python 3.5 introduced keywords async and await.
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Python 2.7 Python 2.7 Python 3.3 Converged 2.7 & 3.3
specification ANTLR grammar ANTLR grammar ANTLR grammar
list_for list_for comp_for comp_for
: ’for’ exprlist ’in’ : FOR exprlist IN : FOR exprlist IN : FOR exprlist IN
testlist_safe testlist_safe or_test test_nocond

((’,’ test_nocond)+ ’.’?)?
[list_iter] list_iter? comp_iter? comp_iter?

; ; ;
testlist_safe: old_test testlist_safe: old_test
[(’,’ old_test)+ [’,’]] ((’,’ old_test)+ ’,’?)?

;
list_iter list_iter comp_iter comp_iter
: list_for : list_for : comp_for : comp_for
| list_if list_if | comp_if | comp_if

; ; ;
list_if list_if comp_if comp_if
: ’if’ old_test : IF old_test : IF test_nocond : IF test_nocond
[ list_iter ] list_iter? comp_iter? comp_iter?

; ; ;
old_test old_test test_nocond test_nocond
: or_test : or_test : or_test : or_test
| old_lambdef | old_lambdef | lambdef_nocond | lambdef_nocond

; ; ;
old_lambdef old_lambdef lambdef_nocond lambdef_nocond
: ’lambda’ : LAMBDA : LAMBDA : LAMBDA
[ varargslist ] varargslist? varargslist? varargslist?
’:’ old_test ’:’ old_test ’:’ test_nocond ’:’ test_nocond

; ; ;

Table 2 Convergence of Python 2.7 and Python 3.3 grammars, a more challenging case.

To account for this disparity, we added a production rule for identifier, which covered
the standard identifiers shared among all versions, but also print, exec, nonlocal, async
and await.
To test the extent of the combined grammar’s capabilities, we used a data set of

more than 30 million lines of Python code. This data set is further described in § 5.
This code was parsed by the ANTLR generated parser. Each file that did not parse
correctly, was manually inspected afterwards. During the inspection, the file was
categorised as either (1) not conforming to any of the supported grammars or (2)
conforming to one or more of the supported grammars. The files which belonged to
the second category were collected and combined into a smaller data set, designated
for quick testing of the discovered grammar issues and their fixes. All of the discovered
issues were fixed. This testing process was used to polish the final grammar, not to
guide the entire grammar programming effort which could have been an alternative
route take, since it is known to produce good results [4, 62]. Instead, we focused on
covering the language features documented in the official language manuals [54, 55]
and used the test suites mainly as a validation instrument.
The resulting grammar is a level 4 grammar in the quality model of Lämmel and

Verhoef [29] and exported on the maturity scale of the Grammar Zoo [67, 68]. This
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Figure 2 Source code model structure.

means it can be used to produce a realistic parser, which has been used to parse
several million lines of code. To the best of our knowledge, this is the first and only
such Python grammar in existence. The converged grammar consists of 143 terminal
symbols, 217 nonterminal symbols and 394 production rules (following the standard
definitions of TERM, VAR and PROD metrics [9] as calculated by GrammarLab [68]).
The grammar and the 24 “development versions” [4] of it, are available publicly at
https://github.com/nvavrova/thesis/blob/master/Python.g4.

3 Code Model Construction

Building an abstract syntax tree (AST) from the parse tree delivered by ANTLR,
is a straightforward process that would not surprise anyone familiar with parsing
technology in general and ANTLR4 in particular, and while being a decent piece of
engineering everyone is encouraged to inspect, it has a chance of boring the readers
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Figure 3 Simplified overview of the analyser classes.

beyond acceptable levels. However, the construction of the code model goes further than
simply abstracting from the concrete code representation. The main purpose of the
code model is to simplify querying for the necessary metrics and other characteristics
by linking together the different parts (such as classes and variables). Building the
code model is therefore based on fact extraction, which is explained in detail by Lin
and Holt [32].
The code model is a structure inspired by the general structure of any project based

on the object-oriented paradigm. At the heart of the code model there are four classes:
Project, Module, Class and Subroutine. The code model structure can be visually
inspected on figure 2. Its individual parts are also explained below.

Project is basically the root node of the code model heart, and at the same time it
is the simplest of all the code model parts. Its main purpose is to aggregate the
modules based on their location in the folder structure.

ContentDefinitions is an abstract class that contains the definitions for different Classes,
Subroutines and Variables.

ContentContainer is an abstract class which in addition to the definitions also contains
the references to different Classes, Subroutines and Variables.

Module apart from being an implementation of ContentContainer, also holds the
references to all the Classes and Modules that were imported inside of it.

Class is another implementation of ContentContainer, and the most heavily used
object during the analysis of the code model. A lot of OO design defects are defined
on the class level, thus classes play a crucial role in the process of detecting them.
In our code model, a class holds references to its parent object (e.g., Module) and
to its superclasses.
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Subroutine is the simplest type of a ContentContainer. The most important task of
Subroutines is holding a reference to their parent object (i.e., Class or Module).

The construction of the code model mostly works with the provided AST. It utilises
ANTLR’s AST visitor and requires two passes. The first pass focuses on the primitive
properties, i.e. those that can be directly observed in code. An example of a primitive
property is the name of the variable used in a particular class. The second pass obtains
the derived properties, i.e. properties that are inferred from other properties. An
example of a derived property is a reference to a class that was imported by a specific
module.
The first pass constructs a skeleton tree and fills it with simple, observable informa-

tion. The AST visitor creates the individual classes and adds the important information,
such as names of superclasses, etc. The second pass consists mostly of linking the
model parts to each other. A separate, smaller AST visitor is used during the second
phase. It visits the import statements and based on the existing skeleton, creates
references from one class to another. After its completion, it continues to resolve
the dependencies such as referencing a variable of a different class. This process is
facilitated by creating a Scope in each Module and passing it down to the defined
Classes and Subroutines.
After the codemodel is constructed, the code analyser uses it to detect design defects.

This constitutes the final step of the Design Defect Detector. The most important
components of the analyser are shown on figure 3 and explained below.

Metrics is the class that holds the knowledge about all the metrics that are required for
the semantic relative filters or statistical filters (based on percentiles and outliers,
as further detailed in § 4). It also supplies the knowledge about the limits for these
filters after all the metrics are stored.

IntMetricVals performs the heavy lifting in terms of calculating the necessary limits for
metric filters. Our implementation only uses integer metrics, such as LOC. However,
it could be easily extended to different types.

Detectors. Each design defect has its own, separate detector. Detector is the compo-
nent which decides whether the object (class or subroutine) is a design defect or
not. This decision is a two step process, facilitated by the Metrics.
In the first step, the detector checks whether the object possesses properties of
the given design defect which are easily observable from the code model (e.g., if
the class uses global variables). If yes, it is judged to be a candidate for a design
defect and Detector stores the necessary metrics specific to this object for further
inspection.
The second step occurs after all the objects of all projects have been through the first
step. The Detector then checks all the design defect candidates and compares their
metrics against the limits for semantic relative filters or statistical filters, supplied
by the Metrics. At this point, the Detector either confirms or rejects the object as a
design defect.

Register is a simple class that facilitates registering all the Detectors and supplies
them with Metrics. It also triggers the metric collection phase and finalisation phase.
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Data Filter Specification Filter Example
Marginal Relative TopValues(10)

Semantic BottomValues(5%)
Absolute HigherThan(20)

LowerThan(6)
Statistical BoxPlot

Interval Composition of two marginal fil-
ters, with semantic limit specifiers
of opposite polarities

Between(20, 30) :=
HigherThan(20)∧ LowerThan(30)

Figure 4 Classifications of various types of data filters as defined by Marinescu [37].

Analysis was technically the most challenging part to implement due to the large
quantities of source code processed by Design Defect Detector. The analyser had to
go through the code model of each individual project and store required information
about it. Since the data was way too large to be stored in memory, our implemen-
tation extensively uses the file system. The information about all collected metrics
and also about potential design defects was stored in files. For this purpose, we
have implemented file based mapping collections SetStrMap, SetIntMap, ListMap and
PrimitiveIntMap. For running Design Defect Detector on our data set of about 32 million
LOC, the necessary temporary data reached about 2,5 GB in size.

4 Design Defect Detection

To detect the design defects, we have used mechanisms of filtering and composition
of metrics [37] to define the design defect detection rules in a quantifiable manner.
Composition is a simple application of logical operations, such as and, or and not.
Filtering is based on applying different types of filters, the classification of which can
be seen in figure 4. For the Design Defect Detector, we mostly use a relative semantic
percentage based filter, e.g. TopValues(10%), and statistical filter, i.e. BoxPlot with 2
types of considered outliers, mild and extreme.
In our definitions of design defects, we use the following functions:

MildOutlier(M ) — the metric M is a mild outlier among all values of M measured
within a project. Mild outliers are at least 1,5 interquartile ranges away from the
median.

ExtremeOutlier(M ) — the metric M is an extreme outlier among all measured values
of M . Extreme outliers are at least 3 interquartile ranges away from the median.

TopXPercent(M ) — the metric M is in the top X percent of all measured values of M .
The design defects detected by Design Defect Detector are listed in table 3.
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Design Defect See Type Definition Implementation
Feature Envy § 4.1 Code smell [18] [31]
Data Class § 4.2 Code smell [18]
Long Method § 4.3 Code smell [18] [44]
Long Parameter List § 4.4 Code smell [18] [44]
Large Class § 4.5 Code smell [18] [44]
God Class § 4.6 Antipattern [7, 53] [41]
Swiss Army Knife § 4.7 Antipattern [7] [41]
Functional Decomposition § 4.8 Antipattern [7] [41]
Spaghetti Code § 4.9 Antipattern [7] [41]
Table 3 Design defects detected by Design Defect Detector

4.1 Feature Envy

Description: Feature Envy is a smell of a method that seems more interested in data
of a different class than the one it is in. This often means invoking a large amount of
accessor methods.

Implementation:

(AID> 4)∧ (Top10%(AID))∧ (ALD> 3)∧ (NRC < 3)

where:
AID (Access of Import Data) is the amount of referenced variables that do not
belong to this class;
ALD (Access of Local Data) is the amount of referenced variables that do belong to
this class;
NRC (Number of Related Classes) is the amount of different classes referenced in
this one.

4.2 Data Class

Description: Data Class is a smell of a class that only contains data fields and ac-
cessor/mutator methods for these fields. Data Class is used solely for the purpose of
holding data.

Implementation:

ExtremeOutlier(AOPuF)∨ ExtremeOutlier(AOA)

where:
AOPuF (Amount of Public Fields) is the number of fields that are made public;
AOA (Amount Of Accessors) is the number of methods which main purpose is to
provide access to the object’s fields.
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4.3 Long Method

Description: Long Method is a smell of a method that is too long and should be
decomposed into smaller pieces. Fowler et al. already stated that comments (signalling
some kind of semantic distance), conditionals or loops often signify a place where
the code should be extracted to a separate method.

Implementation:
ExtremeOutlier(LOC)

where LOC (Lines Of Code) is the amount lines of code for the given method, excluding
comments and empty lines.

4.4 Long Parameter List

Description: Long Parameter List is a smell of a method which definition has too
many parameters.

Implementation:
ExtremeOutlier(NOP)

where NOP (Number Of Parameters) is the number of arguments the given function
takes.

4.5 Large Class

Description: Large Class is a smell of a single class trying to do too much. The
instance variables of this class are used in a lot of places, possibly as part of duplicated
code.

Implementation:
ExtremeOutlier(NMD+NAD)

where
NMD (Number of Methods Defined) is the number of concrete methods in a class;
NAD (Number of Attributes Defined) is the number of fields and properties in a
class.

4.6 God Class

Description: God Class, also known as Blob, is an antipattern that consists of one
complex class, possibly surrounded by multiple Data Classes. The complex class
monopolises all the processing, while the only responsibility of the Data Classes is to
encapsulate data.

14
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Implementation:

IsController∧MildOutlier(LOC)∧MildOutlier(LCOM)∧ (RDC > 2)

where
IsController= (HasControllerName∨HasControllerMethods);
HasControllerName holds if the class’ name contains words such as Manage, Process,
Control, etc.;
HasControllerMethods holds if the class contains methods that have a controller
name;
LOC (Lines Of Code) is the number of lines of code for the given class, excluding
comments and empty lines;
LCOM (Lack of Cohesion of Methods) is the classic OO metric as defined by Chi-
damber and Kemerer [10];
RDC (Related Data Classes) is the number of classes that have Top15%(AOA);
AOA (Amount Of Accessors) is the number of methods which main purpose is to
provide access to the object’s fields.

4.7 Swiss Army Knife

Description: Swiss Army Knife is an antipattern for a class with too many responsi-
bilities. This can easily be observed by not just having a large number of methods, but
in particularly implementing too many interfaces and/or using multiple inheritance.

Implementation:
ExtremeOutlier(SUP)

where SUP is the amount of superclasses of the given class.

4.8 Functional Decomposition

Description: Functional Decomposition is an antipattern for a class that does not
leverage object-oriented principles such as inheritance and polymorphism. It usually
has a single action as a function and all its attributes are private and used only inside
the class. It often has a function-like name (e.g., CalculateInterest).

Implementation:

HasProceduralName∧ (SUP= 0)∧ (RCOMPF > 2)

where
HasProceduralName holds if the class’ name contains words such as Make, Create,
Exec, etc.;
SUP is the amount of superclasses of the given class;
RCOMPF is the amount of Related Classes with One Method and a lot of Private
Fields, i.e. classes that only have one method and have MildOutlier(AOPrF);
AOPrF (Amount of Private Fields) is the number of fields that are made private.
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4.9 Spaghetti Code

Description: Spaghetti Code is an antipattern for a piece of code lacking any structure.
This is often detectable by the use of global variables instead of parameters for
methods. Spaghetti Code does not make use of basic OO concepts such as inheritance
or polymorphism.

Implementation:

HasProceduralName∧ (SUP= 0)∧UsesGlobals∧HasLongMethod∧ (Top15%(MNP))

where
HasProceduralName holds if the class’ name contains words such as Make, Create,
Exec, etc.;
SUP is the amount of superclasses of the given class;
UsesGlobals holds if at least one of the variables referenced by this class is a global
variable;
HasLongMethod holds if at least one of the methods of this class has Top15%(LOC);
LOC (Lines Of Code) is the number of lines of code for the given class, excluding
comments and empty lines.
MNP (Methods with No Parameters) is the number of methods with NOP= 0.

5 Evaluation

To obtain the data set used in our experiment, we have used PyPI in combination
with GitHub and GitHub API. PyPI, or Python Package Index, is the official repository
of open-source, third party software for Python. It can be found at https://pypi.python.
org/pypi. GitHub is a popular web-based repository hosting service based on a version
control system called Git. Git is explained in detail by Loeliger [34], and GitHub API
can be found at https://developer.github.com/v3/.
Initially, we automatically collected a comprehensive list of all GitHub links belong-

ing to any PyPI package submitted under the category Python 2.5 and above. We have
obtained 17,568 unique GitHub repository links.
To ensure that the data set is suitable for the purposes of this research, this list was

filtered, ensuring that each repository:

is available and cloneable: public, not deleted from GitHub, not renamed, has no
overly long names that stress the OS limits and no files like aux.py that prevent it
to be cloned under Windows.
is not a fork. As one of our objectives is to find out the density of design defects,
it would be detrimental to include multiple forks of the same project into our
research. To prevent this, we queried the GitHub API for information about the
collected GitHub repositories. Any fork repository was removed from the result set
and instead replaced with its parent (recursively).
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Figure 5 On the left: number of commits per repository found at PyPI. On the right: number
of classes per cloneable repository with 100+ commits and mostly Python code.
The scale on the Y axes on both plots is logarithmic.

is a Python repository in a sense that either 40% or more of the code in it is in
Python, or the usage of each of the non-Python languages individually is lower than
that of Python. For example, @numpy/numpy consists of 52.7% C code, but 46%
Python code, which we consider enough for it to be a legitimate Python repository.
However, @aosabook/500lines contains 28.9% Python, but 49.4% JavaScript, so
we filter it out.
has been in active development at least for some time, having 100 or more commits.
A plot of the number of commits per all repositories after applying filtering rules
above, can be seen in figure 5 (left).
is sufficiently large, having 20 or more classes. This requirement was applied
because a large portion of design defects which we are trying to detect are related
to object-oriented programming. If the project is functional or scripted for most
part, it is irrelevant to our research. Figure 5 (right) plots the number of classes
per each of the repositories not filtered out so far.
has a parse ratio upward of 99%. If the project does not parse correctly, it is not
possible to infer the relationships between different classes, methods and variables
and therefore it is also impossible to perform the design defect detection.

After filtering out 3,307 unavailable, fork or non-pythonic projects, as well as 10,140
underdeveloped projects, we ended up with 4,121 projects on our hands. Then, we
have excluded “hidden” directories with names that start with a dot, since some
projects like @jacebrowning/template-python-demo contained a .venv directory that
included 87 other packages, promptly bringing its class count from actual 2 to a
staggering 5,594 (which would have put the project as the third largest OOP-wise
after @python/cpython and @django/django). The selected projects contained in
total 238,861 modules, out of which 238,503 were parsed properly (99.85%). Manual
inspection of remaining unparsable modules revealed that they are indeed incorrect
and not accepted by the Python interpreter. Removing those broken modules from
our set left us with 238,503 modules containing 488,008 classes and 32,058,823 LOC.
Some statistics about the resulting data set can be found in figure 6. The biggest

projects, either by the number of commits or by the amount of classes, were chosen
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Repository Commits Classes Test Classes
@python/cpython 98,751 2,830 7,241
@edx/edx-platform 40,292 1,969 2,537
@sympy/sympy 26,991 1,260 126
@gem/oq-engine 24,720 145 108
@django/django 24,045 1,605 6,082
@ipython/ipython 22,450 307 190
@scikit-learn/scikit-learn 21,700 519 111
@matplotlib/matplotlib 21,112 1,054 150
@Abjad/abjad 20,129 541 65
@nijel/weblate 19,844 437 219
@scipy/scipy 16,935 693 921
@numpy/numpy 15,630 341 900
@statsmodels/statsmodels 8,916 600 977
@ManageIQ/integration-tests 8,113 0 1,274
@tomchristie/django-rest-framework 7,093 196 989
@Tapyr/tapyr 5,751 2,937 139
@emilkarlen/exactly 2,850 498 1,101
@wxWidgets/Phoenix 2,828 1,843 517
@MongoEngine/mongoengine 2,779 103 1,111
@jleclanche/fireplace 2,552 1,590 1
@Azure/azure-sdk-for-python 1,867 2,263 139
@google/grr 805 2,869 88
@pydcs/dcs 611 2,767 7
@rwl/PyCIM 153 2,309 5

Table 4 Biggest projects from our dataset: merged top 10 by the number of commits, top
10 by the number of classes in production code and top 10 by the number of
classes in test code.

to be listed in table 4. To separate test code from production code, we relied on file
names and directory structure: if the filename or the path to it contained “test” or
“Test”, all the classes found in that file were classified as test classes.

We ran the Design Defect Detector [61] on the data set of these 32 million lines
of Python code. The amount of detected design defects and their density per design
defect type is shown in table 5. One can see that we have found:

No occurrences at all of Functional Decomposition and barely any of God Class and
Spaghetti Code;
Significantly lower density of Long Parameter Lists in Python than in Java;
Significantly higher density of Long Methods in Python than in Java;
Relatively comparable densities for Large Classes and Swiss Army Knives.
The measured average density of a design defect per 10,000 lines of code for Python

and Java were 6.07 and 8.37 respectively.
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Figure 6 On the left, distribution per project of LOC, number of modules and number of
classes. On the right, commit counts per project.

5.1 Discussion

Python is generally considered much more concise than Java, meaning that developers
can accomplish the same task with less lines of code. Our results show that in most
cases, the design defect density per 10,000 lines of code in Python is lower than that
in Java. This result may suggest that Python is superior to Java in the aspect of design
defects. However, there are arguments which undermine this theory, such as that the
concrete definitions which work for Java source code are insufficient in the context of
Python and they need to be tailored for this specific context.
Another interesting fact is that in our experiment, detection rate of code smells

in Python was higher than that of antipatterns (7.80 per smell on average vs. 2.34
per antipattern). On one hand, this could mean that while Python code contains low
level issues just like Java code, it has less architectural problems compared to Java
code. On the other hand, the numbers are so low for some of the antipatterns that it
might suggest that Python code and Java code just have different architectural level
antipatterns. We will go deeper into details of threats to validity and future work in
§ 5.3 and § 6, respectively.
The relative abundance of Long Methods that we have found in Python code, may be

attributed to at least two different reasons. The first possible explanation is a common
scenario of object-oriented Python code being evolved from a functional or imperative
script that was getting out of hand. This way, conceptual units of programmer’s
thinking remain intact and the blob gets split only in places that seem really necessary.
The existing literature also agrees that in many cases long methods are faster to write
and easier to maintain [39]. Java programmers have a different workflow and tend to
start with a basic OO design — for example, a project can be started by creating a
significant number of files with classes that do not do anything but sketch the desired
hierarchy. The second explanation is purely statistical: it is not uncommon for a Python
class to have a lot of one-liner methods; which automatically make any method longer
than a screen, an extreme outlier.
Similarly, the results in detecting Functional Decomposition can also be explained

by language differences. Java did not have support for anonymous functions until
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DDD [61] DECOR [41, 44]
Design Defect Found LOC Density Found LOC Density
Feature Envy 5,103 32,058,823 1.59
Data Class 13,537 32,058,823 4.22
Long Method 79,367 32,058,823 24.76 22 21,267 10.34
Long Parameter List 10,429 32,058,823 3.25 43 21,267 20.22
Large Class 16,576 32,058,823 5.17 13 21,267 6.11
God Class 24 32,058,823 0.01 150 516,092 2.91
Swiss Army Knife 30,011 32,058,823 9.36 441 516,092 8.54
Functional Decomposition 0 32,058,823 0.00 179 516,092 3.47
Spaghetti Code 1 32,058,823 0.00 363 516,092 7.03

Table 5 Evaluation and replication: for our tool and for DECOR side by side we show the
amount of instances found, the LOC count of the experiment and the density
(average number of defects per 10,000 LOC). Data from the smaller of the DECOR
experiments comes from [44], data from the larger one from [41].

relatively recently, and even then it is verbose and in some cases found too cumbersome
by programmers. Python had lambda expressions since 1.0, and they were working
smoothly until Python 2.7. Lambda expressions remained in Python 3.x after a huge
discussion about removing them altogether [56], and even though they were made
less comfortable for functional programmers with LISP background, they have never
gotten bad enough to define single-method classes instead. So, our hypothesis is that
Functional Composition as an antipattern is irrelevant for a language with powerful
lambdas and comprehensions like Java 8+ or Python of any version.
Spaghetti Code in our results is barely detectable, which does not necessarily

mean that all Python code is nicely structured. On the contrary, it is most probably
due to the combination of how the antipattern is defined ([7]’s definition is quite
controversial and hardly complete), and how we have collected (and filtered) our
dataset. Arguably, Python programmers have much more ways to create messy code
than simply using globals and neglecting polymorphism: illogical mixing of paradigms,
inconsistent string formatting (e.g., %, {} and f” within one module), excessive playing
with underscore methods (__call__, __getitem__ and others) and so on.
Low density of God Classes can be easily explained by the multi-paradigmatic

nature of Python: if a developer would like to make a Blob, they often would not
bother creating a class for it, it can stay a module with loosely connected functions,
or even a script.

5.2 Answers to Research Questions

To answer the project’s research questions from § 1.2:

1. Which of the well known design defects can be detected in Python code?
We can conclude that the following design defects are detectable: Feature Envy,
Data Class, Long Method, Long Parameter List, Large Class, God Class, Spaghetti
Code and Swiss Army Knife. Functional Decomposition seem to not be an issue for
Python.
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2. Do Java code and Python code have comparable design defects?
Since we have been able to detect the majority of the design defects that have
previously been detected by others in Java source code, we conclude that similar
design defects can be detected in Java and Python source code.

3. What is the density of these design defects in Python code?
On average, we have detected the density of 6,07 design defects per 10,000 lines of
code. The individual measurements per design defect are listed in table 5.

4. Do Java code and Python code have comparable design defect density?
The measured average density of design defects per 10,000 lines of code for Python
and Java were 6,07 and 8,37 respectively. The individual measurements per design
defect are listed in table 5. This shows that the design defect densities are compa-
rable and according to our results, the density is usually slightly lower in Python
code, unless the point of interest is Long Methods.

5.3 Threats to Validity

A common threat to validity of all design defect detection studies is introduced by the
loose, textual definitions of design defects. Due to their openness to interpretation,
personal judgement impacts the selection of suitable metric combinations and their
thresholds. This can only be addressed by formal modelling, and we tried to be as open
with the formulae we reuse, as possible, enabling future researchers and replicators
to take our definitions exactly for what they are.
Another threat is the data set we have used for evaluation. It only consists of public

GitHub repositories listed on PyPI. Although we have examined 4,121 repositories,
which is quite a lot, we cannot guarantee them to be a representative sample. For
instance, there could be fundamental differences between corporate Python code and
the open source code available on GitHub, in terms of duplicated code (clones), self-
admitted technical debt (to-dos), ownership, etc. One could also argue that GitHub
attracts certain types of developers and projects, so future work must include a broader
replication with projects from BitBucket, SourceForge, CodePlex, GitLab, RosettaCode,
LaunchPad, etc., some of which are relatively small but Python-biased.
The study is also limited by the amount of design defects we have studied. It would

require a more extensive study to examine the density of Python design defects in
general and make a comparison to Java or any other language. We have paved the
way to that research by providing the hardest component to it — the Python grammar,
but going there would imply another, albeit easier, project of comparable effort.
Lastly, we have not been able to make any statement about precision or recall of

Design Defect Detector. This means that the comparison to results in Java might be
skewed one way or the other. If the Design Defect Detector shows a significant number
of false negatives, the Python design defect density could be higher than that of Java.
On the other hand, if the Design Defect Detector shows a lot of false positives, the
design defect density of Python would be lower than what we have measured. This
issue would also mean that the definitions successfully used for detecting design
defects in Java code first need to be adjusted for our context to work well.

21



Does Python Smell Like Java?

6 Conclusion

We have developed the first level 4 [29] grammar of Python, which is capable of parsing
both Python 2.x and Python 3.x code. It is a result of a major grammar programming
effort, converging previously existing grammars (made for different dialects and
written in different notations) [27, 52, 64] and language documentation [54, 55]. To
improve and validate the quality of the grammar, we have collected a big test input
data set by leveraging 4,121 GitHub repositories for a total of 32,058,823 lines of code
in various versions of Python. This is the biggest test data set any Python grammar
published up to this day has ever seen. The fact that our grammar was capable of
parsing these, provides evidence for its analytic (recognising) power, but would have
not been enough to claim its correctness.
To provide further evidence of the usefulness of the grammar, we have developed a

tool called the Design Defect Detector [61] which parses a Python module, creates a
code model of it and reports on the presence of various design defects found there.
Density of the found design defects varied per type and was between 0.0 and 24.76
design defects per 10,000 lines of code, with the average density being 6.07. The most
commonly found design defects were Long Method (79,367 found instances) and Swiss
Army Knife (30,011 found instances). The least commonly found design defects were
Spaghetti Code (1 found instance) and God Class (24 found instances). No instances
of Functional Decomposition were found. Overall, the measured density was higher
for code smells than for antipatterns.
We have aligned our study to serve as a partial replication of DECOR [41, 44], a

state of the art tool built for detection of design defects in Java source code. We have
successfully compared the detected design defect density in Python to results that
DECOR yielded for Java. Generally, the density we have measured in Python (average
6.07 design defects per 10,000 lines of code) was slightly lower than the density
measured in Java (average 8.37 design defects per 10,000 lines of code).
Our research has reaffirmed that the context of a programming language is one of

the essential factors in software engineering in general and design defect detection in
particular. Because of this, the existing research is still rather incomplete and requires
studies similar to ours to be conducted on different programming languages in the
future.
The possibility of design defects specific to Python should also be examined in future

studies. Some of our current research activities involve detecting how “pythonic” a
given piece of code is and investigating what are the design defects specific to Python
that do not often occur in code written in other programming languages.
Another topic worth exploring in the future would be the relation between the

detected design defects in Python and the actual bugginess of the software, similarly
to what Taba et al. did for Java [58].
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