
The A?B∗A Pattern: Undoing Style in CSS
and Refactoring Opportunities it Presents

Leonard Punt
University of Amsterdam, The Netherlands

Q42, The Netherlands

Sjoerd Visscher

Q42, The Netherlands

Vadim Zaytsev
University of Amsterdam, The Netherlands

Raincode, Belgium

Abstract—Cascading Style Sheets (CSS) is a language
widely used in contemporary web applications for
defining the presentation semantics of web documents.
Despite its relatively simple syntax, the language has a
number of complex features like inheritance, cascading
and specificity, which make CSS code challenging to
understand and maintain. It has been noted in prior
research that CSS code is prone to contain code smells
which indicate design weaknesses and maintainability
issues.

In this paper we focus on one of those code smells
called undoing style. It happens when a property is
set to a value A, then overridden to another value
B, possibly multiple times, and then set back to the
original value of A. We refer to this pattern as the
A?B∗A pattern. We propose a technique that detects
undoing style in CSS code and recommends refactoring
opportunities to eliminate instances of undoing style
while preserving the semantics of the web application.

We evaluate our technique on 41 real-world web
applications, and outline a proof of correctness for our
refactoring. Our findings show that undoing style is
quite prominent in CSS code. Additionally, there are
many refactorings that can be applied while hardly
introducing any errors.

I. Introduction
Cascading Style Sheets (CSS) [2], [5], [17] is a language

used for defining the presentation semantics of web doc-
uments, like positioning, sizes, colours and fonts. CSS is
widely used — 96% of web developers use CSS and over
90% consider it a web standard [28], and it is used on 95%
of the websites [39].

Despite the relatively simple syntax of the language,
CSS code is not easily understood and maintained [22].
The language has a number of complex features, like
inheritance, cascading and specificity [2], [5], [18]. On top
of that, established design principles and tool support are
missing [21]. Therefore, one of the consequences is that it
is not uncommon for CSS code to contain code smells [12].
A code smell is a pattern of code that indicates a weakness
in the design. Such a weakness may cause issues in code
understanding and maintenance in the long term [10].
In a recent study, Mazinanian et al. [21] found that on
average 66% of the style declarations are repeated at least
once in a CSS file. Furthermore an 8% size reduction
can be achieved by exploring their detected refactoring
opportunities. More recently, Gharachorlu [12] showed

that CSS smells are widespread in today’s websites; 99.8%
of the websites (i.e., 499 out 500) analysed in that study,
contain at least one type of CSS code smells.

The goal of this work is to detect and come up with
semantic preserving refactoring opportunities for the CSS
code smell undoing style. We have deliberately chosen to
scope the project to focus on one smell and investigate
it in all details it deserves, rather than providing limited
refactoring opportunities for each smell.

The rest of the paper is organised as follows. We briefly
introduce CSS and explain its sophistication in section II.
In section III we report previous findings on the code
smells found in CSS, identify their shortcomings and
define the problem we intend to solve. The A?B∗A pattern
mentioned in the abstract, is defined and elaborated in
section IV, followed by the algorithm of its detection in
section V. A detailed realistic example is contained in
section VI. The experiments we ran as validation are
included in section VII, with the discussion of the results
found in section VIII. We sketch the proof of correctness
of our approach in section IX, revisit related work in
section X and conclude the paper with section XI.

II. The CSS Language
An example of a CSS sheet would be a specification

that declares that all paragraphs (matching <p> tags)
should have their inner text centered and printed in red,
if hardware permits:
p {

color: red;
text-align: center;

}

The complete grammar of CSS3 [3] is still under de-
velopment, contains many top and bottom nonterminals,
mixes several notations and utterly fails to satisfy any
quality requirements of proper grammar engineering [19].
We present a manually derived simplified version of it:
StyleSheet ::= Rule* ;
Rule ::= Selector "{" Declaration* "}"

| "@charset" String
| "@font-face" "{" Declaration* "}"
| "@import" (URL | String) MediaQueryList?
| "@media" MediaQueryList "{" Rule* "}"
| "@page" "{" Declaration* "}" ;

Declaration ::= Property ":" Value "!important"? ";"? ;
As we can see, a style sheet is nothing more than

a collection of rules, and each rule binds a selector

http://q42.com/
http://q42.com/
http://www.raincode.com/

to a collection of property-value declarations. CSS has
changed its definition of what constitutes a selector
from CSS2 [5] to CSS3 [3], but in contemporary terms
a selector is a comma-separated group of combinator-
separated sequences of simple selectors [9] (such as h1,
div > h2.header, h3 + img[src][alt]). We consider simple
selectors in more detail, slowly going from the earliest
version of CSS to the latest, adding minimal clarifications
whenever necessary.
CSS 1 [17]:

• Type selector (X) selects all <X> elements
• Link pseudo-classes (X:link and X:visited)
• First pseudos (X:first-child, X::first-line,

X::first-letter)
• Class selector (X.C) selects all <X> elements which

belong to the C class (possibly among other classes)
• ID selector (X#N) selects one element with the ID N
• Descendant combinator (X Y) selects all elements

selected by Y that are inside elements selected by X.
CSS 2 [5]:

• Universal selector (*) selects all elements
• Attribute selectors (X[A], X[A=N], X[A~=N] and

X[A|=N]) select all elements that have an attribute, or
have the exact value of the attribute, or have a value
included in a space- or dash-separated list.

• Action pseudo-classes (X:active, X:hover, X:focus)
• Sibling pseudo-elements (X::before, X::after)
• Language pseudo-class (X:lang(L))
• Child combinator (X > Y) selects all elements se-

lected by Y where the parent is an element selected
by X.

• Adjacent sibling combinator (X + Y) selects all
elements selected by Y that are placed immediately
after elements selected by X.

CSS 3 [2]:
• Structural pseudo-classes (X:root, X:empty,

X:nth-child(N), X:nth-last-child(N), X:nth-of-type(N),
X:nth-last-of-type(N), X:last-child, X:first-of-type,
X:last-of-type, X:only-child, X:only-of-type)

• Attribute selectors (X[A*=N], X[A^=N] and X[A$=N])
implement substring selection, starts-with and ends-
with comparators

• Target pseudo-class (X:target)
• Element state pseudo-classes (X:enabled,

X:disabled, X:checked)
• Negation pseudo-class (X:not(C))
• General sibling combinator (X ~ Y) selects every

element selected by Y that is preceded by an element
selected by X.

Having so many different options and multiple ways to
combine them clearly presents a maintenance challenge.
In practice it leads to codebases bloated with duplicated
rules adapted slightly for each use [21], [22]. To complicate
matters further, all the properties specified by the style
sheet rules, are being assigned to elements of a hierarchical

structure, commonly inherited downwards and overwritten
by more specific rules.

It is commonplace to find multiple rules apply to one
element, either because they are explicitly defined in a
style sheet, or because of inheritance, or both. When a
property is defined multiple times for an element, the cas-
cading order decides which value is applied. The cascading
order is based on the rules’ location and specificity.

The style can be defined in three different locations. The
location with the highest preference is inline, when the
style is defined on the HTML element itself using the style
attribute. The second location is internal, the style sheet is
embedded inside the HTML document. The least preferred
location is external, the style sheet is an external file and
is linked to the HTML document.

A selector’s specificity [9] is a three-digit number in
a high enough base, where the least significant digit is
the number of type selectors and pseudo-elements, the
second least significant digit is the number of class se-
lectors, attribute selectors and pseudo-classes, and the
most significant digit is the number of ID selectors. For
example, ol li has a specificity score of 002, while div.main
ol li.red has a score of 023. The universal selector * has a
default specificity of 000. The most bizarre thing about
this standard is that doubling some selectors will have
no impact on the matching itself but will change their
specificity. So yes, div#X#X#X#X#X has a score of 501.

A special !important modifier can be used to supersede
any specificity calculations and essentially break cascad-
ing: any rule marked with !important is considered to be
more specific than any rule without it. Using !important
is commonly considered bad practice in web development
due to the debugging difficulties it introduces [13].

III. Code Smells in CSS

A code smell is a pattern of code that indicates a
weakness in the design and a possible cause for future
comprehension problems [10]. Code duplication is probably
the most well-known code smell, and easily portable from
programming languages to CSS. Code duplication is actu-
ally more prevalent in CSS code compared to procedural
and object-oriented code. The main reason is the lack
of variables and functions that could be used to build
reusable blocks of code. Ways to deal with code dupli-
cations have already been proposed [21], and the future
versions of CSS may include variables after all.

Another well-known smell is dead code, which maps in
the CSS technical space to unused selectors and redundant
property declarations. In our work we do not focus on dead
code, but usually it relies on either dynamic cross-language
slicing [25], or on collecting all DOM states by crawling the
pages and deleting unused rules or properties [6], [22].

Using CSS directly in HTML or JavaScript is a smell,
namely violation of separation of concerns. We chose not
to focus on this smell, since in our industrial experience

Error / smell [8] [40] [12] [13]
Parse error X X
Value type error X X
Box model size X X
Proper display properties X X
Duplicate properties X X X
Empty rules X X X
Unknown properties X X
Adjoining classes X X
Box-sizing X X
Incompatible vendor prefixes X X
Insufficient gradient definitions X X X
Negative text-indent X X X
No vendor prefix properties X X X
No fallback colours X X X
Star hack X X X
Underscore hack X X X
Error-prone font-face X X
Too many web fonts X X
Use of @import X X X
Regex-looking selectors X X
The universal selector X X X
Unqualified attribute selectors X X X
Units for zero values X X X
Overqualified elements X X X
No shorthand properties X X X
Duplicate background images X X X
Too many floats X X
Too many font-size declarations X X
IDs in selectors X X X
!important X X X
outline:none X X X
Qualified headings X X X
Multiple definitions of headings X X X

TABLE I
Smells and errors detected in CSS style sheets by linters and

checkers: CSS Lint, W3C CSS Validator, CSS Nose and CssCoco.

almost every developer uses external style sheets nowa-
days. Many websites do contain CSS directly in HTML or
JavaScript [26], [39], but this is mainly code injected by
frameworks. Refactoring frameworks could be a project on
itself, challenging since numerous frameworks, or specific
versions of frameworks, are no longer maintained or not
open source.

Next there are smells like too long rules, too much cas-
cading, high specificity values and too general selectors [12].
The problem with these smells is that there is no standard
widely accepted definition of “too much” or “too high”. To
avoid controversy, we chose not to include these smells in
any of our tools (reported here and in [13]).

There exist numerous linters that detect errors and
smells, like CCS Lint [8] (and others based on it, like
Codacy [7]), CSSNose [12], CssCoco [13] and the W3C CSS
Validator [40]. An overview of these errors and smells can
be found in Table I, where they are grouped by categories:
conformance, possible errors, compatibility, performance,
maintainability, duplication, accessibility. CSSNose is the
most comprehensive one since it includes both CSS Lint
and W3C CSS Validator and does not exclude the contro-
versial smells. The problem with linters is that they check
whether the code conforms to certain style guidelines.
However, from our experience, many developers do not

agree with the style guidelines used. That is why we chose
not to include these smells in our tool.

Finally, there is undoing style, previously studied [12]
but, as we claim, insufficiently so. Furthermore, to the best
of our knowledge, refactoring undoing style has not been
studied yet.

CSSNose marks every property value that is 0 or none
as having an “undoing style” smell [12]. This definition
produces both false positives and false negatives. The
false positives are produced because a none value for
property display is one of the standard ways for web
developers to hide an element. Additionally, all reset styles
are marked as smells by CSSNose. In practice reset styles
are used to remove the inconsistencies in presentation
defaults between browsers, since all browsers have presen-
tation defaults, but no browsers have the same defaults.
These reset styles are commonly used and considered
good practice [23], [31]. False negatives are produced by
CSSNose because only 0 or none property values are taken
into account. However, a style can be undone by any valid
value for that property. For example, if the developer first
sets the margin to 25px, next to 50px, and then back to 25px,
the style is undone as well, and this occurrence should be
marked as a code smell.

IV. The A?B∗A Pattern
We propose the following definition of undoing style,

which closely follows the intuitive perception of it: if a
property is first set to a value A or has an implicit value A,
then it is possibly overridden and set to a different value B,
possibly multiple times, and subsequently overridden again
and set back to the original value A, then we say that
this property follows an A?B∗A pattern and smells like
undoing style. Our definition does not suffer from the false
positives problem described above: setting display:none
has no A?B∗A in it; and if overwriting browsers’ defaults is
not considered harmful by developers, we can differentiate
between A?A (undoing the default) and AA (undoing self-
provided value) patterns. It also does not suffer from the
problem with the false negatives, since the A?B∗A pattern
is checked for all values and properties, not just for 0 or
none.

The A?B∗A pattern matches several flavours of smells,
such as ABA, ABCDA and AA. For simplicity we allow
ourselves to refer to all of them as “undoing style”, but
precisely speaking some of them should be given different
names, so the name “the A?B∗A pattern” is more exact.

We claim that there are no false positives covered by
the A?B∗A pattern, and all the matched flavours of smells
are in fact harmful. The problem with this pattern is
twofold. First, more CSS is written in order to achieve less
styling. Second, the very nature of CSS is that styles will
cascade and inherit from styles defined previously. New
rules should only add properties to styles defined before,
not undo them. If a style is undoing a cascaded or an
inherited style, the style that is cascaded or inherited is

applied too early. This pattern may indicate that some
developers do not fully comprehend the cascading and
inheritance properties of CSS.

In order to detect all occurrences of the A?B∗A pattern,
the implicit values have to be taken into account. There are
three types of implicit values: default values, initial values
and inherited values. Default values are defined in user
agent style sheets, which are default CSS styles defined by
the user agent (e.g. browser). Initial values are values that
are defined as the initial value for a property in the W3C
specification. Inherited values are values that are inherited.
The implicit value of a property is the default value, if it
is defined. If there is no default value, then the implicit
value is the initial value for non-inheriting properties and
the inherited value for inheriting properties. For example,
margin is a non-inheriting property and has 0 as initial
value. If there is no default style, the implicit value for
margin is 0. So if a developer sets the value of the property
margin first to 10px and then to 0, it should be marked as
undoing style, since the implicit value for the margin was 0
anyway. Another example: color is an inheriting property.
If there is no default style, we need to get the inherited
style in order to determine the implicit style for color. The
inherited style can be retrieved by getting the parent’s
value for the property.

Pseudos form an exception to the definition and are
allowed to undo style. A pseudo-element defines a special
static state of an element and a pseudo-class is used for
dynamic styles. Usually it is more convenient to reset the
style in this special state than to add the style to all
elements, except to the element in that state. An example
is if all items of a list have to have some style, except the
first. One way to achieve this is by assigning a class to
every element in the list, except the first one, since many
pseudos have no natural inverse. Next a CSS rule can be
created, using the class selector and the appropriate style.
However, it is more convenient to assign the class to the
list element itself, instead to all its child elements. Next the
style can be reset for the first element using the pseudo-
elements :first-child. The pseudo-elements in which this
pattern is allowed are :first-child, :last-child, :nth-child
and :nth-last-child.

An example with the A?B∗A pattern is shown below.
.input-field > * { border: 0 none; float: left; }
.text-field input {

float: none;
padding-left: 48px;
width: 100%; }

<div class="input-field text-field">
<label for="fld1">...</label>
<input type="text" name="fld1" id="fld1" class="rel">

</div>
<div class="input-field text-field">

<label for="fld2">...</label>
<input type="text" name="fld2" id="fld2" class="rel">

</div>
<div class="input-field text-field">

<label for="fld3">...</label>
<input type="text" name="fld3" id="fld3" class="rel">

</div>

It is a simplified version of a smell we found on one
of the websites the company of the first two authors
developed. The first rule sets the float property to left
for all elements inside an element with class input-field.
The second rule sets the float property to none for all
input elements inside an element with class text-field. The
second rule overrides the first rule, since it has a higher
specificity. The implicit value for float is none, this implicit
value is overridden by both rules. These rules contain the
A?B∗A pattern, where the first A? is the implicit style, B
is the first rule and the second A is the second rule. This
code snippet is a nice example of a style that is applied too
early. In this case it is better to attach the style float:left
only to the label elements inside an element with class
input-field. Then the reset to none would not be necessary.

V. Detection
In order to detect the undoing style smell, we need

both the CSS (normalised such that 0 and 0px or #000
and #000000 match) and the HTML. With the information
from both we can figure out which style properties match a
certain HTML element. Then we can easily check whether
a style property is defined multiple times for this HTML
element. Next we need to know the cascading order of
properties. This is needed in order to determine which
property overrides the other ones. In order to determine
the cascading order, we first check if a property is de-
fined as !important, if not, we calculate and compare the
specificity of the selectors. If the selectors have the same
specificity, we need their location information to decide
which style gets precedence over the other.

Once we know if a property is defined multiple times
for an HTML element, and we know the cascading order,
we can check if there are A?B∗A patterns for that property
and HTML element. First we try to find the longest A?B∗A
pattern possible. All other patterns that are embedded in
the longer pattern can be safely ignored, since they will be
removed if the longest pattern is refactored. An example is
the pattern ABCBA, which contains four A?B∗A patterns:
ABCBA, BCB, ABBA and ACA. However, we prefer
ABCBA and let the rest be subsumed. Patterns are al-
lowed to overlap, as long as they do not overlap completely
(so ABAB does contain two valid A?B∗A occurrences).

All the detected undoing style smells are refactoring
opportunities. The developer should decide whether to
apply a refactoring or not. In section IX we will formally
outline a refactoring for the undoing style smells that
adhere to certain preconditions. The algorithm used for
detecting the A?B∗A pattern, can be found on Listing 1.
An executable tool is described as a proper artefact [29]
and is publicly available. For obvious reasons we had to
choose for dynamic analysis and not static analysis — re-
alistic contemporary web applications are always dynamic
in some way. However, our tool still has limitations since
it is run on the client side (in the browser) and is therefore
limited to whatever is accessible from the browser: parsed

style sheets (internal and external), Document Object
Model (DOM) elements, etc., but not document templates.
We leave it up to the developer who uses our tool, to
provide multiple DOM instances which is required when
undoing style manifests itself in DOM updates — they are
usually collected with a crawler or leveraged from the test
suite, depending on the project.

For practical reasons, our tool ignores @media rules: they
add a circumstantial element to the mix which piles a
level of complexity on the task of optimising CSS style
sheets (e.g., undoing style for a very specific screen size can
be more maintainable than explicitly introducing several
@media clauses); treating @media clauses similarly to the rest
requires tweaking of the algorithm but more importantly
yields more complex rules after refactoring.

Any A?B∗A pattern occurrence is considered a refac-
toring opportunity [21] if it meets two preconditions: (1)
the most specific part of the selector of the enclosed rule
should be an ID or a class selector; (2) the elements
that the reset rule applies to, should be a subset of the
elements the initial rule applies to. The reason for having
these particular preconditions will become apparent from
section IX where we sketch a proof for preserving the
semantics of CSS if the refactoring takes place.

Acting on a refactoring opportunity involves three steps.
The first step is to move the property from the enclosed
CSS rule to a new CSS rule. Note that if the property is
defined multiple times in a rule, only the last definition
should be moved. All the other definitions should be
removed. In order to preserve semantics, there are two
requirements for the new rule: (1) it needs to be defined
directly beneath the enclosed rule; (2) it has to have
the same or a one class point higher specificity than
the enclosed rule’s selector. These two requirements are
needed because the location and the specificity could have
influence on the cascading order. By defining the new
rule directly beneath the original rule and keeping the
specificity the same or changing it as little as possible,
we know the new rule overrides and is overridden by the
same rules as the original rule. The only exception is that
the new rule now overrides the original rule, but this is
not an issue since the property of the new rule does not
exist in the original rule anymore, since it is moved. The
selector of this new rule is almost the same as the selector
of the original rule: we only update the most specific part.
If the most specific part is a class selector, we replace this
class selector by a new class selector. If the most specific
part is an ID selector, we append a class selector to the ID
selector. In both cases we satisfy the requirement that the
new rule has to have the same or a one class point higher
specificity. Note that the most specific part cannot be an
element selector, because of the preconditions.

The second step is to take the difference between all
nodes of the enclosed rule and the nodes of the reset rule.
The new class (the most specific part of the new rule’s
selector) is added to these elements. The third step is to

remove the undoing style property from the reset rule. If
the rule is empty after removing the property, it is removed
from the style sheet. Note that we cannot remove the
usages from the HTML documents, since they might be
used by client-side scripts. Because we moved a property
to a new rule, we need to update all detections that have
a reference to that enclosed rule and property somewhere
in their A?B∗A pattern. That is the final step.

After the refactoring the original and the updated pro-
grams are checked for all DOM states provided by the
developer (see above) and requests computed styles (values
for all the properties) for each element. If these computed
styles have not changed, then the semantics of CSS has
been preserved under transformation.

VI. Example
Consider the following CSS and HTML code:

a { text-decoration-line: none; }
.cms .link { text-decoration-line: underline; }
.cms .link.more { text-decoration-line: none; }

<div class="cms">
...
...

</div>

The example has ABAB with underline as A and no dec-
oration as B, with the implicit A-rule being the browser’s
default for <a>. We will focus on the BAB part with the
initial rule is the first B-rule, the enclosed rule is the
second A-rule, and the reset rule is the third A-rule. The
nodes that apply to the initial rule are both <a> elements,
these elements apply to the enclosed rule as well. The last
element is the only element that applies to the reset rule.
Both preconditions hold for this BAB. The most specific
selector part of the enclosed rule is a class selector. The
elements that apply to the reset rule, are a subset of the
elements that apply to the initial rule. The refactored code:
a { text-decoration-line: none; }
.cms .class1 { text-decoration-line: underline; }

<div class="cms">
...
...

</div>

We see that the rule with selector .class1 is the new rule.
This rule contains the declaration text-decoration-line:
underline, which is moved from the enclosed rule to the
new rule. The property text-decoration-line is removed
from the reset rule. Both the enclosed and the reset rule
are removed since they were empty after the refactoring
was applied. The class .class1 is added to each element
that matched to the enclosed rule but not to the reset
rule, which is the first <a> element in this example. This
refactoring preserves the semantics, removes the undoing
style smell and reduces the number of CSS rules.

VII. Empirical Evaluation
For empirical evaluation of our tool we reuse the data set

from the study of Mazinanian, Tsantalis and Mesbah [21]
which they graciously offer online at http://users.encs.

http://users.encs.concordia.ca/~d_mazina/papers/FSE'14/

concordia.ca/~d_mazina/papers/FSE’14/. This data set
includes 38 randomly selected as well as author selected
online web applications, all highly visited and developed
by web market leaders. All adjustments we have allowed
ourselves, are described as a proper artefact [30]. In short:

• Renamed two websites: apple.ca to apple.com and
MountainEquip to MEC to fit our location and their
updated names.

• Removed cookie-based redirect from the Gmail
dataset since it was detecting the lack of “right”
cookies on our machine and redirecting us away so
no DOM states could be found.

• Added a newly fetched Gmail dataset to counter the
possibility that our intervention had some negative
effect on the detection. The original Gmail dataset
was kept in the experiment along with it.

• Removed three style sheets that were empty in the
FSE dataset: two of them return Forbidden errors
(from GlobalTVBC and SyncCreative) and one File
Not Found (from Apple.com). It is unknown whether
the errors manifested themselves during the original
collection of data as well.

• Refetched four style sheets that were empty in
the FSE dataset for unknown reasons (two from
About.com and two from Alibaba).

• Excluded five unused style sheets from the ProTool-
sExpress dataset and one duplicate style sheet from
SyncCreative.

• Added two projects developed by Q42, the company
with which the first two authors are affiliated: http:
//9292.nl and http://Rijksmuseum.nl. They are fairly
dynamic and well-known within the Dutch internet.

The experiments were executed in a fairly transparent
way, following the theory and design we explained in
section V: we loaded the application and the DOM states,
fixed references to external style sheets, detected A?B∗A
patterns, filtered out non-opportunities that failed to sat-
isfy our preconditions, refactored the rest and checked for
semantics preservation
A. RQ1: What is the extent of undoing style in CSS?

0 0.5 1 1.5 2 2.5

Plot 1. Ratio of detected undoing style smells to CSS rules.

0 200 400 600 800 1,000 1,200 1,400 1,600

Plot 2. Total number of detected undoing style smells.

Our result show that undoing style is prevalent in CSS
code. Plot 1 displays the ratios between the number of
detections and the number of rules in the analysed style
sheets. The median value for the ratio is 16% while the av-
erage (diamond on the plot) is 25%, dots indicate outliers.

The most extreme outlier has a ratio of 242% and caused
by a client-side script that copies an inline style sheet,
causing many elements to exhibit the AA pattern. Plot 2
displays the number of undoing style occasions detected
in the analysed CSS code. On average, we were able to
detect 380 occurrences of undoing style. The outliers here
are subjects with a lot of CSS rules, so the A?B∗A pattern
cases are proportional.

49% of the opportunities are of type ABA, 36% of type
AA, 12% of type AB2A, 3% of type AB3A, only 0.75%
of type AB4A and all other cases together total 0.25%.
Additionally we looked at the initial CSS rule, the rule
that initiates the A?B∗A pattern, and found that in 63%
of the cases the initiator is an implicit value, in 18% an
element selector, in 9% a class selector, but other options
also often get to 1% or 2% each. When looking further into
the implicit values, we found that in 7% of the implicit
values are inherited values, the other values are either
default or initial values.

B. RQ2. What refactorings can result from detected oppor-
tunities?

0 10 20 30 40 50 60

Plot 3. Number of applied refactorings.

Plot 3 shows the number of refactorings we have applied
on the CSS files. A refactoring is a refactoring opportunity
that is applied, resulting in the removal of the smell. (Since
we have acted on all refactoring opportunities, the number
of refactorings is equal to the number of refactoring op-
portunities). As can be observed, our approach was able to
apply 11 refactorings on average. The maximum number
of refactorings applied on one state of an application was
62. The outliers on this boxplot are subjects with a lot of
detected undoing style smells, which explains the higher
number of applied refactorings. The opportunities that are
not refactored can be used as input when developing more
advanced refactorings.

C. RQ3. Do the proposed refactorings preserve semantics?

0 20 40 60 80 100 120

Plot 4. Number of changes to semantics. Outliers not shown on the
plot: 227, 256, 345, 400, 627, 792, 1134, 3869.

A semantic change is a change for the value of a
property at a node caused by a refactoring. These changes
are detected by checking that the computed styles of all
elements have not changed after the refactoring is applied.
Note, however, that due to the dynamic nature of many
web applications, client-side scripts might update the
properties of a node during the refactoring. So it is quite
likely that changes are detected that are not introduced

http://users.encs.concordia.ca/~d_mazina/papers/FSE'14/
http://9292.nl
http://9292.nl
http://Rijksmuseum.nl

by the refactoring. In total 8789 semantic changes were
detected in our experiments. For all these changes, only
38 are introduced because a refactoring was applied, the
rest were classified as false positives.

Plot 4 shows that the median is 2 semantic changes
and the mean is 120. Indeed, the data contains extreme
outliers, 44% of the all the semantics changes are in one
subject. All the errors in that subject are caused by up-
dates from a client-side script. The reasons we know most
of the errors are not introduced as a result of applying a
refactoring, are:

• There are no refactoring opportunities for the subject.
• The CSS properties that contained errors are not CSS

properties that were refactored.
• The selectors of the refactored CSS rules do not match

with the nodes that contain errors.
• The reported errors are false negatives.
• A client-side script includes the original style sheet,

which results in both the refactored and the original
style sheets being included.

From the 38 errors that are introduced by a refactoring,
36 are because an external style sheet was not fetched,
but was loaded. This external style sheet interfered with
a second external style sheet, which was fetched. Because
undoing style is only detected in fetched style sheets,
the pattern was only detected in the second style sheet,
ignoring the rules from the first style sheet. Therefore a
too short A?B∗A pattern was detected and refactored. The
other two errors were due to a specificity calculation bug
in our tool manifesting when both rules had the !important
annotation — they disappeared when the bug was fixed.

VIII. Discussion
Our experiment shows that undoing style is prevalent

in the CSS code of today’s web applications. The pattern
ABA is the most prevalent one, followed by the pattern
AA. Most of the undoing style patterns start with an
implicit value or an element selector. The number of
patterns that start with an implicit value, as well as the
types of popular patterns, indicate that developers either
do not know or do not trust the implicit values, and end
up overriding them.

The number of patterns that start with an element
selector indicates that developers apply styles too broadly.
Our study shows that in many cases these styles have to be
undone. We argue that it is bad practice to apply styles too
broadly, because the very nature of CSS is that styles will
cascade and inherit from styles defined previously. New
rules should only add properties to styles defined before,
not undo them. The results of the evaluation of our tool
also show that refactorings are applicable to a subset of
the A?B∗A pattern, while mostly preserving the semantics.

To be sure whether a refactoring can be applied safely,
we need to know all possible DOM states of the web appli-
cation. In our current implementation, we did not provide
a functionality to capture all possible DOM states and

expect the user to provide them. There are several options
to fix this limitation. One is to add a crawler that cap-
tures DOM states, such as based on Cilla/Crawljax [38].
Another option is to attach our tool to an existing test
suite of the web application. A third option is to make use
of the visual style guide of a web application, if it exists.
Finally, it should also be feasible to generate the possible
DOM states from the source code of the application.

Other limitations of our tool are: client-side DOM
updates which cause quite some false positives since we
do not take these into account when checking whether
the semantics are preserved; limiting scope to files that
are served from the same origin which corresponds to
the so called same-origin policy that all modern browsers
adhere to [32], [37], [41]; implementing equality literally
and not semantically (we use normalised values served
by the browser and do not implement their adjustable
equivalence, so black and #000000 are treated as different).

With respect to threats to validity, we inherit them from
the study by Mazinanian et al. since we rely on (mostly)
the same dataset [21] which in turn extended the dataset
by Mesbah and Mirshokraie [22]. There are some threats
to internal validity: the DOM states collected from each
web application may be insufficient to decide whether a
detection is refactorable or not, since for some dynamic
web applications the number of DOM states is practically
infinite. Missing DOM states could also make some of
the applied refactorings to be semantic revising for this
particular set of unvisited DOM states. The attempts to
avoid selection bias included selecting 14 subjects from the
list of websites analysed one case study [22], 24 subjects
from another one [21] and two developed by an affiliated
company.

IX. Refactoring Correctness
In this section we are going to outline the proof of cor-

rectness of our refactoring. A solid, fully formalised proof
is outside the scope and format, but can be considered
future work. We are going to use set theory and logic to
prove that the refactoring described in section V preserves
all semantics.

The refactoring comprises two steps: (1) a CSS property
is moved to a new rule, (2) a CSS property is removed from
an existing rule. We are going to prove that both steps are
correct, that is, in both steps all semantics are preserved.
We argue that the correctness of the refactoring is implied
by the correctness of the two steps.

Given an ABA pattern for a style property s, let us
define the following:

• R is the set of all CSS rules.
• I is the set of all HTML elements the initial CSS rule

applies to.
• E is the set of all HTML elements the enclosed CSS

rule applies to.
• R is the set of all HTML elements the reset CSS rule

applies to.

R is a totally ordered set (specified by the order of rules
in the file). The properties of the relation are described
as the cascading order. The cascading order is used to
determine for each style property, which CSS rule is
applied to an HTML element. The rule that is applied
is the CSS rule that is highest in R. In order for an ABA
pattern to be refactorable, two preconditions have to hold:

• The most specific part of the selector of the enclosed
rule should be an ID or a class selector.

• R ⊂ I

The first precondition is important, because in order
to create a new selector from the enclosed rule’s selector,
we need to add or replace a class selector. Adding a class
selector has influence on the cascading order. As explained
in section II, the specificity of a selector is a three-digit
number with a high enough base. The specificity is one
of the properties that is used to determine the cascading
order. If we need to create such a new selector, there are
three possibilities: the most specific part of the rule could
be an ID selector, a class selector or an element selector.

If the enclosed rule’s selector has a class selector as most
specific part, we can easily replace this class selector with
a new class selector. In this case, the specificity score stays
the same.

If the enclosed rule’s selector has an ID selector as the
most specific part, we can easily add a class selector. The
middle digit in the specificity score will then be one higher,
but there is no other value possible between the specificity
of the enclosed CSS rule and the specificity of the new CSS
rule. So the new rule will not override any CSS rules that
the enclosed rule does not override.

However, if the enclosed rule’s selector has an element
selector as most specific part, we cannot add a class
selector. This is best explained by the following example:
assume we have two selectors: p and div p. The specificity
of these selectors is respectively: 001 and 002. Therefore,
div p has precedence over p. Now assume p is the selector of
the enclosed CSS rule. If we have to make a new selector,
it will be p.someClass. This new selector has specificity 011
and therefore has precedence over div p, which is incorrect.
Ergo, the most specific part of the selector of the enclosed
rule should be an ID or a class selector.

The first step in moving the CSS property is to add a
new class c to every element in the set E \R. The second
step is to move the style property s from the enclosed CSS
rule, to a new CSS rule that has class c as most specific
part. Because of the first precondition, this new CSS rule
comes directly above the enclosed CSS rule in the set R.
Now we have E′ as the set of all HTML elements the new
CSS rule applies to, such that E′ = E \ R. Since E =
E′ ∪R, it means that if the semantics are preserved in E′

and R, the semantics in E are preserved.
The semantics in E′ are preserved, because the new

CSS rule comes directly above the enclosed CSS rule in
R. Therefore the new CSS rule, which has property s,
overrides the enclosed CSS rule. So for all HTML elements

were the enclosed CSS rule was the highest rule in R, the
new CSS rule will be the highest precedence rule now.
Therefore, the correct value for property s is applied. Note
that the new rule does not have to be the highest prece-
dence rule in R for any HTML element. However, because
the new CSS rule comes directly above the enclosed CSS
rule in R, the order relation between any rule in R is the
same for the enclosed CSS rule and the new CSS rule. In
other words, the new CSS rule will not override any other
rule than the enclosed CSS rule did. Therefore, the correct
value for property s will be applied.

The semantics in R are preserved as well, because from
the definition of the ABA pattern follows that the reset
CSS rule is higher in R than the enclosed CSS rule. And
since the new CSS rule comes directly above the enclosed
CSS rule, the reset CSS rule is also higher than the new
CSS rule. So the new CSS rule will not override the reset
CSS rule, and thus the correct value for property s will
still be applied.

Thus we have shown that moving the CSS property s
to a new rule has no influence on the value of s for any
HTML element. Furthermore, we did not touch any other
CSS property than the CSS property s, so the value of
any other property has not changed. Therefore we claim
that all semantics are preserved in the first step of our
refactoring.

From the second precondition and first step of the refac-
toring, we have R ⊂ (I \E′). In other words, the enclosed
CSS rule does not apply to R anymore. Furthermore, from
the ABA pattern follows that the value for property p
is the same in the initial CSS rule and the reset CSS
rule. Therefore, property p can be removed from the reset
CSS rule, because then the initial CSS rule becomes the
highest rule in R for all elements in R. Because of the
second precondition, every element in R will have an
A?B∗A pattern. However, the number of Bs can differ.
It is important that all Bs, or enclosed CSS rules, are
refactored, for all elements in R. Only then the initial CSS
rule will be the highest rule in R for all elements in R, if the
reset CSS rule is removed. We showed that removing the
CSS property s from the reset rule has no influence on the
value of s for any HTML element. Furthermore, we did not
touch any other CSS property than the CSS property s, so
the value of any other property has not changed. Therefore
we claim that all semantics are preserved in the second
step of our refactoring as well. Quod erat demonstrandum.

X. Related Work
There is a wide range of papers discussing refactoring in

general, it would be impossible to name them all. Fowler
and Beck [10] demonstrate how software practitioners
can realise significant benefits to the structural integrity
and performance of existing software programs using a
collection of techniques. These practices are referred to as
refactoring. The book is ancient by software engineering
standards, but recent endeavours have demonstrated that

refactoring indeed improves maintainability [16], [36], even
though it is not a silver bullet and does not eliminate
the need for systematic editing [14] and can even increase
power consumption [27]. Single refactorings are also known
to cause short term productivity and quality problems [1],
[35]. Refactoring can be inferred automatically from con-
tinuous changes [24], even though in practice more than
half of the refactorings is performed manually.

Several researchers have developed techniques for de-
tecting and ranking refactoring opportunities. Bavota et
al. [4] claim that an additional source of information for
identifying refactoring opportunities is team development
activity. This new refactoring dimension can be comple-
mented with other approaches (such as ours) to build
better refactoring recommendation tools. Silva et al. [33]
recommend to extract methods that hide structural depen-
dencies that are rarely used by the remaining statements
in the original method. Steidl and Eder [34] propose a
way to prioritize among a large number of quality defects.
Their approach recommends to remove quality defects,
exemplary code clones and long methods, which are easy
to refactor and, thus, provides developers a first starting
point for quality improvement. Mayer and Schroeder [20]
report on an approach for automatically identifying multi-
language relevant artefacts, finding references among arte-
facts in different languages, and refactoring them.

There are several papers discussing code smells in CSS.
Mazinanian et al. [21] define three types of duplication in
CSS and present a technique for detecting and refactoring
those duplications. These refactorings preserve the seman-
tics of the web application. Gharachorlu [12] proposes
an automated technique to detect 26 CSS smells and
errors. Based on the findings of a large empirical study,
he proposes a model that is capable of predicting the
total number of CSS code smells in any given website.
Mesbah and Mirshokraie [22] propose a technique that
automatically checks CSS code against different DOM
states and their elements to infer an understanding of the
runtime relationship between the two. Next it checks for
unmatched and ineffective rules, overridden declaration
properties, and undefined class values.

Bosch et al. [6] present a prototype of a static CSS
semantic analyser and optimiser. The prototype is capa-
ble of automatically detecting and removing redundant
property declarations and rules. They guarantee that the
rendering in the browser will not be affected, for any
possible document that might use the CSS. Genevès et
al. [11] present a tool based on tree logics. The tool
is capable of statically detecting a wide range of errors
(such as empty CSS selectors and semantically equivalent
selectors), as well as proving properties related to sets of
documents (such as coverage of styling information), in
the presence or absence of schema information. Nguyen et
al. [26] introduce a tool to detect embedded code smells.
The tool first detects the smells in the generated code and
next locates them in the server-side code.

Keller and Nussbaumer [15] introduce a CSS quality
property: abstractness factor. They argue that a high
abstractness factor represents a high maintainability and
reusability of the style sheet as well as the HTML docu-
ment. In future work we can use this and similar metrics to
check whether our refactorings not only preserve seman-
tics, but also improve the design [10].

XI. Conclusion
We have summarised some of the core features of CSS

and code smells that it was found to have. We have
developed two techniques: (1) for detection of undoing
style in CSS; (2) for refactoring detection results that
conform to certain patterns. We have shown that if the
detections adhere to these preconditions, the semantics
will be preserved. To the best of our knowledge, our work is
the first to provide refactoring opportunities with respect
to undoing style in CSS. We have used the tool [29] to
perform a validating experiment on 41 real-world web
applications [30] and found that:

• Undoing style is omnipresent in CSS; the ratio be-
tween the number of detections and the number of
rules is 25%; we were able to detect 2060 occurrences
of undoing style on average. With 49%, the ABA
pattern was the most prevalent type of undoing style.

• There are many instances that can be refactored while
preserving the presentation semantics: 11 per webapp
on average, with at most 62 refactorings applied on
one state of an application.

• There are barely any errors introduced by our refac-
torings. From the 8789 detected changes to the seman-
tics, for all subjects in total, only 38 were introduced
by a refactoring and even those are explainable by the
implementation details.

We have also provided a formalisation of the refactoring
steps, and argued that the correctness of the refactoring is
implied by the correctness of the two steps. The question
of propagating refactoring impact to scripts that depend
on style classes, remains future work and possibly requires
dynamic slicing [25].

The main contributions of the paper are: investigating
the undoing style CSS code smell, which we refine sig-
nificantly with respect to prior work; developing an open
source tool to detect refactoring opportunities conforming
to our A?B∗A pattern and to refactor a subset of op-
portunities while preserving the semantics; evaluating the
proof of concept by not only deploying it in the industrial
setting, but also conducting an experiment based on a
(corrected version of a) previously created dataset of 41
real-world web applications to find the extent of undoing
styles, the number of refactorings that can be applied and
the number of errors introduced by the refactorings; and
sketching a proof of correctness for our refactoring.

http://leonardpunt.github.io/masterproject is a pub-
licly accessible website containing the tool, the dataset and
the experimental data.

http: //leonardpunt.github.io/masterproject

/* Params:
- rules: all the style rules for an element, without the rules where the

undoing style pattern is allowed (like certain pseudo-classes). */
function filterUndoingStyles(rules) {
var possibleUndoingStyles, undoingStyles = [];

rules.forEach(function(rule) {
rule.forEach(function(declaration) {
// Get all rules that have a declaration for this property
var rulesWithDeclaration = getRulesWithDeclaration(declaration.property, rules);

// Sort rules on cascading order
rulesWithDeclaration.sort(function(rule1, rule2) {
return _compareCascadingOrder(rule2, rule1);

});

if (rulesWithDeclaration.length > 1) {
possibleUndoingStyles.push({ rules: rulesWithDeclaration });

}
});

});

possibleUndoingStyles.forEach(function(possibleUndoingStyle) {
// Detect the A-B*-A patterns for this declaration
var detections = detectABAs(overridingDeclaration);
undoingStyles.concat(detections);

});

return undoingStyles;
}

var detectABAs = function(overridingDeclaration) {
// highestA is the A with the highest specificity
var lowestA, highestA;
var length = overridingDeclaration.rules.length;
var detections = [];

for (var indexhighestA = 0; indexhighestA < length - 1; indexhighestA++) {
highestA = overridingDeclaration.rules[indexhighestA];
for (var indexlowestA = length - 1; indexlowestA > indexhighestA; indexlowestA--) {
lowestA = overridingDeclaration.rules[indexlowestA];

if (lowestA.declaration.value === highestA.declaration.value) {
// Check if this detection is a part of a previous detection, if so: ignore
if (!isPartOfPreviousDetection(indexlowestA, indexhighestA, detections)) {

detections.push({
initialRule: getInitialRule(lowestA, overridingDeclaration),
enclosedRules: getEnclosedRules(lowestA, highestA, overridingDeclaration),
resetRule: getResetRule(lowestA, overridingDeclaration)

});
break;

}
}

}
}

return detections;
};

Listing 1. The algorithm to detect the A?B∗A pattern, which was described in section V. An executable version is also available from
http://leonardpunt.github.io/masterproject/tool.zip.

http://leonardpunt.github.io/masterproject/tool.zip

References
[1] E. Ammerlaan, W. Veninga, and A. Zaidman, “Old Habits Die

Hard: Why Refactoring for Understandability Does not Give
Immediate Benefits,” in SANER, Y.-G. Guéhéneuc, B. Adams,
and A. Serebrenik, Eds. IEEE, 2015, pp. 504–507.

[2] T. Atkins Jr., E. J. Etemad, and F. Rivoal, “Cascading
Style Sheets (CSS) Snapshot 2015,” W3C Working
Group Note, Oct. 2015, http://www.w3.org/TR/2015/
NOTE-css-2015-20151013/.

[3] T. Atkins Jr. and S. Sapin, “CSS Syntax Module Level 3,” W3C
Candidate Recommendation, Feb. 2014, https://www.w3.org/
TR/2014/CR-css-syntax-3-20140220/.

[4] G. Bavota, S. Panichella, N. Tsantalis, M. D. Penta, R. Oliveto,
and G. Canfora, “Recommending Refactorings Based on Team
Co-maintenance Patterns,” in ASE. ACM, 2014, pp. 337–342.

[5] B. Bos, T. Çelik, I. Hickson, H. W. Lie, C. Lilley, and I. Jacobs,
“Cascading Style Sheets Level 2 Revision 2 (CSS 2.2) Specifi-
cation,” W3C Editors’ Draft, Mar. 2016, http://www.w3.org/
TR/2016/ED-CSS22-20160329/.

[6] M. Bosch, P. Genevès, and N. Layaïda, “Automated Refactoring
for Size Reduction of CSS Style Sheets,” in Proceedings of the
14th Symposium on Document Engineering (DocEng), S. J.
Simske and S. Rönnau, Eds. ACM, 2014, pp. 13–16.

[7] Codacy, “Patterns list,” https://www.codacy.com/patterns.
[8] CSSLint, “Rules,” https://github.com/CSSLint/csslint/wiki/

Rules.
[9] T. Çelik, E. J. Etemad, D. Glazman, I. Hickson, P. Linss, and

J. Williams, “Selectors level 3,” W3C Recommendation, Sep.
2011, https://www.w3.org/TR/selectors/.

[10] M. Fowler and K. Beck, Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[11] P. Genevès, N. Layaïda, and V. Quint, “On the Analysis of
Cascading Style Sheets,” in Proceedings of the 21st World Wide
Web Conference (WWW), A. Mille, F. L. Gandon, J. Misselis,
M. Rabinovich, and S. Staab, Eds. ACM, 2012, pp. 809–818.

[12] G. Gharachorlu, “Code Smells in Cascading Style Sheets: An
Empirical Study and a Predictive Model.” Master’s thesis, Uni-
versity of British Columbia, Canada, 2014.

[13] B. Goncharenko and V. Zaytsev, “Language Design and Im-
plementation for the Domain of Coding Conventions,” 2016,
submitted to SLE 2016, pending notification.

[14] L. Hua, M. Kim, and K. S. McKinley, “Does Automated
Refactoring Obviate Systematic Editing?” in Proceedings of the
37th International Conference on Software Engineering (ICSE),
Volume 1. IEEE, 2015, pp. 392–402.

[15] M. Keller and M. Nussbaumer, “CSS Code Quality: A Metric
for Abstractness; Or Why Humans Beat Machines in CSS Cod-
ing,” in Proceedings of the Seventh International Conference
on the Quality of Information and Communications Technology
(QUATIC), F. Brito e Abreu, J. P. Faria, and R. J. Machado,
Eds. IEEE Computer Society, 2010, pp. 116–121.

[16] M. Källén, S. Holmgren, and E. Þóra Hvannberg, “Impact of
Code Refactoring Using Object-Oriented Methodology on a
Scientific Computing Application,” in SCAM. IEEE Computer
Society, 2014, pp. 125–134.

[17] H. W. Lie and B. Bos, “Cascading Style Sheets, Level 1,”
W3C Recommendation, Apr. 2008, http://www.w3.org/TR/
2008/REC-CSS1-20080411.

[18] H. W. Lie, “Cascading Style Sheets,” Ph.D. dissertation, Uni-
versity of Oslo, Norway, 2005.

[19] R. Lämmel and V. Zaytsev, “Recovering Grammar Relation-
ships for the Java Language Specification,” Software Quality
Journal (SQJ); Section on Source Code Analysis and Manip-
ulation, vol. 19, no. 2, pp. 333–378, Mar. 2011.

[20] P. Mayer and A. Schroeder, “Automated Multi-Language Arti-
fact Binding and Rename Refactoring between Java and DSLs
Used by Java Frameworks,” in Proceedings of the 28th European
Conference on Object-Oriented Programming (ECOOP), ser.
LNCS, R. Jones, Ed., vol. 8586. Springer, 2014, pp. 437–462.

[21] D. Mazinanian, N. Tsantalis, and A. Mesbah, “Discovering
Refactoring Opportunities in Cascading Style Sheets,” in Pro-
ceedings of the 22nd Symposium on the Foundations of Software
Engineering (FSE). ACM, 2014, pp. 496–506.

[22] A. Mesbah and S. Mirshokraie, “Automated Analysis of CSS
Rules to Support Style Maintenance,” in Proceedings of the
34th International Conference on Software Engineering (ICSE),
M. Glinz, G. C. Murphy, and M. Pezzè, Eds. IEEE, 2012, pp.
408–418.

[23] E. A. Meyer, “Reset reasoning,” http://meyerweb.com/eric/
thoughts/2007/04/18/reset-reasoning/, 2007.

[24] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A
Comparative Study of Manual and Automated Refactorings,”
in Proceedings of the 27th European Conference on Object-
Oriented Programming (ECOOP), ser. LNCS, G. Castagna,
Ed., vol. 7920. Springer, 2013, pp. 552–576.

[25] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Cross-
language Program Slicing for Dynamic Web Applications,” in
ESEC/SIGSOFT FSE. ACM, 2015, pp. 369–380.

[26] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and
T. N. Nguyen, “Detection of Embedded Code Smells in Dynamic
Web Applications,” in Proceedings of the 27th International
Conference on Automated Software Engineering (ASE). ACM,
2012, pp. 282–285.

[27] J. J. Park, J.-E. Hong, and S.-H. Lee, “Investigation for Soft-
ware Power Consumption of Code Refactoring Techniques,” in
Proceedings of the 26th International Conference on Software
Engineering and Knowledge Engineering (SEKE). Knowledge
Systems Institute Graduate School, 2014, pp. 717–722.

[28] J. Patel, M. Wirthart et al., “Web Developers and the Open Web
Survey,” in Mozilla Developer Network, 2010, https://hacks.
mozilla.org/2010/11/its-all-about-web-developers.

[29] L. Punt, S. Visscher, and V. Zaytsev, “A Tool for Detecting and
Refactoring the A?B∗A Pattern in CSS,” in ICSME Artefact,
2016.

[30] ——, “Experimental Data for the A?B∗A Pattern in CSS: Inputs
and Outputs,” in ICSME Artefact, 2016.

[31] M. Rand-Hendriksen, “Why a CSS Reset should be
at the core of your stylesheet,” http://mor10.com/
why-a-css-reset-should-be-at-the-core-of-your-stylesheet,
2009.

[32] J. Ruderman et al., “Same-origin policy,” in Mozilla De-
veloper Network, 2005, https://developer.mozilla.org/en-US/
docs/Web/Security/Same-origin_policy.

[33] D. Silva, R. Terra, and M. T. Valente, “Recommending Au-
tomated Extract Method Refactorings,” in Proceedings of the
22nd International Conference on Program Comprehension
(ICPC), C. K. Roy, A. Begel, and L. Moonen, Eds. ACM,
2014, pp. 146–156.

[34] D. Steidl and S. Eder, “Prioritizing Maintainability Defects
Based on Refactoring Recommendations,” in Proceedings of
the 22nd International Conference on Program Comprehension
(ICPC), C. K. Roy, A. Begel, and L. Moonen, Eds. ACM, 2014,
pp. 168–176.

[35] G. Szoke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy, “Bulk
Fixing Coding Issues and Its Effects on Software Quality: Is It
Worth Refactoring?” in Proceedings of the 14th International
Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE Computer Society, 2014, pp. 95–104.

[36] G. Szoke, C. Nagy, P. Hegedüs, R. Ferenc, and T. Gyimóthy, “Do
Automatic Refactorings Improve Maintainability? An Industrial
Case Study,” in Proceedings of the 31st International Conference
on Software Maintenance and Evolution (ICSME), R. Koschke,
J. Krinke, and M. P. Robillard, Eds. IEEE, 2015, pp. 429–438.

[37] Tclose, Jhodges3, Bhill2, Gmaone, and Gmarkham, “Same ori-
gin policy,” in W3C Web Security Wiki, 2009, https://www.w3.
org/Security/wiki/Same_Origin_Policy.

[38] A. van Deursen, A. Mesbah, and A. Nederlof, “Crawl-Based
Analysis of Web Applications: Prospects and Challenges,” Sci-
ence of Computer Programming, vol. 97, pp. 173–180, 2015.

[39] Web Technology Surveys, “Usage of CSS for websites,” http:
//w3techs.com/technologies/details/ce-css/all/all, 2015.

[40] World Wide Web Consortium, “CSS Validation Service,” http:
//jigsaw.w3.org/css-validator.

[41] M. Zalewski, “Browser Security Handbook, part 2,” in
Google, 2008, https://code.google.com/archive/p/browsersec/
wikis/Part2.wiki.

http://www.w3.org/TR/2015/NOTE-css-2015-20151013/
http://www.w3.org/TR/2015/NOTE-css-2015-20151013/
https://www.w3.org/TR/2014/CR-css-syntax-3-20140220/
https://www.w3.org/TR/2014/CR-css-syntax-3-20140220/
http://www.w3.org/TR/2016/ED-CSS22-20160329/
http://www.w3.org/TR/2016/ED-CSS22-20160329/
https://www.codacy.com/patterns
https://github.com/CSSLint/csslint/wiki/Rules
https://github.com/CSSLint/csslint/wiki/Rules
https://www.w3.org/TR/selectors/
http://www.w3.org/TR/2008/REC-CSS1-20080411
http://www.w3.org/TR/2008/REC-CSS1-20080411
http://meyerweb.com/eric/thoughts/2007/04/18/reset-reasoning/
http://meyerweb.com/eric/thoughts/2007/04/18/reset-reasoning/
https://hacks.mozilla.org/2010/11/its-all-about-web-developers
https://hacks.mozilla.org/2010/11/its-all-about-web-developers
http://mor10.com/why-a-css-reset-should-be-at-the-core-of-your-stylesheet
http://mor10.com/why-a-css-reset-should-be-at-the-core-of-your-stylesheet
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
http://w3techs.com/technologies/details/ce-css/all/all
http://w3techs.com/technologies/details/ce-css/all/all
http://jigsaw.w3.org/css-validator
http://jigsaw.w3.org/css-validator
https://code.google.com/archive/p/browsersec/wikis/Part2.wiki
https://code.google.com/archive/p/browsersec/wikis/Part2.wiki

