
Patterns in M
odel Engineering at STAF 2015

One data fragment has several alternative
structural representations tailored toward
specific data manipulation approaches.

Vadim Zaytsev

Foreword by Eugene Syriani
Richard Paige

Steffen Zschaler
Huseyin Ergin

2015

Two-Faced Data

Vadim Zaytsev
Universiteit van Amsterdam, The Netherlands, vadim@grammarware.net

Intent
One data fragment has several alternative structural representations tailored
toward specific data manipulation approaches.

Also Known As
Concrete Syntax and Abstract Syntax; Data Binding; Model Views

Motivation
When modelling or programming, people tend to think in terms of conceptual
constructs: “inheritance” (of classes), “conformance” (of models to metamodels),
“conditional statement” (programming), “input” (data flow, side effects) and oth-
ers. In practice these conceptual entities are represented as concrete elements:
in textual form, in graphical diagrams, in memory blocks, etc. Since the actual
solution has to be expressed in such elements, this notation exposed to the lan-
guage end user, has great impact on the effectiveness of both the solution and
the process of modelling or programming.

Results from ontological analysis tell us that a mapping between a modelling
notation and an underlying domain model (in SE usually the Bunge-Wand-
Weber ontology [14]) should be bijective to avoid construct deficit, overload,
excess or redundancy [11]. While the right for existence of ontologically unclear
notations (with the latter three properties) is being disputed, ontologically in-
complete notations (the ones with construct deficit) have their place in environ-
ments that are deliberately limited for reasons of security or domain-specificity.

Success stories from updatable views in databases [2], synchronised model
views [1], data integration [12], serialisation [5] and structure editors [8] demon-
strate how it can be useful to have several systematic representations of the
same underlying constructs [4]. We argue that this pattern is universal to the
entire software language engineering and thus can be used across technical spaces
anywhere where a language has several user groups or application varieties.

Applicability
Use the Two-Faced Data pattern when

– You design a software language and must provide functionality in the entire
spectrum from parsing the textual input to advanced semantic consistency
validation like type checking. If you make your grammar too close to the
desired conceptual representation, you risk making it ambiguous, inefficient

mailto:vadim@grammarware.net

for parsing and/or not user friendly for the language users. If you make it too
close to the desired way of writing and reading sentences in the language, you
risk overburdening your traversals and rewritings with unnecessary details
concerning a particular textual representation.

– You want your software language to have both textual and visual concrete
syntax which are conceptually the same but technically get a different rep-
resentation each. Due to the “natural” flow of the textual representation
(usually left to right, character by character) and a much freer structure of
the visual syntax, elements that correspond to the same entities may not only
be represented differently individually, but also appear in different order.

– Structured data that you are working with, needs to be serialised — for stor-
age, communication or reserve. However, using the existing textual syntax
would mean losing the structure and may imply future overhead and/or am-
biguity in deserialising such data. Hence, you develop a yet another format
which conceptually represents the same structure of the same data, but is
more suitable for marshalling and unmarshalling.

Structure

Participants and Collaborations
The same language (yellow box on the megamodel) can be defined by different,
possibly incomplete, metamodels, and thus the models that conform to them,
correspond to the same language instances, but belong to different technological
stacks and thus can be effectively used with different algorithms. Functions Fk

are used in a broad sense and can represent true functions like sorting or traver-
sals, as well as other data manipulation activities such as editing or validation.

Implementation
Consider the following implementation issues:

– If the “faces” of the data allow interaction, you need some set of bidirec-
tional update mappings; these imply overhead which might outweigh the
advantages of using the faces.

3

– One of the “faces” can be dominant within a domain for historical reasons and
so advanced that over the time it developed all necessary algorithms usually
associated with other faces — e.g., concrete syntax in metaprogramming [13].

– Some mapping need to bridge a semantic gap between “faces” that cannot
be fully bridged — e.g., ADT vs OO [3].

– In scenarios with more than two “faces” it gets too complex to develop direct
mappings for each pair; in that case it is better to consider a star-shaped
infrastructure with one canonic representation which is capable of synchro-
nising with any of the other ones.

– When metamodels are well-defined and their differences are explicitly ex-
pressed, we can do coupled transformations [9] — that is, infer model-level
mappings from metamodel-level ones. This has been done for various tech-
nical spaces: modelware [6], grammarware [15], databases [7], xmlware [10].

Related Patterns
Adapter; Bridge; Visitor; Interpreter.

References
1. M. Antkiewicz and K. Czarnecki. Design Space of Heterogeneous Synchronization.

In GTTSE’07, volume 5235 of LNCS, pages 3–46. Springer, 2008.
2. F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. ACM

TODS, 6(4):557–575, 1981.
3. W. R. Cook. On Understanding Data Abstraction, Revisited. In OOPSLA, pages

557–572. ACM, 2009.
4. K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger. Bidirec-

tional Transformations: A Cross-Discipline Perspective. In Theory and Practice of
Model Transformations, pages 260–283. Springer, 2009.

5. K. Fisher and R. Gruber. PADS: A Domain-specific Language for Processing ad
hoc Data. In PLDI, pages 295–304. ACM, 2005.

6. T. Gîrba, J. Favre, and S. Ducasse. Using Meta-Model Transformation to Model
Software Evolution. ENTCS, 137(3):57–64, 2005.

7. M. Gogolla and A. Lindow. Transforming Data Models with UML. In Knowledge
Transformation for the Semantic Web, pages 18–33. IOS Press, 2003.

8. Z. Hu, S.-C. Mu, and M. Takeichi. A Programmable Editor for Developing Struc-
tured Documents Based on Bidirectional Transformations. Higher-Order and Sym-
bolic Computation, 21(1–2):89–118, 2008.

9. R. Lämmel. Transformations Everywhere. SCP, 52:1–8, 2004.
10. R. Lämmel and W. Lohmann. Format Evolution. In RETIS, volume 155, pages

113–134. OCG, 2001.
11. D. L. Moody. The “Physics” of Notations: Toward a Scientific Basis for Construct-

ing Visual Notations in Software Engineering. IEEE TSE, 35(6):756–779, 2009.
12. J. Oliveira. Transforming Data by Calculation. In GTTSE’07, volume 5235 of

LNCS, pages 134–195. Springer, 2008.
13. E. Visser. Meta-programming with Concrete Object Syntax. In GPCE, volume

2487 of LNCS, pages 299–315. Springer, 2002.
14. Y. Wand and R. A. Weber. An Ontological Model of an Information System. IEEE

TSE, 16(11):1282–1292, 1990.
15. V. Zaytsev. Coupled Transformations of Shared Packed Parse Forests. In D. Plump,

editor, GCM, volume 1403 of CEUR, pages 2–17. CEUR-WS.org, 2015.

4

