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Abstract. In the last decade, there have been several fundamental ad-
vances in the field of ontological and linguistic metamodelling. They
proposed the use of megamodels to link abstract, digital and physical
systems with a particular set of useful relations; the distinction between
ontological and linguistic layers, identification and separation of them;
even formalised the act of modelling and the sense and denotation of a
language. In this paper, we propose second order intensions and exten-
sions to more closely model linguistical and ontological conformance and
mapping.

1 Formal modelling of languages

In the classic theory of formal languages, a language L is defined as a set of
sequences of alphabet symbols: L ⊆ Σ∗ [9]. This definition is easily applica-
ble to textual languages (traditionally associated with programming) and visual
languages (traditionally associated with modelling). It is also almost trivially
generalisable to graph languages by substituting the reflexive transitive closure
in the definition by another operation that (usually recursively) constructs all
possible valid language instances from symbols of the alphabet. Even then, all
manipulations with the language are done as if it were a set of language instances.
For example, a parser is generally considered a mapping from the textual lan-
guage to the tree language in that it assigns a valid parse tree to each valid
textual input [18]. Hence, the only relation that is needed to formally describe
such processes is an element of (∈ or ε) relation with rare exceptions like gener-
alised parsers [16] that associate one textual input with a set of several possibly
valid parse trees. Since in practice such mapping usually gets implemented to
output a representation of a set instead of the actual set itself, such cases are
more sidesteps than real exceptions: the range of a general parser is a set of parse
forests, and each output in an element of this set.

Traditional metamodelling abandons the concept of a language in favour of
a modelling layer [14,15]. The formal arsenal is expanded to a strict hierarchical
structure: the lowest layer is too close to real life to formally decompose and
study (e.g., raw data, real life objects, concrete systems), the highest layer is
so abstract that it is self-descriptive, and the middle layers Mi contain entities
that model entities from the layer below (Mi−1) and are expressed in languages
defined by entities from the layer above (Mi+1). Thus, user data is expressed
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Fig. 1. A grammar G is a model of a language L, it is also a metamodel for the
program P to conform to. The said program P is an element of the language L and
it models a real system S. (The example demonstrates a megapattern of metamodel
conformance [6, Fig.8]).

in user concepts that use UML concepts; UML concepts model user concepts in
MOF; and MOF models UML concepts and defines both a language for them
and a metalanguage for expressing itself. In this view, a new relation emerges:
an instance of (we will denote it as ι), which is more abstract than the ε relation
since it works formally even in situations when a set of all valid models cannot be
expressed or when it does not make sense conceptually to express it. For example,
an object is an instance of its class, and it is much less interesting to consider
the set of all possible objects of a class than to investigate the nature of this
instantiation and the consequences thereof. Since instantiations is sometimes
hard to express universally, we also speak of a conforms to (χ) relation [2]:
a model conforms to a metamodel, an object conforms to a class, a program
conforms to a programming language, a database conforms to a schema. Since
this theory is rooted in the modelling community, relations ι and χ are commonly
used together with a representation of relation µ used in the conceptual sense: an
object Cat models a real cat even though there might be no “language of cats” and
the construction of a set of all possible cats is often unnecessary. Relations can
be diagrammatically combined to form so called megamodels [3,6,5], an example
shown on Figure 1.

Formal metamodelling distinguishes between two kinds of instance of rela-
tions: the linguistic instance of and the ontological instance of [1]. This com-
plicates the metamodelling process somewhat but removes most ambiguity as-
sociated with the ι relation: the object Fluffy models a very particular cat and
it is both an ontological instance of a class Cat (because Fluffy the real cat is
a conceptual instance of cats in general) and a linguistic instance of an Object
(because it needs to belong to a certain class, to be instantiated in a certain
way and obey other constraints typical for all objects but not for all cats). An
example is given on Figure 2 and is easily extensible to new ontological levels:
cats are ontological instances of species, which are ontological instances of a
biological rank [1, Fig.5] — and the formalisation still allows us to distinguish
these modelling statements from ones that stay within one ontological level (i.e.,
that cats are pets, carnivores, mammals, animals, etc — in the object-oriented
technological space this is called inheritance). Adding more languages and trans-
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Fig. 2. The linguistic (on the left) and ontological (on the right) metamodelling views
on the same megamodel. Fluffy is a cat (instance of a concept of a cat or an element
in the set of all cats). Fluffy is modelled (µ) by an object F which is a linguistic
instance (ιL) of an object (O) and an ontological instance (ιO) of a class Cat (C).
The object O is in an instance-type relation to T . Columns on the left and rows on
the right roughly correspond to ontological levels; rows in the left and columns on
the right roughly correspond to language levels or modelling layers. (The example is a
simplified/adapted version from [1, Figs.2,3]).

formations into the megamodel is somewhat more problematic due to the grid
nature of the diagrams and to the lack of definitions of ontological instantiation
for some languages. Coming back from biology to computer science, this allows
us to properly specify that a particular program is a (linguistic) instance of say
Java, but an ontological instance of a database application and as such, also
obeys a set of structural and behavioural rules.

The next step in refining the theory of metamodelling of megamodels was
separating the intensional and the extensional parts of the language [7]. The
extensional part is argued to be the set of models allowed in the language. The
intensional part models constrains and properties that are characteristic to the
instances of the language. If such a distinction is introduced, the meaning of
being the “instance of” something becomes ultimately apparent: the model in
question must conform (χ) to the intensional part and it is an element (ε) of the
extensional part. Since the extension of an abstract system always resides on the
lower ontological level, the diagram is also nicely composed of tiles of the meta-
level entry and its intentional part on top and its extensional part (the set of valid
instances) and the model-level entry that conforms to the intensional part, is an
element of the extensional part and is at the same time an instance of the abstract
system. An example migrated from the technological space of cats, dogs, breeds
and animals, to programming languages, can be seen on Figure 3 (read δ∧ as “has
intension” and δ∨ as “has extension”, as δ was often used for “decomposed in”).
In general, tiles like these can always substitute the megapattern from Figure 1,
it is in fact its ontology-aware refinement.
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µ−→ a particular Haskell program

H
µ−→ the Haskell language

∨H
µ−→ set of all valid Haskell programs

∧H
µ−→ constraints imposed on a Haskell program

L
µ−→ a programming language

∨L
µ−→ set of all programming languages

∧L
µ−→ properties that make up a language

Fig. 3. Two tiles on the left diagram show how an abstract system (a language) H
or L is decomposed into an intensional part ∧X and an extensional part ∨X. Haskell
(H) is a programming language (L), so it is an instance (ι) of a language. This means
it conforms (χ) to the intension of being a language (∧L) and is an element (ε) in the
set of all programming languages (∨L). Similarly, P is a program in Haskell, so it is an
instance of H, it conforms to ∧H and is an element of ∨H. (The example is ported to
a more fitting technological space from [7, Fig.7]).

2 The role of a grammar

In the domain of programming languages, one often speaks of a conformance of
a program to the grammar of the language in which the program was written in.
Is such a grammar the same as the intensional part of the language? (G = ∧L?)

The answer given by the formal language theory is yes — however, this
theory has a slightly different megamodel of the situation: since a language is
equated with its extensional part, the “instance of” relation is equated with the
“element of” relation. Furthermore, instead of the language being decomposed
into two parts, its intension is treated as a model of its extension (which is
typically infinite, so it helps to have a finite model of it). The result is depicted
on Figure 4 in the same style we have used so far. As an example we can consider
the technological space of XML: then P is an XML document, G is a DTD or an
XML Schema definition, the validator uses G to check P χ−→ G and programs
in XSLT, XQuery, JavaScript and other languages can be written to work on
elements of L.

In a more general case, the role of a grammar is the G µ−→ L chain is called
generative or derivational and is used in most proofs in the theory of formal
languages and automata. Its role in the P χ−→ G chain is called analytical and
is often utilised by using it prescriptively [8] and generating a parser out of it.
What does such a parser do? In the simplest case, it analyses the text of the
program and constructs a term that aligns tokens (lexemes) of the input with
its understanding of how the structure of any program should look like. This
already does not fit our picture at all, and we lack means to express that not
only the grammar serves in at least two different roles, but also the language
apparently at the same time is a language of strings (that are acceptable inputs
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Fig. 4. The formal language theory view on relating languages and instances: the
program P is an encoding of a solution JP K, which is an element of the formal language
L and conforms to the grammar G. The grammar G is also a finite model of a (typically
infinite) language instance set L. The conceptual language L is implicit and utterly
intangible, and its instantiation is never discussed explicitly.

for a parser) and a language of terms or trees (that are outputs of a parser).
An attempt to fit this transformational megapattern into our view is shown on
Figure 5: a grammar G serves a model of both two languages (textual and tree
language) and the mapping between two representations of the same program
(the text and the parse tree). However, since LC and LT are implicit, we cannot
make any statement about the relation between LT and LC , which makes the
megamodel a bit less useful.

This multipurposefulness of grammars in a broad sense is unfortunate from
the modelling point of view, but it explains their omnipresence in software en-
gineering [10]. In terms of modelling modelling1, G µ

 X for all megamodel
elements X related to G: they share some intention and can be partially repre-
sented by one another [13]. We will explore this intersection in the next section
and make it explicit.

In practical software language processing, grammars try to balance in be-
tween all these roles, with a varying degree of success. In certain cases, people
separate some constraints (traditionally called static semantic rules) that are
too hard to express in the chosen grammar formalism and are purely related to
G

µ−→ L and P χ−→ G; in other cases (in particular related to mapping between
already structured concrete syntax and an improved abstract syntax) there could
be several grammars defining separate languages, with G µ−→ τ included in one
of them or shipped as a third separate artefact.

Interestingly, the role of a language in modelware engineering is slightly dif-
ferent yet also not perfect. Consider the following statement [13]:

F
µ−→ L

µ−→
{
M |M µ−→ S

}
What is stated here is that the formal system F truthfully models a language

L which in turn models a set of modelsM such that they all model the system S.

1 NB: the original MoDELS 2009 paper used “|µ ” for shared intention instead, we use
a much more fitting notation from the extended journal version.
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Fig. 5. The classic grammar theory view on relating languages and instances: the text
of the program PT and a concrete parse tree PC both model the conceptual program
(algorithm) JP K and both conform (χ) to the grammar G which acts as a model (µ)
of both the string language LT and the tree/term language LC viewed as the sets
of their corresponding instances. The same grammar G simultaneously models the
transformation between text instances and tree instances. Conceptual languages LT
and LC remain intangible, denotation JP K might exist in a form of flow diagrams.

If represented diagrammatically on Figure 6, we see the main differences between
our approach and the method of Muller et al: instead of being decomposed into
an intension and an extension, the language is considered to be a model of its
extension, and its intension (grammar in a broad sense, some kind of formal
model by requirements) is considered to be its model. Furthermore, there is no
explicit consideration for the conformance between the models and this formal
definition.

3 Second order to the rescue

As we have seen, the grammar of a software language is its intensional part (or
approximates it very closely). Let us deconstruct it further. For ∧Collie, Gaše-
vić et al claimed it was a model of the real world intension of the concept of a
collie, combining properties such as “has long hair”, “has bushy tail” and “can
herd sheep” [7]. For a programming language, the intension is a model of two
kinds of properties: essential (“supports parametric polymorphism”, “uses lazy
evaluation”, “contains a conditional statement which must contain a condition
and a statement”, “variable names should start with a letter”) circumstantial
(“functions have comma-separated arguments”, “statement blocks are defined by
indentation”, “one statement per line of code”). The essential properties refer to
the way the language concepts are constructed and manipulated — therefore,
their model is the intension of the intension of the language (∧∧L). The circum-
stantial properties refer to the way the concepts of the language are represented
in the instances — in other words, how language instances (elements of ∨L) are
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Fig. 6. Modelling modelling modelling: all models M that model a system S, are
collected in a set ∨L. The language L is considered to be a model of its extension, and is
in turn modelled by a formal system F which is conceptually its intension which remains
disconnected from the model M . (This example is a diagrammatic representation of
[13, Fig.17]).

constructed; hence, it is the intension of the extension of the language (∧∨L).
The extension of the intension is even more interesting because it is supposed
to collect examples of how the intensions can be expressed: it is a collection of
all possible syntaxes for a language. To the best of our knowledge such an entity
has not yet been formally investigated, but if it also represented as a set, the
intension of the extension is an element of that set; otherwise it is still bound to
be an instance of ∨∧L. The resulting diagram is depicted on Figure 7 with the
decomposition, conformance and instantiation relations.

Since now we have ∧∧L to denote the constraints essential to the language
L, it should be the same for all related languages. Indeed, if the modelling
intent [17] is limited to this essence, and a grammar that respects it, it also
models all variants of languages closely without any regard to the choice of ∧∨L.
In other words, for µ′ = µ/∧∧L,

∨LT
µ′

←− G µ′

−→ ∨LC

This result agrees with the “shift in linguistical conformance” by Muller et
al [13] (when talking about mapping among models with the same intent) and
with the “constant functions all the way down” by Dowty et al [4] (when talking
about intensions of intensions). The final diagram is presented on Figure 8: a
“real” program can be encoded by a programmer as either text (conforming to
∧∨LT ) or a tree (conforming to ∧∨LC), and as long as the intension of the inten-
sion is preserved (PT

χ−→ ∧∧L), the languages stay same but different and valid
instances can be freely mapped in any direction. The same holds for mappings
between abstract syntax and concrete syntax, up to a homomorphism (such map-
pings often permute arguments and perform other component rearrangements).

4 Concluding remarks and related work

In short, we have proposed to consider four components of software languages:
intension-intensions (conceptual constraints to always conform to); extension-
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Fig. 7. The language L is decomposed (δ) into its intensional (∧L) and extensional
(∨L) parts. They are, in turn, decomposed in the same fashion. The extensional part ∨L
is a set, so the extension of the extension ∨∨L is the same set. However, the intension
of the extension ∧∨L represents structural constraints of the elements of the set, while
the intension of the intension ∧∧L represents linguistic constraints that refer to the
intensional language and not to its accidental representation. The extension of the
intension ∨∧L represents a model of possible syntactic representations of programs in
the language: it is modelled by a simple set, the particular syntax ∧∨L is an element
of that set, otherwise it is still bound there in an instance of (ι) relation.

extensions (sets of valid language instances in a given notation); intentions of
extensions (circumstantial constraints specific to the chosen syntax but not the
the language as such); extensions of intensions (models of possible syntaxes com-
patible with the language core), in a hope that it brings us closer to understand-
ing the nature of modelling languages and various artefacts related to them. In
previously existing work, languages are mostly considered either with a fixed
syntax or with two or three of them which are also fixed and claimed to be
related to different aspects of language processing. This work can serve as a
foundation for formal manipulation of languages with multiple syntaxes, or sys-
tems where “the same” language is claimed to be used across technical spaces
(ORM, parsing, convergence, etc).

For the sake of clarity and conciseness of notation, we have opted for the
use of commutative diagrams to represent megamodels instead of using any of
the existing megamodelling languages. We have adopted Favre’s symbols for re-
lations: µ as “models” or “representation of”; ε as “element of”, χ as “conforms
to”. Atkinson and Kühne did not have a shorthand notation so we used ιO for
“ontological instance of”, ιL for “linguistic instance of” and just ι for “instance
of” where the meaning is unknown or universal. We have adopted Montague no-
tation: ∧L for intensions and ∨L for extensions. We also took the liberty of using
JP K for denotations of single instances — in formal semantic theory denotation
is equated to extension but in the current state of multi-level metamodelling
we do not yet need to differentiate between ∧P and ∨P . However, in the future
research on multi-language modelling, we recommend to consider substituting
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Fig. 8. Each language shown — the textual language LT and the concrete tree lan-
guage LC — are decomposed (δ) into their intensions (∧Lx) and extensions (∨Lx),
which are in turn also decomposed into their intensions and extensions. The denota-
tion of a program (JP K) is modelled by two entities: the program text (PT ) and its
concrete parse tree (PC). They follow the same megapatterns: each Px conforms (χ)
to both the intension of the extension of the corresponding language (∧∨Lx) and the
intension of the intension of the language (∧∧Lx). Each Px is also an element (ε) of
the extension of the language (∨Lx). The intension of an extension (∧∨Lx) is an in-
stance (ι) of the extension of the intension (∨∧Lx), and in the simplest case also just
its element.

JP K with ∧P and using ∨P for the hypothetical set of all possible representations
of a program P .

The notion of commitment to grammatical structure was discussed by Klint,
Lämmel and Verhoef [10], and recently was elaborated by a megamodel of various
software language engineering artefact kinds such as parse trees, visual models,
lexical templates, etc, in the context of (un)parsing in a broad sense [18]. The
contribution of this paper to that trend was showing that concrete syntaxes are
ontological instances of the abstract syntax (more precisely, ∧∨L ι−→ ∨∧L). The
idea that a software language should be allowed to have different syntaxes while
staying essentially the same language, is not new but has always been rejected
by formalisations.

Atkinson [1], Bézivin [3], Favre [6], Gašević [7], Kühne [11], Muller [13] and
many others have made significant contributions to comprehension and refine-
ment of the processes of modelling, metamodelling and megamodelling. This
paper is an endeavour to contribute to that trend by making a yet another step
in improving the formalisations, as well as by providing concrete examples from
software and grammarware engineering, even when they seemed less suitable
to discuss ontological matters than the classic Lassie/Fido – Collie – Breed ex-
ample. We hope such results will both help to identify problems we can solve
in the future and bring less meta-minded modelling practitioners and language
engineers closer.
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Apart from the Fregean perspective on intensional logic, Montague consid-
ered a Russelian variant where the extension of the intension (called the “sense
denotation”) is not a fundamental concept [12]. It has proven to be less useful
to him, but in software language engineering this idea has never even been tried
yet.
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