
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets, c© JOT 2013

Online at http://www.jot.fm.

Negotiated Grammar Evolution

Vadim Zaytsevab

a. Software Analysis & Transformation Team (SWAT), Centrum Wiskunde
& Informatica (CWI), Amsterdam, The Netherlands

b. Universiteit van Amsterdam, Amsterdam, The Netherlands

Abstract In this paper, we study controlled adaptability of metamodel
transformations. We consider one of the most rigid metamodel evolution
formalisms — automated grammar transformation with operator suites,
where a transformation script is built in such a way that it is essentially
meant to be applicable only to one designated input grammar fragment. We
propose a new model of processing unidirectional programmable grammar
transformation commands, that makes them more adaptable. In the
proposed method, the making of a decision of letting the transformation
command fail (and thus halt the subsequent transformation steps) is
taken away from the transformation engine and can be delegated to the
transformation script (by specifying variability limits explicitly), to the
grammar engineer (by making the transformation process interactive),
or to another separate component that systematically implements the
desired level of adaptability. The paper investigates two kinds of different
adaptability of transformation (through tolerance and through adjustment),
explains how an existing grammar transformation system was reengineered
to work with negotiations, and contains examples of possible usage of this
negotiated grammar transformation process.

Keywords Tolerance, soft computing, grammar transformation, meta-
model evolution, extreme modelling.

1 Motivation

Some metamodel transformation formalisms and instruments are more adaptable than
others. One of the most rigid ones is grammar transformation with operator suites.
Within this approach, a collection of well-defined transformation operators with well-
understood semantics is provided, and those operators are supplied with arguments
and the input grammar, so that the output grammar can be derived automatically. The
transformation scripts are stored in the form of, in fact, partially evaluated operators,
for which the arguments have already been provided, but the input grammar is not a
part of such a transformation script. Thus, for example, if renameN is an operator
that changes the name of one nonterminal symbol, then renameN(a, b) is a valid

Vadim Zaytsev. Negotiated Grammar Evolution. In Journal of Object Technology, vol. 13, no. 3, 2014,
pages 1:1–22. doi:10.5381/jot.2014.13.3.a1

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2014.13.3.a1
http://dx.doi.org/10.5381/jot.2014.13.3.a1

2 · Vadim Zaytsev

transformation command. However, suppose that the symbol a disappears from the
original grammar (due to some evolution happening concurrently: renaming, unfolding,
slicing, etc) — this makes the command of renaming it, inapplicable directly. This tight
coupling between the shape of the input grammar fragment and the transformation
step that is supposed to work on it, makes programmable grammar transformations
rather fragile and prevents effective manipulation of such a system. (We say “fragment”
to emphasize that the grammar transformation scripts are not necessarily applicable
to only one specific grammar, but rather to any grammar that includes the expected
fragment that satisfies a certain set of constraints. However, such “fragment” is not
always sequential, it is in fact more of a slice — for instance, in the abovementioned
example with renaming a to b, the applicability condition concerns presence of any
production rules defining or referring to a).

The focus of this paper is specifically on adaptable grammar transformation ap-
proaches. Prior research on adaptability in grammarware mostly concerns adaptation
of grammars towards a specific cause [DCMS02, HRK11, KLV02, Läm01, Läm05,
LW01, LZ11, ZLvdS+14]; while adaptation and co-adaptation of grammar transfor-
mation scripts remains a much less popular topic [Läm04, LR03], thus far from being
convincingly covered. In particular, no previous work on programmable grammar ma-
nipulation with operator suites [Läm01, LV01, LW01, KLV02, Läm05, LZ11, Zay12b]
considered grammar transformation adaptability explicitly.

In section 2 we revisit some background aspects, mostly related to grammar
programming with the XBGF operator suite, and its model-related properties, and
frame the contributions in a broader context by discussing research topics directly
linked, relevant or conceptually close to the presented work. We note that the
problem being solved is not at all specific to the XBGF which was used as the
backend for our prototypes [ZLvdS+14]. Coarse grammar transformations redefining
nonterminals entirely or adding new production rules to them, which are commonly
found in metaprogramming frameworks [DCMS02, KLV02] and parser combinator
libraries [SD96, Swi01], are robust to a greater extent. However, there is usually no
control over the kind of adaptation we will experience: tolerance or adjustment —
section 3 follows with introducing and discussing both. Finer grammar transformations
that can, for example, fold a symbol sequence as a definition of a new nonterminal
(cf. the example at the end of section 5) or change one particular repetition from
the “one or more” kind to the “zero or more”, that are possible with frameworks like
GRK [Läm05] or FST [LW01], are also prone to any kind of change in the source
fragment of the input grammar, and easily are rendered inapplicable without a clearly
traceable way to prevent it, so for them the addressed problem stands just as firm.

In section 4 we propose a method for making grammar transformation scripts more
adaptable. In short, the method entails clear separation of applicability assertions from
the actual transformation actions, and reformulating the former in a way that allows
it to send suggestions back to the user instead of simply refusing to work. Section
4.3 provide details on the prototype implementation of the proposed method, which
is publicly available for inspection and replication in its entirety through the open
source repository of Software Language Processing Suite [ZLvdS+14]. In section 5 we
list some advantages and possible uses of the proposed model. The paper is concluded
with section 6 briefly revisiting all main contributions.

Sections 3 and 4 extend the material previously presented at the Extreme Modelling
Workshop at MoDELS 2012 [Zay12c].

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a1

Negotiated Grammar Evolution · 3

2 Background and related work

BGF, or BNF-like Grammar Format, is being used within various grammar-relared
projects at least since 2009 [LZ09], as a common internal format for storing grammars.
Most of these projects are available for inspection at the open source repository of
Software Language Processing Suite, or SLPS [ZLvdS+14]. The expressiveness of BGF
is comparable to that of an EBNF dialect: in fact, it was designed specifically to cover
features typically found in various EBNF dialects: it contains terminals, nonterminals,
repetitions, sequences, choices, etc [Zay12a]. Since implementation details are not the
main focus of this paper, BGF fragments are intentionally left out.

XBGF, or Transformations of BGF, is of greater importance for us. It is an operator
suite consisting of over 50 different operators, originally developed for grammar
convergence [LZ09, Zay11] and received multiple applications since then [LZ11, ZL11,
Zay12b, Zay14c]. Its complete description is available as a reference manual1, an XML
Schema definition2, a Prolog interpreter3 and a Rascal interpreter4 [ZLvdS+14]. The
behaviour of many operators is rather sophisticated, but for the purpose of reading
this paper, the awareness of the following operators will suffice:

• bypass() — a trivial operator that takes no parameters and propagates the
input grammar without changing it;

• factor(x, y) — an implementation of basic algebraic factorings based on asso-
ciativity, distributivity and commutativity;

• introduce(n ::= rhs) — defines a previously unused nonterminal and adds it to
the grammar;

• eliminate(n) — removes existing definitions of a nonterminal symbol which is
unused in the rest of the grammar;

• widen(x, y) — generalises a metaproperty (e.g., turns a one-or-more repetition
to a zero-or-more);

• define(n ::= rhs) — defines a used but previously undefined nonterminal;

• renameN(a, b) — globally changes the name of a nonterminal symbol;

• fold(n) — for a previously defined nonterminal, traverses the grammar and
replaces any occurrences of the right hand side of its definition with a reference
to it;

• extract(n ::= rhs) — same as fold, but first introduces a previously unknown
definition to the grammar;

• unfold(n) — the opposite of fold: replaces all occurrences of a nonterminal by
its definition;

• disappear(p,m) — prohibits the use of a previously optional element;

• permute(p, q) — changes the order in a sequence;

1http://slps.github.io/xbgf
2http://github.com/grammarware/slps/blob/master/shared/xsd/xbgf.xsd
3http://github.com/grammarware/slps/blob/master/shared/prolog/xbgf1.pro
4http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/XBGF.rsc

Journal of Object Technology, vol. 13, no. 3, 2014

http://slps.github.io/xbgf
http://github.com/grammarware/slps/blob/master/shared/xsd/xbgf.xsd
http://github.com/grammarware/slps/blob/master/shared/prolog/xbgf1.pro
http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/XBGF.rsc
http://dx.doi.org/10.5381/jot.2014.13.3.a1

4 · Vadim Zaytsev

Operator [LZ09, LZ11, ...] Group [LZ11] Class [CREP08] Delta [GKP07]

bypass() preserving updative not breaking
factor(x, y) preserving updative not breaking
introduce(n ::= rhs) preserving additive not breaking
eliminate(n) preserving subtractive not breaking
widen(x, y) increasing additive not breaking
define(n ::= rhs) revising additive not breaking
renameN(a, b) preserving updative resolvable
fold(n) preserving additive resolvable
extract(n ::= rhs) preserving additive resolvable
unfold(n) preserving subtractive resolvable
disappear(p,m) decreasing subtractive resolvable
permute(p, q) revising updative resolvable
concretize(p,m) revising additive resolvable
abstractize(p,m) revising subtractive resolvable
project(p,m) revising subtractive resolvable
narrow(x, y) decreasing subtractive unresolvable
inject(p,m) revising additive unresolvable
replace(x, y) revising — unresolvable

Table 1 – A representative excerpt from the XBGF operator suite. Among operands, a, b, n
are nonterminals, p, q are production rules, x, y are grammatical expressions, m are
markers. A “preserving” transformation preserves the language defined by the gram-
mar, an “increasing” or “decreasing” one makes it larger or smaller, and a “revising”
operator can have other outcomes [LZ11]. An “updative” transformation preserves
the size of the modelling space, an “additive” or “subtractive” transformation makes
it larger or smaller [CREP08]. A “not breaking” metamodel transformation does not
invalidate language instances, a “resolvable” one implies an algorithm for automatic
coevolution, and an “unresolvable” requires manual work or extra data [GKP07].

• concretize(p,m) — injects a bit of concrete syntax;

• abstractize(p,m) — projects a bit of concrete syntax;

• project(p,m) — projects an arbitrary element (removes it from a sequence);

• narrow(x, y) — the inverse of widen, restricts a metaproperty;

• inject(p,m) — adds a new element at an arbitrary place;

• replace(x, y) — globally replaces any expression by any other expression.

XBGF has many more operators, and finds its uses in grammar recovery (for
correcting mistakes in the original grammar-containing artefacts or ones introduced
by the automated extraction process), grammar specialisation (for automatically
deriving a tool-specific grammar from a baseline grammar), grammar convergence (for
validating claims about language or grammar equivalence), grammar beautification
(for increasing readability of a grammar), technological space travel (transforming a
grammar in a narrow sense to a database schema or a class diagram to an algebraic
data type), etc.

Many authors — in particular, Herrmannsdörfer et al [HBJ09, HVW11], Cicchetti
et al [CREP08], Wachsmuth [Wac07] — have previously considered, proposed or
analysed metamodel transformation operators that are somewhat similar to grammar
transformation operators. In this paper, we have limited ourselves to grammar
evolution not only because grammars are considered somewhat simpler than arbitrary

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a1

Negotiated Grammar Evolution · 5

metamodels, but also because metamodel evolution scripts are traditionally written in
a more adaptable way, so they suffer less from the problem we are solving here. On
the other hand, they are too coarse to replace state-of-the-art grammar transformation
operators: generally considered metamodel transformation operators rarely go beyond
renaming, moving and folding/unfolding. However, in Table 1 we try to summarise
the operators introduced above, from the metamodeling point of view.

In previous work on XBGF [LZ09, LZ11, ...] we have differentiated between the
following groups of transformation operators:

• language preserving : the software language defined by the grammar, is not
influenced by the change expressed by such an operator with any operands;

• language increasing : the software language defined by the grammar, becomes
bigger if this operator is used to express the change;

• language decreasing : the software language defined by the grammar, becomes
smaller if this operator is used to express the change;

• language revising : the change expressed by this operator, can increase, decrease
or redefine the language in a different way, depending on the operands.

We also reuse the terms “updative”, “additive” and “subtractive” from the work of
Cicchetti et al. [CREP08]. These metamodel transformation classes are defined based
on the modelling space, which is preserved, increased or decreased respectively. We
extend Table 1 with operators that show that increasing the modelling space is not
the same as increasing the language defined by a grammar. Grushko at al. [GKP07]
propose to differentiate between metamodel deltas by looking at their impact on the
conforming models: according to them, there are “not breaking” metamodel deltas that
do not require any adjustment of the language instances, and two kinds of “breaking”
deltas: a “resolvable” one that can be resolved by a generally applicable algorithm,
and a “unresolvable” one where at least some cases exist that prevent the existence
of such an algorithm. Typically unresolvable deltas involve adding an entity without
a default value or removing an entity that was in use elsewhere. Herrmannsdörfer
et al. [HBJ09] use a similar classification, geared more towards the reuse of such
coevolution algorithms: in their eyes, all “not breaking” operators from Table 1 are
“metamodel-only” changes, all “resolvable” are either “metamodel-specific” if operands
are considered or “metamodel-independent” if operators are considered independently
from them, and the rest are “model-specific” since they require grammar engineer’s
input during the migration process.

Kniesel and Koch [KK04] describe an idea of a “refactoring editor” that is capable
of composing conditional transformations statically in OR-sequences in the style of
Opdyke [Opd92] or AND-sequences in the style of Roberts [Rob99]. Such an extensive
framework does not exist yet for grammar transformation: a transformation script
for grammarware is a sequential list of transformation commands that only fails or
succeeds at run time (cf. section 4). There is some evidence that static and safe
composition of transformations is desirable and achievable for adjacent topics such as
software evolution [Men99] and model evolution [HKA11].

Meyers and Vangheluwe [MV11] show four scenarios of coevolution: “model evolu-
tion” when a model is changed without any metamodel changes, “domain evolution”
when a source metamodel changes, “image evolution” when the change concerns the
target metamodel and “transformation evolution” when the transformation script

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a1

6 · Vadim Zaytsev

changes, leading to necessary changes in the target metamodel. In fact, this definition
generalises views found in coevolution research about data, code, grammars, schemata,
databases and scripts [HTJC94, CH06, BCPV07, VV08]. On Figure 1 we can see
how easy the case of image evolution is for grammarware, if the coupled model-level
transformations are either not considered or left implicit — grammar transformation
scripts can be just concatenated. The following sections of the paper will mostly
concern domain evolution.

As we will see in detail in subsection 4.3, each operator is described as an applica-
bility condition and a grammar rewriting algorithm (and possibly a postcondition).
They are all parametrised: a sequence of operator calls with all operands specified,
is referred to as a transformation script. Software language preserving properties of
such a script are determined strictly by the operators used within it (which define
dependencies among operands) and by the chosen semantics (string-based, tree-based,
generative, analytic, etc), since “grammars in a broad sense” are pure structural
definitions that can assume different semantics under various circumstances [KLV05].
In the presence of an input grammar, a transformation script can be applied to obtain
the resulting grammar or fail while trying.

Another family of extreme modelling methods of inconsistency management of
concurrent transformations, allows conflicts to not be resolved on the spot. Such
inconsistencies can be represented as separate first-class entities [CRP07] and incor-
porated directly to the resulting model [KNHH10], which enables efficient handling
of inconsistency detection and resolutions as graph transformation rules [MSD06].
These approaches can be used together with negotiated grammar transformation,
as an alternative to it, or as implementation of the advanced negotiations impact
propagation.

Besides a small Prolog example, in the next sections we will mostly see software
language processing code in Rascal [KvdSV09]. This is the metaprogramming language
of our choice and the one where XBGF grammar manipulation frameworks are
implemented. Rascal’s pattern driven dispatch would possibly have to be replaced
with some other multiconditional (switch/case) operator, if another workbench is
used; set comprehensions would have to be written out in a perhaps somewhat more
verbose form; and lists or arrays would have to be used instead of sets. Beside these
tiny implementation details, there are no implicit limitations that make our proposed
method specific to Rascal only, and replications of the presented implementations are
feasible in ANTLR [Par07], ASF+SDF Meta-Environment [BDH+01], Bison [Lev09],
GDK [KLV02], JavaCC [Cop07], Kiama [SKV11], Stratego [BKVV08], TXL [DCMS02],
YACC [Joh75] and other grammarware frameworks and workbenches.

If we do not make any assumptions about the order of transformations (thus
shifting the execution paradigm from the functional one to the declarative one), and
drop the limitation on the number of times each “step” can be executed, then such a
generalisation becomes a term rewriting [BN98, BKdV03] or a graph rewriting [Hof13]
system. Investigating dead rules in such systems, that are never executed, and adapting
them according to their applicability conditions and controlled levels of variability, is
also a valid open problem for future research, partly covered by the pending evolution
paradigm [Zay13].

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a1

Negotiated Grammar Evolution · 7

G1
f - G2

G4

e

?

fi
-

G1 is the original source grammar
G2 is the intended target grammar
G4 is the evolved target grammar
f is the original transformation
fi = e ◦ f

Figure 1 – Image evolution for grammar transformation.

G1
f - G2

G3

e

? ft - G4

wwwwwwwwww
G1 is the original source grammar
G2 is the intended target grammar
G3 is the evolved source grammar
f is the transformation being adapted
ft = f ◦ e−1 or ft = f

Figure 2 – Adaptation through tolerance.

G1
f - G2

Ea -

G3

e

? fa - G4

ẽ

?

G1 is the original source grammar
G2 is the original target grammar
G3 is the evolved source grammar
G4 is the evolved target grammar
f is the transformation being adapted
fa ◦ e = ẽ ◦ f
ẽ = Ea(e)

Figure 3 – Adaptation through adjustment.

3 Transformation adaptability

We can think of two kinds of adaptability that we may desire in metamodel domain
transformation: through tolerance and through adjustment. Clearly, when two changes
compete, there are two distinct possible conceptual scenarios: when the desired effect
includes both and when it prefers only one of them.

Let us consider an example of a grammar G1 and a grammar transformation f that
produces G2 = f(G1). Suppose that G1 undergoes some changes by a transformation
e, which produces G3 = e(G1), and we still want to apply f to G3, resulting in G4.
“Adaptation through tolerance”, as seen on Figure 2, prefers one change over the other,
and an adapted function ft in fact works as f applied to the reverse of e (where actually
reversing a transformation is a nontrivial task by itself). The term uses the word
“tolerance”, since changes contributed by e are tolerated but effectively disregarded.
The other kind is “adaptation through adjustment”, since extra adjustments need
to be done and propagated further down the transformation chain. In that case,
reported on Figure 3, an adapted function fa, must be constructed in such a way that
it results in G4, which is a result of an applying ẽ = Ea(e), a hypothetic coevolution
transformation with some correspondence to e.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a1

8 · Vadim Zaytsev

3.1 Adaptation through tolerance

Figure 2 presents a megamodel for one kind of adaptation. Suppose we have a grammar
G1 and a transformation script describing a function, which yields G2 = f(G1). If we
assume that some evolution e (which is also technically a transformation) happens
with the original grammar, yielding G3 = e(G1), then we need to derive another
transformation ft, which takes the adjusted grammar G3 and produces exactly the
same result as the original transformation: ft(G3) = G4 = G2 = f(G1).

Adaptation through tolerance is not uncommon in situations when the evolutional
part refers to some backend adjustments of the baseline grammar that we do not want
to be affecting the transformation result in any way. In that case, conceptually, ft
can be thought of as undoing e and then applying f . However, undoing a grammar
transformation and in general finding an inverse metamodel manipulation operation
has some nontrivial aspects, as has been investigated and resolved before [Zay12b].

Example 1 Suppose that e contains the use of an operator eliminate(n) from Table 1.
Its reverse is the operator introduce(n ::= rhs), which arguments contain not just
the name of the nonterminal being eliminated/introduced, but also its definition. To
compensate for the lacking information, the bidirectionalisation process must rely on
the manual feed of additional information or consult the grammar being transformed,
for the details [Zay14a]. �

In conventional unidirectional programmable grammar transformation, most de-
structive operators inherently exhibit this property, which makes ft = f . For example,
a nonterminal definition is successfully eliminated from the grammar just by match-
ing its nonterminal name — hence, if the definition itself was changed by e, it will
still be removed. From the operators on Table 1, disappear, abstractize, project
and narrow can also sometimes have this property, depending on their operands.

Example 2 Now suppose that f contains eliminate(n), while e consists of calls to
operators like factor(x, y), which change the definition of this nonterminal n. The
definition, whether changed by e or not, is absent from the resulting grammar G4.
Situations like this occur in practice when f is a transformation chain that produces a
tool-specific grammar, while e changes the baseline grammar in a way that is relevant
to some tools but not to all of them [DCMS02] — in this case, our f will abstract from
the changed fragment just as it would have abstracted from the original one. �

3.2 Adaptation through adjustment

Figure 3 presents a different megamodel for adaptation of grammar transformation
scripts. It is similar to the previous megamodel in many aspects, except for the
output of the adapted transformation fa is different from the original intended output
grammar. In this case, we preserve the evolutional steps by assuming a hypothetic
function ẽ which has some correspondence to the original evolution function e. The
exact kind of correspondence (the form of the higher order function Ea) depends on
the context and the desired grammar transformation composition semantics.

Adaptation through adjustment is common in many scenarios when the changes
brought in by the original transformation and by metamodel evolution, are independent
(for example, they may concern different nonterminal symbols). Apparently, in the
case of complete independence their composition is commutative, so Ea = id and ẽ = e.
However, there are many cases when the transformations are essentially independent,

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a1

Negotiated Grammar Evolution · 9

but the scripts that represent them, still need to be adjusted: think of changing
different parts of the same production rule — since the access scheme most probably
entails including the whole production rule as an argument in both cases, the one that
take place latest, requires adjustment.

Example 3 Operators project(p,m) and inject(p,m) expect two arguments: a pro-
duction rule and a name of the marker that marks the place for projection or injection
within that production rule. If f and e are based on calls to those operators and
concern different production rules, then we can guarantee that their impact will always
be limited to only those production rules, and thus they will never interfere with each
other: f ◦ e = e ◦ f . �

4 Negotiated evolution

In XBGF, any change to a grammar can be expressed as a chain of calls to grammar
transformation operators from an extensive operator suite [LZ11]. Since the activity
of creating such a chain closely resembles programming, it is commonly referred to as
“grammar programming” [DCMS02], “metaprogramming” [KvdSV09] or “grammar
engineering” [LV01, KLV05], even though all three terms also cover other activities
that go beyond operator-based manipulation of grammars in a broad sense in the style
of event sourcing [Fow05]. In order to distinguish the operators themselves from the
calls to them, we will refer to the latter as “transformation commands”. Thus, any
grammar evolution can be expressed as a sequence of transformation commands, or a
transformation sequence.

Example 4 Let grammar G1 be:

e ::= e (“+” | “−”) e;

Let grammar G2 be:

e ::= p |m; p ::= e “+” e; m ::= e “−” e;

They are different, but express the same expression language. The language equiv-
alence problem is undecidable, but we can still converge G1 and G2 by providing a
transformation sequence that transforms one into the other [LZ09]. In this case it will
be:

factor(e (“+” | “−”) e, (e “+” e) | (e “−” e));

extract(p ::= e “+” e;);

extract(m ::= e “−” e;);

In plain English, we factor the original definition of e to push the choice (expressed by
a BNF bar) outwards, and then introduce two new nonterminals while folding them
(replacing their definitions by references to them). If the above three steps represent a
grammar transformation sequence f , then f(G1) = G2. �

The method we propose as a way to address the controlled adaptability problem
that was identified in the previous section, changes the model of this process. We
first reintroduce the existing process in subsection 4.1, then propose a new model in
subsection 4.2, refactor the implementation in subsection 4.3 and demonstrate the
advantages of the resulting model with more concrete examples in section 5.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a1

10 · Vadim Zaytsev

4.1 Grammar transformation

Previously, the transformational model could be described as follows:

1. The transformation command is supplied to the transformation engine that has
access to the input grammar.

2. The applicability of the transformation command is assessed.

3. If the transformation command is deemed inapplicable to the input grammar,
an error is reported and the transformation sequence halts since the grammar
cannot be transformed further.

4. If the transformation command turns out to be vacuous (leads to zero changes) if
applied to the input grammar, a different error is reported, and the transformation
sequence still halts.

5. If the transformation command is applicable and non-vacuous, it is applied, and
the transformation engine proceeds to (1.) with the next command.

4.2 Negotiations about grammars

The new model, that we refer to as “negotiated transformation”, can be described like
this:

1. The transformation command is supplied to the transformation engine that has
access to the input grammar.

2. The applicability of the transformation command is assessed.

3. If the transformation command is applicable and non-vacuous, it is applied, and
the transformation engine proceeds to (1.) with the next command.

4. If the transformation command turns out to be vacuous (leads to zero changes)
when applied to the input grammar, and such a result is acceptable according
to the semantics of the operator, a warning is reported, but the transformation
process still continues to (1.) with the next command.

5. If the transformation command is deemed inapplicable to the input grammar or
unacceptably vacuous, alternatives are explored and reported back in the form
of a collection of possible operands that make the transformation applicable.

6. Based on the report received from the transformation engine, we can decide
whether to report an error and halt the transformation process or proceed to
(1.) with the same operator with alternative operands.

The last two items beg for more detailed explanation. By “reported back” we can
mean one of the following:

• The alternative operand values are compared with the variability limits that are
specified explicitly as a part of the transformation script (e.g., lists of allowed
values, pattern matching, mini-grammar). In this case the role of the actual
argument is somewhat diminished to the preferred one.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a1

Negotiated Grammar Evolution · 11

Example 5 All three steps from Example 4 can possibly be expressed without
fixing the name of the focus nonterminal as “e”. We could also allow names like

“exp”, “expr”, “expression” or “x”, without adjusting the intent of the change.
However, in this case we have a risk of a false positive, when a production rule
is pattern matched with an argument, but should not.

• The alternatives are literally reported back to the user who runs the transforma-
tion scripts, and the choice among them, with the always present option to fail,
is up to this user.

Example 6 The operator disappear(p,m) expects a production rule and a
marker that marks an optional symbol, which is then deleted from the production
rule as the effect of the transformation. A negotiable version of disappear
can check for the marker to be present in the production rule and display all
other markers to the user otherwise. If no markers are present at all, another
negotiation strategy would be to let the user choose any optional element of
the target production rule — in fact, any element that can lead to successful
application of the operator, which is the main idea behind negotiations anyway.

• The transformation sequence is halted as usual, but the suggestions are displayed
to the user as recommendations.

Example 7 Imagine a semi-repeatable grammar manipulation activity such as
bulk recovery of grammars from error-prone sources like language documentation.
Typically, one grammar is extracted, analysed and then corrected to account
for all mistakes introduced in the source, by the nature of the source (e.g., text
recognition), by the extraction process, etc. Then, when a similar grammar is
encountered, we like to reuse these correcting transformation sequences, but there
is no guarantee that exactly the same set of patches will be applicable — the
practice shows that usually some of them can be shared5. The process of reuse
would become more friendly and efficient, if suggestions about applicability and
usefulness are displayed automatically about each step, instead of an iterative
process.

• A message about violating the contract is displayed, but the transformation
sequence proceeds by choosing one option randomly or according to some mini-
mality considerations.

Example 8 Consider a situation when we need to introduce a new nontermi-
nal to a grammar as a part of the transformation sequence, then use it within the
following steps (e.g., for folding purposes) and then remove it again by performing
eliminate. This situation is actually encountered quite often in existing gram-
mar transformation scripts [ZLvdS+14]. Within this scenario we only care that
the name of this temporary nonterminal is unique so that it does not clash with
any existing definitions, and it seems reasonable to just let the transformation
engine adjust the name randomly instead of involving the grammar engineer in
such a mundane task.

5The evidence comes from recovering more than 500 grammars in a broad sense from various
sources, they are available as the Grammar Zoo at http://slps.github.io/zoo [Zay14b]. Typically
correction steps are at least partially shared within a group that can be “all Ada grammars”, “all
grammars from ISO standards”, “all grammars created with ANTLR”, etc.

Journal of Object Technology, vol. 13, no. 3, 2014

http://slps.github.io/zoo
http://dx.doi.org/10.5381/jot.2014.13.3.a1

12 · Vadim Zaytsev

• One alternative is chosen, but the other ones are stored in order to enable falling
back to them if the transformation sequence gets stuck later on.

Example 9 Guided grammar convergence [Zay14c], a search-based method of
converging two arbitrary grammars of the same intended software language
automatically, could be seen as a fairly complicated variation of negotiated
grammar transformations. For instance, one of the phases of this process is the
nominal resolution — the process of establishing bidirectional mapping between
nonterminal sets of two input grammars: technically we are constructing possible
renameN chains and trying to explore the result; if the automated convergence
algorithm gets stuck later on, it falls back to another possible mapping between
nonterminals and tries to match their definitions again.

Any other useful utilisation of the set of alternative operands by an additional
system component can also be added to this list. One of the trivial ways to imple-
ment such a component is to let the transformation sequence fail anyway — this is
equivalent to the traditional grammar transformation (with somewhat better error
reporting, if the alternatives are displayed). On the other side of the spectrum, we can
hypothetically think of encoding very large or infinite sets of allowed alternatives, or
specifying the variability limits by constraints, which is in fact equivalent to grammar
mutation [Zay12b]. Isolating this aspect to a separate component that systematically
implements the desired level of adaptability, allows us to encode any desired behaviour
between those two known approaches and beyond them.

4.3 Reengineering the implementation

In this section we will demonstrate that introducing the negotiable aspect to the existing
transformation engine is a very simple and straightforward procedure. Consider the
renameN operator that changes the name of a nonterminal symbol. The original
implementation from 2009 [LZ09] uses Prolog and looks like this6:

renameN((N1,N2),G1,G2)

:-

allNs(G1,Ns),

require(

member(N1,Ns),

’Source name ~q for renaming must not be fresh.’,

[N1]),

require(

(\+ member(N2,Ns)),

’Target name ~q for renaming must be fresh.’,

[N2]),

transform(try(xbgf1:renameN_rules(N1,N2)),G1,G2).

It has been straightforwardly reformulated in Rascal [KvdSV09] in 2012 [Zay12d,
§3.2] to look as follows7:

6http://github.com/grammarware/slps/blob/master/shared/prolog/xbgf1.pro
7http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/XBGF.rsc

Journal of Object Technology, vol. 13, no. 3, 2014

http://github.com/grammarware/slps/blob/master/shared/prolog/xbgf1.pro
http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/XBGF.rsc
http://dx.doi.org/10.5381/jot.2014.13.3.a1

Negotiated Grammar Evolution · 13

BGFGrammar transform(renameN(str x, str y), BGFGrammar g) {

ns = allNs(g.prods);

if (x notin ns)

throw "Source name <x> for renaming must not be fresh.";

if (y in ns)

throw "Target name <y> for renaming must be fresh.";

return

performRenameN(x,y,g);

}

In these implementations, renameN_rules and performRenameN are helping pred-
icates/functions of lesser interest that perform the actual traversal and rewriting.
Conceptually renameN(x, y) follows this plan:

1. Source name x for renaming is expected to not be fresh (i.e., it must be present
in the input grammar before renaming).

2. Target name y for renaming is expected to be fresh (i.e., it must not be present
in the input grammar before renaming).

3. If x is listed among the root (starting) nonterminals, it is replaced there by y.

4. All production rules for nonterminals other than x, have their right hand sides
altered such that every occurrence of x is replaced by y.

5. All production rules defining x, if they are present, undergo the same transfor-
mation, plus their left hand sides are changed to define y instead.

In order to enable negotiated computation of this operator without compromising
the existing functionality, we keep the core transformation code of steps (3.) through
(5.) isolated and unchanged and refactor the rest of the code to return structured
errors instead of throwing exceptions8. The changes are made deliberately local and
minimal:

XBGFResult transform(renameN(str x, str y), BGFGrammar g)

{

ns = allNs(g.prods);

if (x notin ns)

return <problemStr("Source name must not be fresh",x),g>;

if (y in ns)

return <problemStr("Target name must be fresh",y),g>;

return

<ok(),performRenameN(x,y,g)>;

}

Where the data type of the return result is defined as follows9:

8http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/library/

Nonterminals.rsc
9http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/Results.

rsc

Journal of Object Technology, vol. 13, no. 3, 2014

http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/library/Nonterminals.rsc
http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/library/Nonterminals.rsc
http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/Results.rsc
http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/Results.rsc
http://dx.doi.org/10.5381/jot.2014.13.3.a1

14 · Vadim Zaytsev

alias XBGFResult = tuple[XBGFOutcome r,BGFGrammar g];

data XBGFOutcome

= ok()

| problem(str msg)

| problemXBGF(str msg, XBGFCommand xbgf)

| problemStr(str msg, str x)

| problemStrs(str msg, list[str] xs)

| problemExpr(str msg, BGFExpression e)

| problemProd(str msg, BGFProduction p)

| problemProds(str msg, list[BGFProduction] ps)

| ...

;

The code for grammar evolution operators in the GrammarLab library10 is identical
to the negotiated version we have seen above, modulo names for types and functions.

5 Advantages and uses

In the previous sections we have introduced a novel approach to express grammar
evolution in terms of actions that we expect to be executed on a grammar at hand,
and the limits up to which the results of the actual evolution can be negotiated. With
this, we can specify the following forms of grammar programming:

Traditional grammar transformation. After each step, its outcome is examined:
with a sign of any kind of problems, an exception is thrown and the execution
is stopped. This corresponds exactly to the old policy of XBGF [LZ09] or any
other grammar programming frameworks [DCMS02, KLV02, Läm01].

Interactive negotiated grammar transformation. Same as above, but the out-
come of each step is pattern matched: the process continues if no problems are
encountered, and advice is attempted to be generated otherwise. Only if no
known problem patterns match, the process is halted, otherwise the list of possible
suggestions is displayed to the user, who chooses the suitable one. This corre-
sponds to the iterative process used in grammarware engineering [LV01, Zay11],
but makes it more efficient by saving time.

Automatic negotiated grammar transformation. Same as above, but the choice
is made automatically, based on a weighting algorithm or even at random, so
the process continues as long as there is at least one successful alternative for
each step. This option corresponds to heuristic-based automation methods, in
particular for error recovery and robust processing [LZ11].

Automatic negotiated grammar transformation with backtracking. Same as
above, plus all the non-explored choices made before are collected and used
to roll back to if the process is halted several steps later. This is essentially a
search-based method, and can be used as a lightweight substitution to more
specific methods like guided grammar convergence [Zay14c].

10GrammarLab, http://grammarware.github.io/lab.

Journal of Object Technology, vol. 13, no. 3, 2014

http://grammarware.github.io/lab
http://dx.doi.org/10.5381/jot.2014.13.3.a1

Negotiated Grammar Evolution · 15

One more important detail for this reengineering initiative is propagating the
negotiations impact. Any grammar transformation step usually exists in the context
of the steps that follow and thus may rely on particular properties of the grammar
being rewritten. Hence, purely negotiating the outcome of one transformation step
independently of the subsequent ones, is insufficient, and negotiations need to be
propagated until the last step is completed and the result is obtained. To abstract from
the most troublesome details and to make the solution realistic, we follow [Zay12b] and
commit to propagating naming adjustments only, which is an easily solvable problem
that covers most of the basic needs of the rest of our approach.

If we continue considering the case of renameN explored before, we can write11:

set[XBGFCommand] negotiate(BGFGrammar g, XBGFCommand _, ok()) = {};

set[XBGFCommand] negotiate(BGFGrammar g,

renameN(str x, str y),

problemStr("Nonterminal must not be fresh", x))

= {renameN(n,y) | str n <- adviseUsedNonterminal(x,allNs(g.prods))};

set[XBGFCommand] negotiate(BGFGrammar g,

renameN(str x, str y),

problemStr("Nonterminal must be fresh", y))

= {renameN(x,n) | str n <- adviseFreshNonterminal(y,allNs(g.prods))};

default set[XBGFCommand] negotiate(BGFGrammar _,

XBGFCommand _, XBGFOutcome _) = {};

set[str] adviseUsedNonterminal(str x, set[str] nts)

= {z | z<-nts, distance(z,x)==min([distance(s,x) | s<-nts])};

In other words, if the source name x for renaming is fresh, we compute distances
between x and all nonterminals that actually occur anywhere in the grammar, and
recommend the one(s) with the lowest score. The computation of such distances
can be as simple as the classic Levenshtein algorithm [Lev66] or involve something
more advanced like longest common subsequence [GZ05]: ultimately, we want one
that puts “expr” closer to “expression” than to “abcd”, but even (modifications of)
much more advanced techniques such as those relying on signature-based equiva-
lence [Zay14c] or parser-based matching [FLZ12], could be applied here as well. The
adviseFreshNonterminal function is somewhat more bulky and would not add much
value to the paper — an interested reader is welcome to have a look at it, as well at
other programmed negotiations, in the repository of SLPS [ZLvdS+14]. In short, if
the target name y for renaming is not fresh, it recommends three alternative fresh
names for renaming: one of the form “expr1 ” (whatever the lowest number is that is
not taken yet), one of the form “expr_” (obtained by concatenating underscores to the
original target nonterminal name) and one made of random letters while preserving
the original length and capitalisation (i.e., “AbcDef” can lead to “FooBar”) — all
three are guaranteed to be fresh.

As another example, consider the abstractize(p,m) operator from Table 1. It
expects a production rule and a name of the marker that marks a bit of concrete
syntax that will be projected by the operator application. Technically its semantics is
a slightly limited subcase of project(p,m), but conceptually projection (removing
one element from a sequence) does not necessarily preserve the language defined

11http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/

NegotiatedXBGF.rsc

Journal of Object Technology, vol. 13, no. 3, 2014

http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/NegotiatedXBGF.rsc
http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/NegotiatedXBGF.rsc
http://dx.doi.org/10.5381/jot.2014.13.3.a1

16 · Vadim Zaytsev

by the grammar, while this “abstractising” always preserves the abstract language
(the term algebra) of the language defined by the grammar. Removing all concrete
syntax elements is usually a part of transformation sequence from concrete syntax
to abstract syntax, which is a well-known problem by itself with several known
solutions [Wil97, JS10, vdSCL14, ZB14]. By using the negotiated transformation
paradigm, we can write a transformation sequence that removes particular concrete
syntax elements, and it will still be applicable to similarly structured abstract grammars
(i.e., adaptation through tolerance) and to similarly structured grammars with the same
terminal symbols used for their concrete syntax (i.e., adaptation through adjustment).

Example 10 Consider the following grammar of function definitions:

fdef ::= fname “(” farg+ “)” “=” fbody ;

Also consider the following transformation sequence (where by “〈x〉:y” we will denote
a grammatical expression y marked by the name x):

abstractize(fname 〈lp〉:“(” farg+ “)” “=” fbody ; , 〈lp〉);
abstractize(fname farg+ 〈rp〉:“)” “=” fbody ; , 〈rp〉);
abstractize(fname farg+ 〈eq〉:“=” fbody ; , 〈eq〉);

If we assume the intent of this transformation sequence to be in getting rid of the
concrete syntax elements, then our model can be able to allow bypass() as a negotiable
alternative for all cases when the applicability precondition of the operator fails, but its
first operand is equal to one of the production rules in the grammar, modulo terminal
symbols. With this, adaptation through tolerance is achieved and the transformation
sequence will serve as an assertion for the lack of terminals in this production rule,
and will become applicable to grammars like this:

fdef ::= fname farg+ fbody ; �

Example 11 Consider the same grammar from Example 10 and the same transfor-
mation sequence. With the negotiated grammar transformation model, we can explore
another direction for negotiations. Suppose that e is a language evolution that extends
the grammar as follows:

fdef ::= fmodifier? ftype fname “(” farg+ “)” “=” fbody ;

We can still cheaply locate the terminal symbols marked in the original transformation
operands by traversing the semi-matching definitions of the actual grammar, and
successfully abstractize the evolved grammar from them, thus achieving adaptation
through adjustment.

As the last and the most complicated example, consider the extract operator.
It “extracts” a nonterminal symbol, which entails adding a new production rule of a
fresh nonterminal to the grammar, and subsequently folding it — i.e., replacing all
occurrences of its right hand side with the newly introduced nonterminal [ZLvdS+14,
XBGF Manual]. Its implementation can be found in the same place we referenced
above, but conceptually extract(n : rhs) works as follows:

1. Left hand side n is expected to be fresh (i.e., it must not be present in the input
grammar before renaming).

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.5381/jot.2014.13.3.a1

Negotiated Grammar Evolution · 17

2. The transformation is expected to be useful (i.e., rhs should occur at least once
in the input grammar before adding the production rule).

3. All occurrences of rhs are replaced with n.

4. The production rule defining n as rhs is added to the grammar.

The steps (3.) and (4.) belong to the core transformation code and are folded
into a separate function that can be called from both the regular and the negotiated
grammar transformation functions, just like in the previous example. The step (1.)
is also easily reused from the renameN example. However, the second step is not
easily reused from the abstractize example, since extract does not make sense when
it is vacuous: its base objective is to fold an existing symbol sequence into a new
nonterminal, not to introduce a nonterminal unrelated to the rest of the grammar.
Hence, we must implement a search-based strategy that attempts to identify fragments
in the input grammar that could possibly be modifications of the right hand side that
was provided as an argument.

In this paper, we only address propagation of changes in the names of nonterminals:
negotiated renamings are remembered and used to preprocess the following steps that
use the “old” names of nonterminals, selectors and production labels to access the
“new” ones. Propagating other kinds of impact of negotiations though the subsequent
transformation steps, is not a trivial task. A generalisation of that problem entails
calculating the mutual impact of two transformation steps and the conditions that
enable the change of execution order, which is a big open problem on its own: how to
infer such f ′ from f and g′ from g, that f ◦ g = g′ ◦ f ′?

6 Conclusion

Some metamodel transformation paradigms, like unidirectional programmable grammar
transformation, are rather rigid. They are written to work with one input grammar,
and are not easily adapted if the grammar changes. However, such adaptations are
often desirable: in fact, we have presented megamodels of two scenarios when different
kinds of adaptability can be useful (Figure 2 and Figure 3).

Our proposed solution entails isolation of the applicability assertions into a compo-
nent separate from the rest of the transformation engine, and enhancing the simple
accept-and-proceed vs. reject-and-halt scheme into one that proposes a list of valid
alternative arguments and allows the other transformation participant (the oracle, the
script, the end user running it, etc) to choose from it and negotiate the intended level
of adaptability and robustness. This solution enables efficient manipulation of existing
grammar transformation scripts and their controlled adaptability.

Fragments of a prototype were shown and discussed in the paper, and all of them
available publicly in the GitHub repositories of the Software Language Processing
Suite [ZLvdS+14] and of GrammarLab12. The places of most interest there are the core
backend code at shared/rascal/src/transform/NegotiatedXBGF.rsc, a demonstra-
tion at shared/rascal/src/demo/Negotiated.rsc and the directory with textual
outputs of sample runs for the conventional grammar transformation, both successful
and failing, and the negotiated variation, at topics/transformation/negotiated.

In general, it is not outrageous to assume that the concept of negotiating the
outcome of a transformation step instead of failing it, is applicable beyond the level

12GrammarLab, http://grammarware.github.io/lab.

Journal of Object Technology, vol. 13, no. 3, 2014

http://github.com/grammarware/slps/blob/master/shared/rascal/src/transform/NegotiatedXBGF.rsc
http://github.com/grammarware/slps/blob/master/shared/rascal/src/demo/Negotiated.rsc
http://github.com/grammarware/slps/blob/master/topics/transformation/negotiated/
http://grammarware.github.io/lab
http://dx.doi.org/10.5381/jot.2014.13.3.a1

18 · Vadim Zaytsev

of metamodels. However, the simplicity of the metametamodel (EBNF [Zay12a] in
grammarware terms: terminals, nonterminals, symbol repetition, etc) is one of the
key factors for the approach to be successful, since it is often feasible to come up with
useful alternative suggestions.

References
[BCPV07] Pablo Berdaguer, Alcino Cunha, Hugo Pacheco, and Joost Visser. Coupled

Schema Transformation and Data Conversion for XML and SQL. In Proceed-
ings of the Ninth International Symposium on Practical Aspects of Declarative
Languages (PADL 2007), volume 4354 of LNCS, pages 290–304. Springer, 2007.
doi:10.1007/978-3-540-69611-7_19.

[BDH+01] Mark G. J. van den Brand, Arie van Deursen, Jan Heering, H. A. de Jong, Merijn de
Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier, Jeroen Scheerder,
Jurgen J. Vinju, Eelco Visser, and Joost Visser. The ASF+SDF Meta-Environment:
a Component-Based Language Development Environment. In Proceedings of the
10th International Conference on Compiler Construction (CC 2001), volume 2027 of
LNCS, pages 365–370. Springer, 2001. doi:10.1007/3-540-45306-7_26.

[BKdV03] Marc Bezem, Jan Willem Klop, and Roel de Vrijer. Term Rewriting Systems. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 2003.

[BKVV08] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strate-
go/XT 0.17. A Language and Toolset for Program Transformation. Science of Com-
puter Programming, 72(1-2):52–70, June 2008. doi:10.1016/j.scico.2007.11.003.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1998.

[CH06] Anthony Cleve and Jean-Luc Hainaut. Co-transformations in Database Applications
Evolution. In Revised papers of the First International Summer School on Generative
and Transformational Techniques in Software Engineering (GTTSE 2005), volume
4143 of LNCS, pages 409–421. Springer, 2006. doi:10.1007/11877028_17.

[Cop07] Tom Copeland. Generating Parsers with JavaCC: An Easy to Use Guide for Program-
mers. Centennial Books, 2007.

[CREP08] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. Au-
tomating Co-evolution in Model-Driven Engineering. In Proceedings of the 12th
International IEEE Enterprise Distributed Object Computing Conference, EDOC
2008, pages 222–231. IEEE Computer Society, 2008. doi:10.1109/EDOC.2008.44.

[CRP07] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. A Metamodel In-
dependent Approach to Difference Representation. Journal of Object Technology,
6(9):165–185, October 2007. TOOLS EUROPE 2007 — Objects, Models, Components,
Patterns. doi:10.5381/jot.2007.6.9.a9.

[DCMS02] Thomas R. Dean, James R. Cordy, Andrew J. Malton, and Kevin A. Schneider. Gram-
mar Programming in TXL. In Proceedings of the Second IEEE International Confer-
ence on Source Code Analysis and Manipulation (SCAM 2002), pages 93–102. IEEE,
2002. doi:10.1109/SCAM.2002.1134109.

[FLZ12] Bernd Fischer, Ralf Lämmel, and Vadim Zaytsev. Comparison of Context-free Gram-
mars Based on Parsing Generated Test Data. In Uwe Aßmann and Anthony Sloane,
editors, Post-proceedings of the Fourth International Conference on Software Lan-
guage Engineering (SLE 2011), volume 6940 of LNCS, pages 324–343. Springer, 2012.
doi:10.1007/978-3-642-28830-2_18.

[Fow05] Martin Fowler. Event Sourcing, 2005. URL: http://martinfowler.com/eaaDev/
EventSourcing.html.

[GKP07] Boris Gruschko, Dimitrios S. Kolovos, and Richard F. Paige. Towards Synchronizing
Models with Evolving Metamodels. In International Workshop on Model-Driven
Software Evolution (MODSE), 2007.

[GZ05] Michael W. Godfrey and Lijie Zou. Using Origin Analysis to Detect Merging and
Splitting of Source Code Entities. IEEE Transactions on Software Engineering,
31(2):166–181, 2005. doi:10.1109/TSE.2005.28.

[HBJ09] Markus Herrmannsdörfer, Sebastian Benz, and Elmar Juergens. COPE — Automating
Coupled Evolution of Metamodels and Models. In Proceedings of the 23rd European

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.1007/978-3-540-69611-7_19
http://dx.doi.org/10.1007/3-540-45306-7_26
http://dx.doi.org/10.1016/j.scico.2007.11.003
http://dx.doi.org/10.1007/11877028_17
http://dx.doi.org/10.1109/EDOC.2008.44
http://dx.doi.org/10.5381/jot.2007.6.9.a9
http://dx.doi.org/10.1109/SCAM.2002.1134109
http://dx.doi.org/10.1007/978-3-642-28830-2_18
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://dx.doi.org/10.1109/TSE.2005.28
http://dx.doi.org/10.5381/jot.2014.13.3.a1

Negotiated Grammar Evolution · 19

Conference on Object-Oriented Programming (ECOOP 2009), pages 52–76. Springer,
2009. doi:10.1007/978-3-642-03013-0_4.

[HKA11] Florian Heidenreich, Jan Kopcsek, and Uwe Aßmann. Safe Composition of Transforma-
tions. Journal of Object Technology, 10:7:1–20, 2011. doi:10.5381/jot.2011.10.1.a7.

[Hof13] Berthold Hoffmann. Graph rewriting with contextual refinement. Electronic Com-
munications of the European Association of Software Science and Technology (EC-
EASST), 61, 2013. URL: http://journal.ub.tu-berlin.de/eceasst/article/view/
828.

[HRK11] Markus Herrmannsdörfer, Daniel Ratiu, and Maximilian Kögel. Metamodel Usage
Analysis for Identifying Metamodel Improvements. In Brian A. Malloy, Steffen Staab,
and Mark G. J. van den Brand, editors, Post-proceedings of the Third International
Conference on Software Language Engineering (SLE 2010), volume 6563 of LNCS,
pages 62–81. Springer, January 2011. doi:10.1007/978-3-642-19440-5_5.

[HTJC94] Jean-Luc Hainaut, C. Tonneau, M. Joris, and M. Chandelon. Schema Transformation
Techniques for Database Reverse Engineering. In Proceedings of the 12th International
Conference on the Entity-Relationship Approach (ER 1993), volume 823 of LNCS,
pages 364–375. Springer, 1994. doi:10.1007/BFb0024380.

[HVW11] Markus Herrmannsdörfer, Sander Vermolen, and Guido Wachsmuth. An Exten-
sive Catalog of Operators for the Coupled Evolution of Metamodels and Models.
In Brian A. Malloy, Steffen Staab, and Mark G. J. van den Brand, editors, Post-
proceedings of the Third International Conference on Software Language Engi-
neering (SLE 2010), volume 6563 of LNCS, pages 163–182. Springer, January 2011.
doi:10.1007/978-3-642-19440-5_10.

[Joh75] S. C. Johnson. YACC—Yet Another Compiler Compiler. Computer Science Technical
Report 32, AT&T Bell Laboratories, Murray Hill, New Jersey, 1975.

[JS10] Adrian Johnstone and Elizabeth Scott. Tear-Insert-Fold grammars. In LDTA, pages
6:1–6:8. ACM, 2010. doi:10.1145/1868281.1868287.

[KK04] Günter Kniesel and Helge Koch. Static Composition of Refactorings. Science of
Computer Programming, 52(1–3):9–51, 2004. Special Issue on Program Transformation.
doi:10.1016/j.scico.2004.03.002.

[KLV02] Jan Kort, Ralf Lämmel, and Chris Verhoef. The Grammar Deployment Kit. In
M. G. J. van den Brand and R. Lämmel, editors, Proceedings of the Second Work-
shop on Language Descriptions, Tools and Applications (LDTA 2002), volume 65 of
Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers, 2002.
doi:10.1016/S1571-0661(04)80430-4.

[KLV05] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an Engineering Discipline for
Grammarware. ACM TOSEM, 14(3):331–380, 2005. doi:10.1145/1072997.1073000.

[KNHH10] Maximilian Kögel, Helmut Naughton, Jonas Helming, and Markus Herrmannsdörfer.
Collaborative Model Merging. In Companion of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications, SPLASH 2010,
pages 27–34. ACM, 2010. doi:10.1145/1869542.1869547.

[KvdSV09] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation. In Proceedings of the Ninth
IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM 2009), pages 168–177. IEEE, 2009. doi:10.1109/SCAM.2009.28.

[Läm01] Ralf Lämmel. Grammar Adaptation. In Proceedings of the International Symposium
of Formal Methods Europe, volume 2021 of LNCS, pages 550–570. Springer, 2001.
doi:10.1007/3-540-45251-6_32.

[Läm04] Ralf Lämmel. Coupled Software Transformations. In First International Workshop on
Software Evolution Transformations (SET 2004), November 2004.

[Läm05] Ralf Lämmel. The Amsterdam Toolkit for Language Archaeology. Electronic Notes
in Theoretical Computer Science (ENTCS), 137(3):43–55, 2005. Proceedings of the
Second International Workshop on Metamodels, Schemas and Grammars for Reverse
Engineering (ATEM 2004). doi:10.1016/j.entcs.2005.07.004.

[Lev66] Vladimir I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[Lev09] John Levine. flex & bison. O’Reilly Media, 2009.

[LR03] Wolfgang Lohmann and Günter Riedewald. Towards Automatical Migration of
Transformation Rules after Grammar Extension. Proceedings of the 15th European

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://dx.doi.org/10.5381/jot.2011.10.1.a7
http://journal.ub.tu-berlin.de/eceasst/article/view/828
http://journal.ub.tu-berlin.de/eceasst/article/view/828
http://dx.doi.org/10.1007/978-3-642-19440-5_5
http://dx.doi.org/10.1007/BFb0024380
http://dx.doi.org/10.1007/978-3-642-19440-5_10
http://dx.doi.org/10.1145/1868281.1868287
http://dx.doi.org/10.1016/j.scico.2004.03.002
http://dx.doi.org/10.1016/S1571-0661(04)80430-4
http://dx.doi.org/10.1145/1072997.1073000
http://dx.doi.org/10.1145/1869542.1869547
http://dx.doi.org/10.1109/SCAM.2009.28
http://dx.doi.org/10.1007/3-540-45251-6_32
http://dx.doi.org/10.1016/j.entcs.2005.07.004
http://dx.doi.org/10.5381/jot.2014.13.3.a1

20 · Vadim Zaytsev

Conference on Software Maintenance and Reengineering (CSMR 2003), page 30,
2003. doi:10.1109/CSMR.2003.1192408.

[LV01] Ralf Lämmel and Chris Verhoef. Semi-automatic Grammar Recovery. Software—
Practice & Experience, 31(15):1395–1438, December 2001. doi:10.1002/spe.423.

[LW01] Ralf Lämmel and Guido Wachsmuth. Transformation of SDF Syntax Definitions in
the ASF+SDF Meta-Environment. In Proceedings of the Workshop on Language
Descriptions, Tools and Applications (LDTA 2001), volume 44 of ENTCS. Elsevier
Science, 2001. doi:10.1016/S1571-0661(04)80918-6.

[LZ09] Ralf Lämmel and Vadim Zaytsev. An Introduction to Grammar Convergence. In
Michael Leuschel and Heike Wehrheim, editors, Proceedings of the Seventh Interna-
tional Conference on Integrated Formal Methods (iFM 2009), volume 5423 of LNCS,
pages 246–260. Springer-Verlag, February 2009. doi:10.1007/978-3-642-00255-7_17.

[LZ11] Ralf Lämmel and Vadim Zaytsev. Recovering Grammar Relationships for the Java
Language Specification. Software Quality Journal (SQJ), 19(2):333–378, March 2011.
doi:10.1007/s11219-010-9116-5.

[Men99] Tom Mens. A Formal Foundation for Object-Oriented Software Evolution. PhD thesis,
Vrije Universiteit Brussel, 1999.

[MSD06] Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt. Detecting and Resolving
Model Inconsistencies Using Transformation Dependency Analysis. In Oscar Nierstrasz,
Jon Whittle, David Harel, and Gianna Reggio, editors, Model Driven Engineering
Languages and Systems, volume 4199 of Lecture Notes in Computer Science, pages
200–214. Springer, 2006. doi:10.1007/11880240_15.

[MV11] Bart Meyers and Hans Vangheluwe. A Framework for Evolution of Modelling Lan-
guages. Science of Computer Programming, 76(12):1223–1246, 2011. Special Issue on
Software Evolution, Adaptability and Variability. doi:10.1016/j.scico.2011.01.002.

[Opd92] W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, 1992.

[Par07] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Programmers. Pragmatic Bookshelf, first edition, May 2007.

[Rob99] D. B. Roberts. Practical Analysis for Refactoring. PhD thesis, University of Illinois at
Urbana-Champaign, 1999.

[SD96] S. Doaitse Swierstra and L. Duponcheel. Deterministic, Error-Correcting Combinator
Parsers. Advanced Functional Programming, 1129:184–207, 1996. doi:10.1007/

3-540-61628-4_7.

[SKV11] Anthony M. Sloane, Lennart C.L. Kats, and Eelco Visser. A Pure Embedding of
Attribute Grammars. Science of Computer Programming, pages 1752–1769, 2011.
Special section on Language Descriptions Tools and Applications (LDTA 2008–09).
doi:10.1016/j.scico.2011.11.005.

[Swi01] S. Doaitse Swierstra. Combinator Parsers: From Toys to Tools. Electronic Notes
in Theoretical Computer Science, 41(1):38–59, 2001. Proceedings of the 2000 ACM
SIGPLAN Haskell Workshop. doi:10.1016/S1571-0661(05)80545-6.

[vdSCL14] Tijs van der Storm, William R. Cook, and Alex Loh. The Design and Implementation
of Object Grammars. SCP, 2014. In Press, Corrected Proof. doi:10.1016/j.scico.

2014.02.023.

[VV08] Sander Vermolen and Eelco Visser. Heterogeneous Coupled Evolution of Software
Languages. In Proceedings of the 11th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2008), volume 5301 of LNCS, pages
630–644. Springer, 2008. doi:10.1007/978-3-540-87875-9_44.

[Wac07] Guido Wachsmuth. Metamodel Adaptation and Model Co-adaptation. In Erik
Ernst, editor, 21st European Conference on Object-Oriented Programming (ECOOP
2007), volume 4609 of LNCS, pages 600–624. Springer, July 2007. doi:10.1007/

978-3-540-73589-2_28.

[Wil97] David S. Wile. Abstract Syntax from Concrete Syntax. In W. Richards Adrion,
Alfonso Fuggetta, Richard N. Taylor, and Anthony I. Wasserman, editors, Proceedings
of the 19th International Conference on Software Engineering, ICSE ’97, pages 472–
480. ACM, 1997. doi:10.1145/253228.253388.

[Zay11] Vadim Zaytsev. Language Convergence Infrastructure. In João Miguel Fernandes, Ralf
Lämmel, Joost Visser, and João Saraiva, editors, Post-proceedings of the Third Inter-
national Summer School on Generative and Transformational Techniques in Software

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.1109/CSMR.2003.1192408
http://dx.doi.org/10.1002/spe.423
http://dx.doi.org/10.1016/S1571-0661(04)80918-6
http://dx.doi.org/10.1007/978-3-642-00255-7_17
http://dx.doi.org/10.1007/s11219-010-9116-5
http://dx.doi.org/10.1007/11880240_15
http://dx.doi.org/10.1016/j.scico.2011.01.002
http://dx.doi.org/10.1007/3-540-61628-4_7
http://dx.doi.org/10.1007/3-540-61628-4_7
http://dx.doi.org/10.1016/j.scico.2011.11.005
http://dx.doi.org/10.1016/S1571-0661(05)80545-6
http://dx.doi.org/10.1016/j.scico.2014.02.023
http://dx.doi.org/10.1016/j.scico.2014.02.023
http://dx.doi.org/10.1007/978-3-540-87875-9_44
http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dx.doi.org/10.1145/253228.253388
http://dx.doi.org/10.5381/jot.2014.13.3.a1

Negotiated Grammar Evolution · 21

Engineering (GTTSE 2009), volume 6491 of LNCS, pages 481–497. Springer, January
2011. doi:10.1007/978-3-642-18023-1_16.

[Zay12a] Vadim Zaytsev. BNF WAS HERE: What Have We Done About the Unnecessary
Diversity of Notation for Syntactic Definitions. In Sascha Ossowski and Paola Lecca,
editors, Programming Languages Track, Volume II of the Proceedings of the 27th
ACM Symposium on Applied Computing (SAC 2012), pages 1910–1915. ACM, March
2012. doi:10.1145/2245276.2232090.

[Zay12b] Vadim Zaytsev. Language Evolution, Metasyntactically. Electronic Communications of
the European Association of Software Science and Technology (EC-EASST), 49, 2012.
URL: http://journal.ub.tu-berlin.de/eceasst/article/view/708.

[Zay12c] Vadim Zaytsev. Negotiated Grammar Transformation. In Juan De Lara, Da-
vide Di Ruscio, and Alfonso Pierantonio, editors, Proceedings of the Extreme
Modeling Workshop (XM 2012). ACM Digital Library, November 2012. doi:

10.1145/2467307.2467313.

[Zay12d] Vadim Zaytsev. The Grammar Hammer of 2012. Computing Research Repository
(CoRR), 4446:1–32, December 2012. URL: http://arxiv.org/abs/1212.4446.

[Zay13] Vadim Zaytsev. Pending Evolution of Grammars. In Juan De Lara, Davide Di
Ruscio, and Alfonso Pierantonio, editors, Post-proceedings of the Second Workshop
on Extreme Modeling (XM 2013), volume 1089 of CEUR Workshop Proceedings,
pages 28–35. CEUR-WS, October 2013. URL: http://ceur-ws.org/Vol-1089/4.pdf.

[Zay14a] Vadim Zaytsev. Case Studies in Bidirectionalisation. In Pre-proceedings of the 15th
International Symposium on Trends in Functional Programming (TFP 2014), May
2014. Research Paper Extended Abstract. URL: http://grammarware.net/writes/
#Bidirectionalisation2014.

[Zay14b] Vadim Zaytsev. Grammar Zoo: A Repository of Experimental Grammarware. Sub-
mitted to the Fifth Special issue on Experimental Software and Toolkits of Science
of Computer Programming (SCP EST5). Pending second revision, 2014. URL:
http://grammarware.net/writes/#Zoo2014.

[Zay14c] Vadim Zaytsev. Guided Grammar Convergence. In Poster Proceedings of the Sixth
International Conference on Software Language Engineering (SLE 2013). JOT, 2014.
In print. URL: http://grammarware.net/writes/#Guided2014.

[ZB14] Vadim Zaytsev and Anya Helene Bagge. Parsing in a Broad Sense. Submitted to the
17th International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2014). Pending reviews, March 2014. URL: http://grammarware.net/
writes/#Parsing2014.

[ZL11] Vadim Zaytsev and Ralf Lämmel. A Unified Format for Language Documents.
In Brian A. Malloy, Steffen Staab, and Mark G. J. van den Brand, editors, Post-
proceedings of the Third International Conference on Software Language Engi-
neering (SLE 2010), volume 6563 of LNCS, pages 206–225. Springer, January 2011.
doi:10.1007/978-3-642-19440-5_13.

[ZLvdS+14] V. Zaytsev, R. Lämmel, T. van der Storm, Lukas Renggli, Ruwen Hahn, and Guido
Wachsmuth. Software Language Processing Suite13, 2008–2014. Contains, among other
works: XBGF Reference Manual: BGF Transformation Operator Suite (V. Zaytsev,
2009), http://slps.github.io/xbgf. URL: http://slps.github.io.

13The authors are given according to the list at http://github.com/grammarware/slps/graphs/

contributors.

Journal of Object Technology, vol. 13, no. 3, 2014

http://dx.doi.org/10.1007/978-3-642-18023-1_16
http://dx.doi.org/10.1145/2245276.2232090
http://journal.ub.tu-berlin.de/eceasst/article/view/708
http://dx.doi.org/10.1145/2467307.2467313
http://dx.doi.org/10.1145/2467307.2467313
http://arxiv.org/abs/1212.4446
http://ceur-ws.org/Vol-1089/4.pdf
http://grammarware.net/writes/#Bidirectionalisation2014
http://grammarware.net/writes/#Bidirectionalisation2014
http://grammarware.net/writes/#Zoo2014
http://grammarware.net/writes/#Guided2014
http://grammarware.net/writes/#Parsing2014
http://grammarware.net/writes/#Parsing2014
http://dx.doi.org/10.1007/978-3-642-19440-5_13
http://slps.github.io/xbgf
http://slps.github.io
http://github.com/grammarware/slps/graphs/contributors
http://github.com/grammarware/slps/graphs/contributors
http://dx.doi.org/10.5381/jot.2014.13.3.a1

22 · Vadim Zaytsev

About the author

Vadim Zaytsev also known in the social media as @grammarware, is a lecturer
at the University of Amsterdam and an ex-employee of the Centrum Wiskunde &
Informatica (CWI) in Amsterdam. He has acquired PhD in 2010 at the Vrije Univer-
siteit Amsterdam in the field of software language engineering, in which his current
main research interests lie. Prior to that, he received MSc cum laude degrees from
Rostov State University in Russia (applied mathematics, model checking) and from
Universiteit Twente in the Netherlands (telematics, grammar-based testing). Besides
hardcore software language engineering with grammar(ware) technology, his interests
and research activities tend to invade such topics as software quality assessment, source
code analysis and transformation, modelling, metamodelling and megamodelling, pro-
gramming paradigms, declarative and functional programming, dynamic aspects of
software languages, maintenance and renovation of legacy systems and others. He is
also actively practicing open science and open research, contributing to a range of
open data and open source projects, co-organising and presenting at (mostly academic)
events. Contact him at vadim@grammarware.net, or visit http://grammarware.net.

Journal of Object Technology, vol. 13, no. 3, 2014

http://twitter.com/grammarware
mailto:vadim@grammarware.net
http://grammarware.net
http://dx.doi.org/10.5381/jot.2014.13.3.a1

	Motivation
	Background and related work
	Transformation adaptability
	Adaptation through tolerance
	Adaptation through adjustment

	Negotiated evolution
	Grammar transformation
	Negotiations about grammars
	Reengineering the implementation

	Advantages and uses
	Conclusion
	Bibliography
	About the author

