
Language Support for Megamodel Renarration

Ralf Lämmel1 and Vadim Zaytsev2

1 Software Languages Team, Universität Koblenz-Landau, Germany
2 Software Analysis & Transformation Team, CWI, Amsterdam, The Netherlands

Abstract. Megamodels for the linguistic architecture of software sys-
tems can become difficult to understand because they reside at a high
level of abstraction and they are graph-like structures without much
intrinsic modularity or prescribed order for mental navigation. To facil-
itate megamodel comprehension, we extend megamodeling by modeling
features for renarration such that megamodels can be developed in an
incremental manner with the help of appropriate renarration operators,
also subject to a simple form of deltas on megamodels. We validate the
approach in the context of megamodeling for Object/XML mapping (also
known as XML data binding).

Keywords: Megamodeling, Linguistic architecture, Renarration, Soft-
ware language engineering

1 Introduction

“A megamodel is a model of which [...] some elements represent and/or refer to
models or metamodels” [3] — we use this definition by interpreting the notion of
(meta)models in a broad sense to include programs, grammars, etc. In our recent
work, we have shown the utility of megamodels in understanding the linguistic
architecture of software systems and software (language) engineering scenarios
and software technologies; see, for example, [5,12].

Megamodels may be difficult to understand because they reside at a high level
of abstraction and the role of entities as well the meaning of relationships may
not be evident. Previously [5], we have addressed megamodel comprehension
by linking megamodel entities and relationships to proper artifacts or reified
conceptual entities. In this paper, we are concerned with another substantial
impediment: megamodels are hard to access because they are essentially just
graph-like data structures without much intrinsic modularity or prescribed order
for mental navigation. In previous work [12], we have introduced the notion
of renarration of megamodels in an informal manner, also inspired by natural
language processing and database journalism. In this paper, we take the next
step: we enrich megamodeling with proper language support for renarration.

Consider Figure 1 for an illustration. The megamodel sketches basic aspects
of Object/XML mapping according to the JAXB technology for XML data bind-
ing in the Java platform. Specifically, there is the aspect of deriving an object
model (i.e., Java classes) from an XML schema and the aspect of de-serializing



Fig. 1. A megamodel for Object/XML mapping (also known as XML data binding)

an XML document to an object graph (as represented in the JVM). In our ex-
perience, such models must be renarrated to become meaningful to others. A
complete megamodel is useful as a specification for validation/testing, but the
process of a megamodel’s creation is more important for comprehension.

Contribution of this paper. We enrich the megamodeling language MegaL [5]
with language support for renarration such that megamodels can be developed
in an incremental manner, subject to appropriate operators such as ‘addition’,
‘restriction’, or ‘instantiation’, also subject to an appropriate notion of deltas
for megamodels.

Roadmap. §2 describes the specific approach to renarration. §3 validates the
approach in the context of megamodeling for Object/XML mapping. §4 summa-
rizes related work. §5 concludes the paper.

2 Renarrating megamodels

We enrich the base megamodeling language MegaL3 [5] by language support for
renarration. We briefly recall MegaL. Then, we describe a specific form of re-
narration, which is centered around megamodel deltas. Finally, we list operators
than can be used to describe the intents of renarration steps.

2.1 Megamodels

A megamodel collects declarations of the following kinds.

Entity declaration. A name is introduced for a conceptual or manifested entity
or a parameter thereof; an entity type is assigned. Here are some illustrative
examples:

Java : Language // Java as a language entity

JavaGrammar : Artifact // the Java grammar as an artifact entity

BNF : Language // BNF as a language entity

?aLanguage : Language // parameter aLanguage for a language entity

?aProgram : File // parameter aProgram for a file entity

3 https://github.com/avaranovich/megal/

https://github.com/avaranovich/megal/


Relationship declaration. Two previously declared entities (or parameters thereof)
are related by a binary relationship. Here are some illustrative examples:

aProgram elementOf Java // a program of the Java language

JavaGrammar elementOf BNF // the Java grammar is a BNF−style grammar

JavaGrammar defines Java // the Java grammar defines the Java language

aProgram conformsTo JavaGrammar // a program conforming to the Java grammar

Entity-type declaration. There is a number of predefined, fundamental entity
types, as exercised in the illustrations above, but new entity types can be defined
by specialization. For instance:

OopLanguage < Language // an entity type for OO programming languages

FpLanguage < Language // an entity type for functional programming languages

Relationship-type declaration. Likewise, there is a number of predefined, fun-
damental relationship types, as exercised in the illustrations above, but new
relationship types can be defined on predefined as well as explicitly declared
entity types. We do not leverage such expressiveness in this paper.

2.2 Renarration

We refer to [2] for general background on renarration. In this paper, we commit
to a specific view on renarration as breaking down into a sequence of steps with
each step being effectively characterized by some ingredients:

– An informative label of the step, also serving as an ‘id’ for reference.
– The actual delta in terms of added and removed declarations (such as en-

tity and relationship declarations). Added declarations are prefixed by ‘+’;
removed declarations are prefixed by ‘−’.

– An operator to describe the intent of the step, thereby also defining con-
straints on the delta.

The steps are interleaved with informal explanations. Due to space constraints,
no grammar of renarrations is specified here. See Figure 2 for a trivial, illus-
trative renarration. Regardless of constraints associated with specific operators,
deltas must preserve well-formedness of megamodels. In particular: (i) Entities
are declared uniquely. (ii) All entities referenced by relationship declarations are
declared. (iii) The types of the entities in relationship declarations are permitted
for the relationship type at hand.

2.3 Operators

The illustrative renarration of Figure 2 has started to reveal some operators:
addition and instantiation. The more complex example of §3 leverages several
additional operators. Here is a short characterization of a catalogue of operators:

– Addition: declarations are exclusively added; there are no removals. Use this
operator to enhance a megamodel through added entities and to constrain
a megamodel through added relationships.



Consider the following megamodel (in fact, megamodeling pattern) of a file and a
language being related such that the former (in terms of its content) is an element of
the latter. This is the initial step of the renarration and thus, the delta only involves
added declarations as opposed to any removed declarations:

[Label=”File with language”, Operator=”Addition”]

+ ?aLanguage : Language // some language

+ ?aFile : File // some file

+ aFile elementOf aLanguage // associate language with file

In a next step, let us instantiate the language parameter to actually commit to the
specific language Java. Thus:

[Label=”A Java file”, Operator=”Instantiation”]

+ Java : Language // pick a specific language

+ aFile element Java // associate the file with Java

- ?aLanguage : Language // removal of language parameter

- aFile elementOf aLanguage // removal of reference to language parameter

That is, the parameter declaration and the use of the parameter are removed, whereas
Java is declared and used instead. (Arguably, such instantiation could also be char-
acterized more concisely by just stating that the parameter shall be replaced by a
specific entity.)

Fig. 2. An illustrative renarration

– Removal : the opposite of Addition.

– Restriction: net total of addition and removal is such that entities may be of
more specific types and ‘elementOf’ as well as ‘subsetOf’ relationships may
also be restricted in a similar manner; see label ‘O/X subset’ in §3.

– Generalization: the opposite of Restriction.

– ZoomIn: net total of addition and removal is such that relationships are
decomposed to reveal more detail. For instance, a relationship x mapsTo
y could be expanded so as to reveal the function that contributes the pair
〈x, y〉; see label ‘Type-level mapping’ in §3.

– ZoomOut : the opposite of ZoomIn.

– Instantiation: parameters are consistently replaced by actual entities. We
describe such instantiation directly by a mapping from parameters to entities
as opposed to a verbose delta.

– Parameterization: the opposite of Instantiation.

– Connection: convert an entity parameter into a dependent entity, which is
one that is effectively determined by relationships. We prefix dependent en-
tity declarations by ‘!’ (whereas ‘?’ is used for parameters, as explained
earlier); see label ‘Dependent type-level mapping’ in §3.

– Disconnection: the opposite of Connection.

– Backtracking : return to an earlier megamodel, as specified by a label.



3 An illustrative renarration

We are going to renarrate a megamodel for Object/XML mapping. We begin
with the introduction of the XML schema which is the starting point for gener-
ating a corresponding object model:

[Label=”XML schema”, Operator=”Addition”]

+ XSD : Language // the language of XML schemas

+ ?anXmlSchema : File // an XML schema

+ anXmlSchema elementOf XSD // an XML schema, indeed

On the OO side of things, we assume a Java-based object model:

[Label=”Object model”, Operator=”Addition”]

+ Java : Language // the Java language

+ ?anObjectModel : File+ // an object model

+ anObjectModel elementOf Java // a Java−based object model

The entities anXmlSchema and anObjectModel are parameters (see the ‘?’ prefix)
in that they would only be fixed once we consider a specific software system. We
assume that schema and object model are related to each other in the sense that
the former is mapped to (‘transformed into’) the latter; these two data models
also correspond to each other [5].

[Label=”Schema first”, Operator=”Addition”]

+ anXmlSchema mapsTo anObjectModel // the schema maps to the object model

+ anXmlSchema correspondsTo anObjectModel // schema and object model are similar

The ‘mapsTo’ relationship is helpful for initial understanding, but more details
are needed eventually. Let us reveal the fact that a ‘type-level mapping’ would
be needed to derive classes from the schema; we view this as ‘zooming in’: one
relationship (see ‘−’) is replaced in favor of more detailed declarations (see ‘+’):

[Label=”Type−level mapping”, Operator=”ZoomIn”]

+ ?aTypeMapping : XSD -> Java // a mapping from schemas to object models

+ aTypeMapping(anXmlSchema) |-> anObjectModel // map, indeed

- anXmlSchema mapsTo anObjectModel // remove too vague mapping relationship

It is not very precise, neither is it suggestive to say that type-level mapping
results in arbitrary Java. Instead, we should express that a specific Java subset for
simple object models (in fact, POJOs for data representation without behaviorial
concerns) is targeted. Thus, we restrict the derived object model as being an
element of a suitable subset of Java, to which we refer here as OxJava:

[Label=”O/X subset”, Operator=”Restriction”]

+ OxJava : Language // the O/X−specific subset of Java

+ OxJava subsetOf Java // establishing subset relationship, indeed

+ anObjectModel elementOf OxJava // add less liberal constraint on object model

- anObjectModel elementOf Java // remove too liberal constraint on object model

We have covered the basics of the type level of Object/XML mapping. Let us look
at the instance level which involves XML documents and object graphs (trees)
related through (de-)serialization. Let us assume an XML input document for
de-serialization which conforms to the XML schema previously introduced:



[Label=”XML document”, Operator=”Addition”]

+ XML : Language // the XML language

+ ?anXmlDocument : File // an XML document

+ anXmlDocument elementOf XML // an XML document, indeed

+ anXmlDocument conformsTo anXmlSchema // document conforms to schema

The result of de-serialization is an object graph that is part of the runtime state;
that is an element of an assumed language for Java or JVM object graphs; that
also conforms to the object graph previously introduced:

[Label=”Object graph”, Operator=”Addition”]

+ JvmGraph : Language // the language of JVM graphs

+ ?anObjectGraph : State // an object graph

+ anObjectGraph elementOf JvmGraph // a JVM−based object graph

+ anObjectGraph conformsTo anObjectModel // graph conforms to object model

De-serialization maps the XML document to the object graph:

[Label=”Instance−level mapping”, Operator=”Addition”]

+ ?aDeserializer : XML -> JvmGraph // deserialize XML documents to JVM graphs

+ aDeserializer(anXmlDocument) |-> anObjectGraph // map via deserializer

At this point, the mappings both at type and the instance levels (i.e., aTypeMap-
ping and aDeserializer) are conceptual entities (in fact, functions) without a
trace of their emergence. We should manifest them in relation to the underlying
mapping technology. We begin with the type level.

[Label=”Code generator”, Operator=”Addition”]

+ ?anOxTechnology : Technology // a technology such as JAXB

+ ?anOxGenerator : Technology // the generation part

+ anOxGenerator partOf anOxTechnology // a part, indeed

+ anOxGenerator defines aTypeMapping // a mapping defined by a generator

With the generator in place, we should no longer view the (conceptual entity for
the) mapping as a proper parameter; rather it becomes a dependent entity.

[Label=”Dependent type−level mapping”, Operator=”Connection”]

+ !aTypeMapping : XSD -> Java // this is a dependent entity now

- ?aTypeMapping : XSD -> Java // Ditto

Likewise, de-serialization is the conceptual counterpart for code that actually
constructs and runs a de-serializer with the help of a designated libary, which is
another part of the mapping technology:

[Label=”O/X library”, Operator=”Addition”]

+ ?anOxLibrary : Technology // the O/X library

+ anOxLibrary partOf anOxTechnology // an O/X part

+ ?aFragment : Fragment // souce code issuing de−serialization

+ aFragment elementOf Java // source code is Java code

+ aFragment refersTo anOxLibrary // use of O/X library

+ aFragment defines aDeserializer // provision of the de−serializer

Again, we eliminate the parameter for the de-serializer:

[Label=”Dependent instance−level mapping”, Operator=”Connection”]

+ !aDeserializer : XML -> JvmGraph // this is a dependent entity now



- ?aDeserializer : XML -> JvmGraph // Ditto

Let us instantiate the mapping technology and its components to commit to the
de-facto platform standard: JAXB [8]. We aim at the following replacements of
parameters by concrete technology names:

[Label=”JAXB”, Operator=”Instantiation”]

anOxTechnology -> JAXB // instantiate parameter ... as ...

anOxGenerator -> JAXB.xjc // ditto

anOxLibrary -> JAXB.javax.xml.bind // ditto

Thus, we use qualified names for the component technologies of JAXB, thereby
reducing the stress on the global namespace. We omit the the lower level meaning
of the instantiation in terms of a delta.

Let us now generalize rather than instantiate. To this end, we first backtrack
to an earlier state—the one before we instantiated for JAXB:

[Label=”Dependent instance−level mapping”, Operator=”Backtracking”]

Now we can generalize further by making the language a parameter of the model.
(Again, we show the concise mapping of actual entities to parameters as opposed
to the delta for all the affected declarations.)

[Label=”Beyond Java”, Operator=”Parameterization”]

Java -> anOopLanguage // replace ... by ... parameter

OxJava -> anOxLanguage // ditto

Arguably, we should use more specific entity types to better characterize some
of the parameters of the model. For instance, the intention of the language
parameter to be an OOP language is only hinted at with the parameter’s name;
we could also designate and reference a suitable entity type:

[Label=”Taxonomy”, Operator=”Restriction”]

+ OopLanguage < Language // declare entity type for OOP languages

+ ?anOopLanguage : OopLanguage // limit entity type of language

+ ?anOxLanguage : OopLanguage // limit entity type of language

- ?anOopLanguage : Language // remove underspecified declaration

- ?anOxLanguage : Language // remove underspecified declaration

4 Related work

In the presentation of actual megamodels, e.g., in [5,6,7,10,11], arguably, ele-
ments of renarration appear, due to the authors’ natural efforts to modularize
their models, to relate them, and to develop them in piecemeal fashion. Renarra-
tion as an explicit presentation technique in software engineering was introduced
in previous work [12]. Renarration as an explicit modeling technique is the con-
tribution of the present paper. General renarration [2] prospects in software
engineering and computer science remain to be investigated.

Due to space constraints, we cannot properly discuss the broader area of
related work on refinement, refactoring, composition, and other kinds of trans-
formation of specifications, programs, and models. A more advanced approach to
the renarration of megamodels may receive inspiration from, for example, model



management in MDE with its management operators (e.g., for composition [1])
and grammar convergence [9] with its rich underlying operator suite of (in this
case) grammar modifications.

5 Concluding remarks

We have introduced language support for renarrating megamodels. With a rel-
atively simple language design, we have made it possible to develop (renarrate)
megamodels in an incremental manner, while applying different operators along
the way. Deltas describe the renarration steps at a low level of abstraction. As
illustrated with instantiation and parameterization, one can also aim at higher-
level versions of the operators akin to refactoring or evolution operators used
in other areas of modeling [4]. Another interesting area of future work is the
animation of renarrations for a visual megamodeling language; we use the visual
approach already informally on the whiteboard.

References

1. A. Anwar, T. Dkaki, S. Ebersold, B. Coulette, and M. Nassar. A Formal Approach
to Model Composition Applied to VUML. In Proceedings of ICECCS 2011, pages
188–197. IEEE, 2011.

2. M. Baker and A. Chesterman. Ethics of Renarration. Cultus, 1(1):10–33, 2008.
Mona Baker is interviewed by Andrew Chesterman.

3. J. Bézivin, F. Jouault, and P. Valduriez. On the Need for Megamodels. OOPSLA
& GPCE, Workshop on best MDSD practices, 2004.

4. A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Metamodel Independent Ap-
proach to Difference Representation. Journal of Object Technology, 6(9):165–185,
2007.

5. J.-M. Favre, R. Lämmel, and A. Varanovich. Modeling the Linguistic Architecture
of Software Products. In Proceedings of MODELS 2012, LNCS. Springer, 2012. 17
pages. To appear.

6. J.-M. Favre and T. NGuyen. Towards a Megamodel to Model Software Evolu-
tion through Transformations. Electronic Notes in Theoretical Computer Science,
Proceedings of the SETra Workshop, 127(3), 2004.

7. R. Hilliard, I. Malavolta, H. Muccini, and P. Pelliccione. Realizing Architecture
Frameworks Through Megamodelling Techniques. In Proceedings of ASE’10, pages
305–308, New York, 2010. ACM.

8. JCP JSR 31. JAXB 2.0/2.1 — Java Architecture for XML Binding, 2008. http:

//jaxb.dev.java.net/.
9. R. Lämmel and V. Zaytsev. An Introduction to Grammar Convergence. In Pro-

ceedings of IFM 2009, volume 5423 of LNCS, pages 246–260. Springer, 2009.
10. B. Meyers and H. Vangheluwe. A Framework for Evolution of Modelling Languages.

Science of Computer Programming, 76(12):1223 – 1246, 2011.
11. J.-S. Sottet, G. Calvary, J.-M. Favre, and J. Coutaz. Megamodeling and

Metamodel-Driven Engineering for Plastic User Interfaces: MEGA-UI. In Human-
Centered Software Engineering, pages 173–200. Springer, 2009.

12. V. Zaytsev. Renarrating Linguistic Architecture: A Case Study. In Proceedings
of MPM 2012. ACM DL, 2012. Available via http://avalon.aut.bme.hu/mpm12/

papers/paper%2015.pdf.

http://jaxb.dev.java.net/
http://jaxb.dev.java.net/
http://avalon.aut.bme.hu/mpm12/papers/paper%2015.pdf
http://avalon.aut.bme.hu/mpm12/papers/paper%2015.pdf

