
Pending Evolution of Grammars

Vadim Zaytsev

Software Analysis & Transformation Team,
Centrum Wiskunde & Informatica,

Amsterdam, The Netherlands

Abstract. In this paper, we propose an alternative paradigm of soft-
ware evolution, with a case study on evolution of grammars. While the
usual transformational evolution model involves an immediate applica-
tion of the evolution request, the pending evolution paradigm allows to
postpone the actual changes until certain conditions are fulfilled. This
kind of extreme evolution can be perceived either as a transformation
computation model or as a actionable precondition model.

1 Introduction

A colloquial expression ‘consider it done’ means that the subject of the conver-
sation is either indeed already done, or will be done in the very near future —
in either case, the receiver of such a message can rest assured that the subject
will take place if it has not already, and is expected to act as if it has indeed
happened. The technique of pending evolution that we introduce in this paper,
is similar to that expression, and the benefits of it are not unlike the subtle
differences between considering something done and it having been done.

As it turns out, the pending evolution scheme allows us to efficiently model
scenarios of grammar evolution, deployment and maintenance that are impossi-
ble to model within the traditional grammar transformation paradigm, which is
briefly explained in §2. The method is introduced in §3. Since the most profits
hide deep in the details, we spend the rest of the paper (§4) by motivating the
use of pending evolution for grammars instead of classical evolution scripts, by
concrete examples. §5 concludes the paper by summarizing its contributions and
discussing related work.

2 GrammarLab

GrammarLab is a codename for a grammar manipulation project that is cur-
rently being migrated from the Software Language Processing Suite1 initiative
to its own repository2. It is centered around the concept of a grammar in a
broad sense [5], which can be extracted by abstracting away the idiosyncratic

1 V. Zaytsev, R. Lämmel, T. van der Storm, L. Renggli, G. Wachsmuth. Software
Language Processing Suite, 2008–2013. http://slps.github.io.

2 V. Zaytsev. GrammarLab, 2013. http://grammarware.github.io/grammarlab.

http://slps.github.io
http://grammarware.github.io/grammarlab


details that we see on class diagrams, in algebraic data type definitions, ob-
ject grammars, concrete syntax specifications, database schemata and exposed
library interfaces — all these are ‘grammars in a broad sense’, since they model
commitment to grammatical structure.

Beside extraction, GrammarLab is good in dealing with programmable gram-
mar transformations — a disciplined method of grammar evolution, where every
change is expressed as a call to a transformation operator with a well-defined
semantics; as well as grammar mutations — large scale strategies for changing
one simple thing in a priori unknown number of places. GrammarLab also in-
cludes library for grammar analysis and metrics, but they are less relevant for
this paper.

3 Pending evolution

In GrammarLab, the evolution of a grammar is specified by a sequence of steps,
each referring to a transformation operator or a mutation, with proper param-
eterization: e.g., first we rename a nonterminal, then we factor its definition
and then extract a part of it into a new nonterminal. Each of the possible
transformation operators and mutations in the library, have preconditions that
determine their applicability and postconditions that demonstrate their success-
ful execution. Whenever a postcondition of a step or a precondition of the next
step fails, the transformation sequence is interrupted and an error occurs instead.

When a negotiated transformation paradigm [13] is explored, failure of a pre-
or a postcondition means the start of a negotiation: e.g., if a rename fails, it
can propose alternative name pairs that would enable its execution. A clever
strategy for negotiations can drastically increase applicability and reuse of a
transformation script, while still allow for full automation.

The pending evolution paradigm that we propose here, can hold any trans-
formation step pending until its precondition becomes enabled. As will become
apparent from the following examples in §4, it is possible to push the pending
steps all the way to the end of the evolution sequence and then disregard them;
or leave them forever pending and always ready to be applied any number of
times necessary; or relax the constraints about the order of steps; or collect and
log the information about all the possibly non-sequential failures in a system; or
even intentionally decide that particular steps must be taken by defer their ac-
tual execution until later. Only the simplest local cases can be expressed in terms
of negotiations. On the other hand, only simplest negotiations can be expressed
as pending changes. In short, negotiated transformations enables flexibility with
the outcome of one step, while pending evolution enables flexibility with the
order of multiple steps.



4 Scenarios

The paradigm of pending evolution probably has much wider applicability, but
here we sketch at least four user stories for it, inspired by the problems in the
grammarware technological space that can be addressed and solved there.

4.1 Optional execution

In the classic grammar transformation engine of GrammarLab, any grammar
transformation step that changes nothing in the grammar (we call them ‘vacuous
transformations’), is considered erroneous, since in most reasonable contexts
— correction, adaptation, evolution, etc — a change that changes nothing, is
meaningless. However, with some negotiated transformation schemes [13], one
could find it sensible to ignore the fact that a transformation step brought no
actual changes, if considered in a broader context. In particular, consider the
following scenarios:

– Suppose we have a repository of grammars, such as Grammar Zoo3 or
Grammar Tank4 [15]. The repository is highly heterogeneous and contains
‘grammars in a broad sense’ extracted from parser specifications, compiler
sources, readable documentation, privately created webpages, community
contributed wikis, generated and manually built artifacts. However, one of
the steps known from grammar research [8] to increase the quality of a gram-
mar, is resolving all ‘bottom’ nonterminals — the ones that are used within
the grammar but never defined (a grammar with no bottom nonterminals is
called a ‘level 3 grammar’ by Lämmel and Verhoef in [8]). While some defi-
nitions are simply missing from the grammar due to development mistakes,
quite commonly these are lexical, or character-level, definitions, containing
the rules about how an identifier name or a numeric literal should look in a
language being defined. A big fraction of these, as becomes apparent after
mining Grammar Zoo, have meaningful names such as ‘string’, ‘identifier’,
‘integer’, ‘id’, etc, and can be matched to a small library of predefined pro-
duction rules such as ‘a string is a symmetrically quoted sequence of one or
more characters’ or ‘an integer value is an optional sign followed by one or
more digits, the first of which is not zero’. This can be automated and ran
over the whole repository, which can of such substantial size that prevents
its manual verification5 — however, it would be desirable for the framework
to introduce the missing definitions only if they are truly missing, and al-
low individual grammars to retain their specific views of what a string or
a boolean looks like. Hence, we allow the introduce operator6 to be left
pending, and disregard it at the end of the transformation application.

3 Grammar Zoo, http://slps.github.io/zoo
4 Grammar Tank, http://slps.github.io/tank
5 Grammar Zoo and Grammar Tank together contain 564 grammars at the day of

paper submission.
6 Introduce and other grammar transformation operators are documented at http:

//github.com/grammarware/slps/wiki/introduce and similar URIs.

http://slps.github.io/zoo
http://slps.github.io/tank
http://github.com/grammarware/slps/wiki/introduce
http://github.com/grammarware/slps/wiki/introduce


– Consider another scenario. In grammarware technological space, there are
two most common styles of production rules, that we will traditionally call
horizontal and vertical. A horizontal definition says that the nonterminal N is
‘either X or Y or Z’, while the vertical one makes three statements that ‘N is
X’, as well as ‘N is Y’, as well as ‘N is Z’. These can be formally proven to be
equivalent. There are many exceptions, but most language documents prefer
horizontal definitions (e.g., Java Language Specification [3]), while language
workbenches tend toward vertical ones (e.g., The Meta-Environment [4]) or
make no distinction between them (e.g., Rascal [6]). Some transformation
operators also expect their arguments to be either horizontal or vertical,
which leads to the evolution scenarios specified in such a way where some
of the operator calls are preceded by the calls of horizontal or vertical
operators, while others are not. Obviously, this excessive versatility hinders
maintainability and changeability of the transformations. It would be better
to write these transformation steps as assertions. For instance, we can specify
that the definition must by vertical before we deyaccify it, and this step
would be optional, requiring no action if the original definition is already
vertical.

4.2 Error handling

In GrammarLab, transformations are stopped whenever the error occurs, and an
error message is displayed. Within the negotiated paradigm [13], it is possible to
negotiate for another outcome. One of the rather complex strategies for achieving
that, is the one that skips over the failing transformation step and proceeds with
the rest of the script, and then displays all the error messages at the end of
the computation. To demonstrate the usefulness of this approach, consider the
following detailed scenarios.

– In the context of grammar recovery, suppose that we want to extract several
grammars in bulk — they are written in the same style, in the same metalan-
guage, with some a priori unknown differences between them (perhaps they
are different versions or dialects of the same language). After carefully con-
sidering one of them, a grammar engineer develops a post-extraction trans-
formation script that makes the grammar maximally connected, adds missing
definitions, fixes misspelt nonterminal names and corrects other problems.
Naturally, we want to reuse the same transformation script for recovering
the rest of these grammars. However, in the traditional setup, most of the
automated reuse cases will fail because some of the extracted grammars will
have some misspellings already fixed, others will lack the part that concerns
the fixes, etc. Advanced error handling (or ignoring) can help greatly with
scalability in this case, by skipping over inapplicable fixes, applicability clas-
sification, etc.

– Imagine another scenario concerning maintenance of grammar transforma-
tion scripts. Suppose that we have several grammars that are being converged



together in multiple steps — e.g., the case study converging six Java gram-
mars found in different editions of the Java Language Specification book,
consisted of 1611 transformation steps arranged in 70 different scripts [10].
When an error is spotted in one of the existing steps, or when another step
needs to be added in the middle of the transformation chain, or when the
order of existing steps needs to be adjusted, it becomes a very labor-intensive
task since every failure stops the transformation computation — having the
luxury of recovering after a failure noticeably increases debugging capabili-
ties.

4.3 Pending fixes

Both the traditional programmed and the negotiated transformation models
delegate the decision about the transformation order to the original script: any
transformation step takes place after the one that precedes it in the specification
and is followed by the one after it. However, there are situations when we can
develop certain transformation scenarios and leave them pending so that they
can be executed when (if) the times comes and the become applicable. In general
this is useful in case of preserving any kind of normal form properties, but we
provide two detailed cases taken from practice:

– Recall the difference between horizontal and vertical definitions that we have
explained in the previous section. Suppose that our grammar uses vertical
definitions exclusively — this is easy to achieve by grammar transformations
or mutations, and easy to validate with a metaprogramming formula or by
micropatterns. However, if we would like to specify that the dominance of
vertical definitions is not incidental and that we would like to preserve it, it
is not possible to express this constraint within the straightforward grammar
programming approach. With pending evolution, we could leave the vertical-
izing mutation pending. Then, if someone introduces a new nonterminal to
the grammar, and that nonterminal is found to be horizontal, the mutation
becomes enabled, is executed and recharged for next use.

– Grammar recovery is a process of extracting a grammar from an existing
software artifact that may not be of perfect quality. Automated grammar
recovery methodology [14] is based on a collection of heuristics that are
partly configurable and partly inferred from the notation specification. One
of such heuristics is splitting composite terminals: for instance, if a termi-
nal like ‘);’ is found, it can be broken into two consecutive terminals: ‘)’
and ‘;’ — simply because the resulting atomic terminals are more helpful
for other heuristics (like matching parentheses). A grammar mutation that
breaks up composite terminals, can be programmed and left pending, such
that under any circumstances that would bring such terminals to the gram-
mar (such as importing another grammar, introducing a new nonterminal
definition, folding/unfolding, projecting symbols, etc), it becomes enabled
and is immediately fired to split such terminals as desired.



These scenarios are sufficiently different from the ones in the previous sec-
tion not only in motivation, but also in realization, since we speak of pending
mutations (which are large scale transformations) and recharging them after
transformation.

4.4 Intentional pending

Since we have discussed preserving the grammar already being in the normal
form, another scenario deserves mentioning where the grammar is normalized —
or rather, when such a normalizing mutation is left pending. Below there are two
use cases for this situation, but any normalization could possibly spawn another
one.

– Suppose that we have a grammar written in a specific notation (usually a
dialect of EBNF). Suppose also that a notation evolves, and the grammar is
required to coevolve in order to preserve conformance to the metalanguage.
This scenario is called ‘metalinguistic evolution’ [12] and has been studied
sufficiently to be applied in an automated fashion. One of such applications
involves a grammar being exported to a particular notation, which it might
not perfectly fit. For instance, the grammar may use an explicit repetition
(usually denoted with ‘*’) or other metaconstructs which are lacking from
the notation. Another typical case is that the target metalanguage insists on
a particular naming convention for the nonterminal (e.g., all must be written
in capitals). In that case, the grammar needs to coevolve with the ‘change’ of
notation from its original one to the one that it is being exported to. However,
this coevolution is essentially a part of the exporting process, and as such
must always take place after all the other evolution steps. Hence, it can be left
pending until the very end of the transformation script, and be executed last,
removing the use of excessive metalanguage elements, changing the naming
convention and adjusting grammar before the actual export mapping.

– Grammars in a broad sense can be observed in very different environments
and extracted from artifacts hailing from different technological spaces: XML
schemata, Ecore models, class diagrams, parser specifications, data types,
etc. Even when these define one intended language, they are different in
many ways. A technique called grammar convergence [9] is used to reverse
engineer the real relationships between such grammars: based on expert-
written transformation scripts, it can show which grammars define the same
language, which define languages that are subsets or supersets of one another,
and which are incomparable. It is also possible to automate the creation
of such scripts, but the inference algorithm performs best when grammars
are in so called ‘abstract normal form’. Many constraints of the abstract
normal form contradict the practice of grammar engineering, so it would be
most desirable to continue working with the non-normalized grammar and
then perform the pending normalization right before the guided grammar
convergence algorithm is applied. Then, the obtained result can be traced
back to the original grammar by reversing the bidirectional transformation
chain produced by the normalizer.



5 Concluding remarks

There are some techniques similar to pending evolution in the inconsistency
management, most notably with concurrent transformation schemes. Such in-
consistencies can be represented as separate first-class entities [2] and incor-
porated directly to the resulting model [7], which enables efficient handling of
inconsistency detection and resolutions as graph transformation rules [11] in
a much less extreme way than the one proposed in this paper. The fact that
these approaches of inconsistency modeling and resolution are not entirely cov-
ered by negotiated grammar transformation, has inspired us to look for common
schemes of advanced change impact propagation, importing ideas from model-
ware to grammarware and adapting them to the domain.

To summarize, we have proposed the following use cases for the technique of
pending grammar evolution:

– optional execution (§4.1)
• optionally complementing the grammar with missing definitions
• using optional transformations as assertions

– error handling (§4.2)
• reusing transformations for bulk extraction
• debugging transformations

– pending fixes (§4.3)
• persistent commitment to a normal form
• pending recovery heuristics

– intentional pending (§4.4)
• pre-export processing
• pre-convergence normalization

Pending evolution for grammars (either in a broad sense [5] or in the clas-
sic sense [1]) has never been considered before. Investigating the impact and
opportunities for pending evolution schemes in other fields like program trans-
formation remains future work. In transaction handling domains both of great
strictness (such as database management and mainframe job processing) and
persistent inconsistency (such as managing wiki contents with a bot) one will be
able to find techniques somewhat similar to the one we have proposed here.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1985.

2. A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Metamodel Independent Ap-
proach to Difference Representation. Journal of Object Technology, 6(9):165–185,
Oct. 2007. TOOLS EUROPE 2007 — Objects, Models, Components, Patterns.

3. J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, third edition, 2005.

4. J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The Syntax Definition
Formalism SDF—Reference Manual. ACM SIGPLAN Notices, 24(11):43–75, 1989.



5. P. Klint, R. Lämmel, and C. Verhoef. Toward an Engineering Discipline for Gram-
marware. ACM Transactions on Software Engineering Methodology (TOSEM),
14(3):331–380, 2005.

6. P. Klint, T. van der Storm, and J. Vinju. EASY Meta-programming with Rascal.
In J. M. Fernandes, R. Lämmel, J. Visser, and J. Saraiva, editors, Post-proceedings
of the Third International Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE 2009), volume 6491 of LNCS, pages
222–289, Berlin, Heidelberg, Jan. 2011. Springer-Verlag.

7. M. Kögel, H. Naughton, J. Helming, and M. Herrmannsdörfer. Collaborative Model
Merging. In Companion of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, SPLASH ’10, pages 27–34, New
York, NY, USA, 2010. ACM.

8. R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery. Software—
Practice & Experience, 31(15):1395–1438, Dec. 2001.

9. R. Lämmel and V. Zaytsev. An Introduction to Grammar Convergence. In
M. Leuschel and H. Wehrheim, editors, Proceedings of the Seventh International
Conference on Integrated Formal Methods (iFM 2009), volume 5423 of LNCS, pages
246–260, Berlin, Heidelberg, Feb. 2009. Springer-Verlag.

10. R. Lämmel and V. Zaytsev. Recovering Grammar Relationships for the Java Lan-
guage Specification. Software Quality Journal (SQJ), 19(2):333–378, Mar. 2011.

11. T. Mens, R. Van Der Straeten, and M. D’Hondt. Detecting and Resolving Model
Inconsistencies Using Transformation Dependency Analysis. In O. Nierstrasz,
J. Whittle, D. Harel, and G. Reggio, editors, Model Driven Engineering Languages
and Systems (MoDELS’06), volume 4199 of LNCS, pages 200–214. Springer, 2006.

12. V. Zaytsev. Language Evolution, Metasyntactically. Electronic Communications
of the European Association of Software Science and Technology (EC-EASST), 49,
2012.

13. V. Zaytsev. Negotiated Grammar Transformation. In J. De Lara, D. Di Ruscio, and
A. Pierantonio, editors, Post-proceedings of the Extreme Modeling Workshop (XM
2012). ACM Digital Library, Nov. 2012. In print, currently available at http://

www.di.univaq.it/diruscio/sites/XM2012/xm2012_submission_11.pdf. An ex-
tended version is currently under major revision to the Special issue on Extreme
Modeling of The Journal of Object Technology (JOT).

14. V. Zaytsev. Notation-Parametric Grammar Recovery. In A. Sloane and S. An-
dova, editors, Post-proceedings of the 12th International Workshop on Language
Descriptions, Tools, and Applications (LDTA 2012). ACM Digital Library, June
2012.

15. V. Zaytsev. Grammar Zoo: A Repository of Experimental Grammarware. Under
major revision for the Fifth Special issue on Experimental Software and Toolkits
of Science of Computer Programming (SCP EST5), 2013.

http://www.di.univaq.it/diruscio/sites/XM2012/xm2012_submission_11.pdf
http://www.di.univaq.it/diruscio/sites/XM2012/xm2012_submission_11.pdf

