
Workshop on Open and Original Problems
in Software Language Engineering

Anya Helene Bagge, anya@ii.uib.no, http://www.ii.uib.no/∼anya
Bergen Language Design Laboratory (BLDL), University of Bergen, Norway

Vadim Zaytsev, vadim@grammarware.net (main contact), http://grammarware.net,
Software Analysis & Transformation Team, Centrum Wiskunde & Informatica, The Netherlands

Abstract—The OOPSLE workshop is a discussion-oriented
and collaborative forum for formulating and addressing with
open, unsolved and unsolvable problems in software language
engineering (SLE), which is a research domain of systematic,
disciplined and measurable approaches of development, evolu-
tion and maintenance of artificial languages used in software
development. OOPSLE aims to serve as a think tank in selecting
candidates for the open problem list, as well as other kinds of
unconventional questions and definitions that do not necessarily
have clear answers or solutions, thus facilitating the exposure of
dark data. We also plan to formulate promising language-related
challenges to organise in the future. http://oopsle.github.io

I. SUMMARY

“Software languages” comprise all kinds of artificial lan-
guages used in software development: for programming,
markup, pretty-printing, modelling, data description, formal
specification, evolution, etc. Software language engineering is
a relatively new research domain of systematic, disciplined
and measurable approaches of development, evolution and
maintenance of such languages. Many concerns of software
language engineering are acknowledged by reverse engineers
as well as by forward software engineers: robust parsing of
language cocktails, fact extraction from heterogeneous code-
bases, tool interfaces and interoperability, renovation of legacy
systems, static and dynamic code analysis, language feature
usage analysis, mining repositories and chrestomathies, library
versioning and wrapping, etc.

Some research fields have a list of acknowledged open
problems that are being slowly addressed by the community:
as examples of such lists, we can recall the Hilbert’s prob-
lems [5], the POPLmark Challenge [10] and a list of open
problems in Boolean grammars [9]. However, the field of
software language engineering has not yet produced one. This
workshop is meant to expose hidden expertise in coping with
unsolvable or unsolved problems which commonly remain
unexposed in academic publications. OOPSLE aims to serve
as a think tank in selecting candidates for the open problem
list, as well as other kinds of unconventional questions and
definitions that do not necessarily have clear answers or
solutions, thus facilitating the exposure of dark data [4].
We also plan to formulate promising language-related chal-
lenges to organise in the future. Beside the abovementioned
POPLmark Challenge which can also be seen as a collection of

benchmarks, there have been many more contests, challenges
and competitions related to software language engineering:
LDTA Tool Challenge held at the LDTA workshop in 2011 [7],
CodeGeneration-affiliated Language Workbench Challenge [3]
held yearly since 2011, Transformation Tool Contest held six
times since 2007 [11], Rewrite Engines Competition held three
times in 2006, 2008 and 2010 at WRLA [2], PLT Games held
monthly since December 2012 [8].

II. TOPICS

We acknowledge the following list as non-exhaustive col-
lection of examples of topics of interests of the workshop:

• Defining an unsolved problem by establishing both its
provenance in prior research and the lack of a fully
satisfactory solution.

• Identifying new problem areas in software language en-
gineering that have not been previously studied due to
lack of understanding, techniques, practical interest or
scalability issues.

• Engaging in technological space travel by identifying
similar problems in various sectors of software language
engineering (i.e., grammarware, modelware, ontoware,
XMLware, databases, spreadsheets, etc).

• Generalising and reformulating of several well-known
problems into several sides of one open challenge (e.g.,
parsing and pretty-printing).

• Proposing systematic methods of assessment and com-
parison of existing and emerging solutions to a problem
that is not or cannot be fully solved (e.g., choosing
between parsing techniques, metaprogramming method-
ologies, software language workbenches).

• Arguing about definitions of terms commonly used in
various senses (e.g., software language design, quality of
a grammar, transformation).

• Presenting unconventional crossovers of popular research
topics and software language engineering concerns (e.g.,
green IDEs and energy consumption considerations for
parsing algorithms).

• Making an overview of major hindrances hindering solu-
tion of a standing problem (e.g., tool interoperability and
reuse, tackling language and metalanguage diversity and
versatility, consistency management).

mailto:anya@ii.uib.no
http://www.ii.uib.no/~anya
mailto:vadim@grammarware.net
http://grammarware.net
http://oopsle.github.io


• Designing open datasets in the software language engi-
neering domain and the way we could share and incor-
porate them.

• Describing novel or unconventional ideas that are promis-
ing but are not yet fully validated, or where validation
itself may be a challenge.

• Revealing solid negative results, failed experiments and
disproven hypotheses.

• Constructing future community experiments and consid-
ering topics our community expects to see addressed by
such a competition, if one decides to run it in the future.

• Critically reassessing a problem that is widely assumed
to be solved but the solution is either underwhelming or
could be “considered harmful” (model-driven engineer-
ing, domain-specific languages, test-based development).

III. WORKSHOP PROCESS

A. Before the Workshop

OOPSLE participants are encouraged to submit position
papers up to 4 pages in length, sketching an open or original
problem, idea or challenge. The submissions are screened by
the workshop chairs, who will select papers based on potential
for discussion and interest to the community, as well as the
clarity of presentation and motivation — OOPSLE is not a
mini-conference, and therefore it is not necessary for the work
to be conclusive yet. The papers will be posted online prior
to the workshop, so the participants have the opportunity to
read them in advance.

B. At the Workshop

A keynote lecture titled An Annotated and Illustrated Bib-
liography on Software Language Engineering1 will be given
by Prof. Dr. Ralf Lämmel, one of the co-founders of the SLE
conference, and is expected to set the context for the workshop
by looking back at the history of the field and its open and
closed challenges.

Each accepted paper is presented at the workshop as a brief
summary of its main idea and a set of open questions to be
discussed with the audience. Presenters will ask for input on
how to proceed with experiments, validation or refinement of
their ideas, collect opinions on the presented definitions, share
similar experience. We expect the participants to be friendly
but inquisitive, and ask hard questions back that may lead to
deepening the initially presented insights. The workshop is
planned to have short presentations and long discussions to
stimulate direct collaboration afterwards.

C. After the Workshop

All workshop participants will be invited to submit a full
paper to a special issue of the Electronic Communications
of the EASST, an open access peer-reviewed journal (ne-
gotiations underway). Journal submissions will undergo peer
review by the members of the program committee consisting

1Ralf Lämmel, An Annotated and Illustrated Bibliography on Software
Language Engineering, blog post, 3 September 2013. http://professor-fish.
blogspot.de/2013/09/an-annotated-and-illustrated.html.

of researchers in software language engineering and reverse
engineering.

IV. EXAMPLES

Cossette and Walker [1] investigate API migration and
conclude that quite often none of known recommender tech-
niques provide any useful advice, and even when they do, the
recommendations are correct in only about 20 % of cases.

In 2011, a Tool Challenge was proposed at the LDTA
workshop [7], for which participants needed to implement a
range of features of the Oberon-0 [12] programming language.
Submissions to the challenge were very versatile and gave
insights into how the technologies behind them were related
to one another.

Klint et al. [6, §7] list 15 research challenges for the domain
of grammarware such as having a framework for grammar
transformations, comprehensive grammarware testing, modu-
lar grammarware development, etc. Since 2005, most of them
have been to some extent addressed by papers and tutorials of
venues such as MODELS, SLE, WCRE, ICSM, CSMR, etc.

REFERENCES

[1] B. E. Cossette and R. J. Walker, “Seeking the ground truth: a retroactive
study on the evolution and migration of software libraries,” in Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. ACM, 2012, pp.
55:1–55:11.

[2] F. Durán, M. Roldán, J.-C. Bach, E. Balland, M. van den Brand, J. R.
Cordy, S. Eker, L. Engelen, M. de Jonge, and K. T. Kalleberg, “The
Third Rewrite Engines Competition,” in Eighth International Workshop
on Rewriting Logic and Its Applications (WRLA), ser. LNCS, P. C.
Ölveczky, Ed., vol. 6381. Springer, 2010, pp. 243–261.

[3] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman,
W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat,
P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler,
R. Solmi, V. Vergu, E. Visser, K. van der Vlist, G. Wachsmuth, and
J. van der Woning, “The State of the Art in Language Workbenches.
Conclusions from the Language Workbench Challenge,” in Proceedings
of the Sixth International Conference on Software Language Engineering
(SLE 2013), ser. LNCS, M. Erwig, R. F. Paige, and E. Van Wyk, Eds.,
vol. 8225. Springer, Oct. 2013, in print.

[4] T. Goetz, “Freeing the Dark Data of Failed Scientific Experiments,”
Wired Magazine, vol. 15, no. 10, 2007.

[5] D. Hilbert, “Mathematical Problems,” Bulletin of the American Mathe-
matical Society, vol. 33, no. 4, pp. 433–479, 1902.

[6] P. Klint, R. Lämmel, and C. Verhoef, “Toward an Engineering Disci-
pline for Grammarware,” ACM Transactions on Software Engineering
Methodology (TOSEM), vol. 14, no. 3, pp. 331–380, 2005.

[7] LDTA 2011, “11th International Workshop on Language Descriptions,
Tools and Applications. Tool Challenge,” 2011. [Online]. Available:
http://ldta.info/tool.html

[8] B. McKenna, “The Programming Language Theory Games: a monthly
programming language competition,” Dec. 2012. [Online]. Available:
http://www.pltgames.com

[9] A. Okhotin, “Conjunctive and Boolean Grammars: The True General
Case of the Context-Free Grammars,” Computer Science Review, vol. 9,
pp. 27–59, 2013. [Online]. Available: http://users.utu.fi/aleokh/boolean/
nine open problems.html

[10] B. C. Pierce, P. Sewell, S. Weirich, and S. Zdancewic, “It Is Time to
Mechanize Programming Language Metatheory,” in Verified Software:
Theories, Tools, Experiments, ser. LNCS, B. Meyer and J. Woodcock,
Eds. Springer Berlin Heidelberg, 2008, vol. 4171, pp. 26–30.

[11] A. Rensink and P. Van Gorp, “Graph Transformation Tool Contest 2008,”
International Journal on Software Tools for Technology Transfer (STTT),
vol. 12, no. 3–4, pp. 171–181, 2010.

[12] N. Wirth, Compiler Construction, ser. International computer science
series. Addison-Wesley, 1996.

http://professor-fish.blogspot.de/2013/09/an-annotated-and-illustrated.html
http://professor-fish.blogspot.de/2013/09/an-annotated-and-illustrated.html
http://ldta.info/tool.html
http://www.pltgames.com
http://users.utu.fi/aleokh/boolean/nine_open_problems.html
http://users.utu.fi/aleokh/boolean/nine_open_problems.html

