
Renarrating Linguistic Architecture: A Case Study

Vadim Zaytsev, vadim@grammarware.net
Software Analysis & Transformation Team, Centrum Wiskunde & Informatica

Amsterdam, The Netherlands

ABSTRACT
We study the use of megamodels (models of linguistic archi-
tecture) for presenting software language engineering sce-
narios. Megamodels and techniques similar to them are fre-
quently found in situations when a linguistic architecture
needs to be understood without the implicit knowledge that
was originally present, and in situations when such knowl-
edge needs to be propagated. In this paper we specifically
address the possibility of using one megamodel to tell sev-
eral related stories — that is, to renarrate it. Various re-
narrations can address different aspects of the megamodel,
without cluttering the reader’s view with irrelevant details.
The renarration method is presented with the case study of a
software language engineering technique of guided grammar
convergence, and MegaL as a metamegamodel.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

Keywords
Linguistic architecture, megamodelling, renarration

1. INTRODUCTION
The term “renarration” is used in natural language pro-

cessing and database journalism to describe the process of
converting a collection of facts into a story. Specific to re-
narration is the anticipation of conflicts: while generally the
research on “views” assumes them to be consistent with one
another modulo some hidden or rearranged details, it is nor-
mal and expected of several renarrations to deliver conflicted
messages [1]. The same is often true for big megamodels.

The term “megamodelling” [2, 4] refers to the higher level
of modelling that specifically addresses relationships between
complex entities such as software languages and model trans-
formations, aids in expressing software technologies and re-
lating technological spaces [8]. Ad hoc megamodelling with

Copyright ACM, 2012. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the Post-proceedings of MPM 2012.
MPM ’12 October 01 2012, Innsbruck, Austria
DOI pending; ISBN 978-1-4503-1805-1.

Figure 1: Core entities in MegaL models in this pa-
per: artefacts, languages, functions and function ap-
plications, and possible relationships between them.
Italicised labels denote variables, normal font labels
always refer to concrete entities.

mailto:vadim@grammarware.net


Figure 2: A minimal complete megamodel of the guided grammar convergence technique [12].

throwaway notations or with variants of existing problem-
specific notations is often used in situations when compli-
cated setups need to be documented or explained, and has
proven to be very useful [5, 10, 11], but also more systematic
attempts to develop a unified megamodelling visual language
for arguing about any kinds of linguistic architecture have
been made [3] — one of such attempts is MegaL which will
be used for this paper (Figure 1).

Megamodelling is a technique aimed at system compre-
hension, yet even relatively small megamodels describing one
particular method, are often too big to be consumed by unat-
tended readers. As a running example, consider Figure 2,
depicting a reasonably detailed megamodel of the guided
grammar convergence technique being developed by the au-
thor [12]. Every detail present on this model is relevant to
the method and is possibly either a contribution or a limita-
tion of it. This means that every element of the model must
have a story attached to it in order for the megamodel to be
useful. We argue that this megamodel can be made easily
consumable by deriving several smaller megamodels from it
and narrating them — this is the process that we will call
“renarration”, for the reasons explained above.

2. MEGAL

MegaL is a unified megamodelling language proposed by
Favre, Lämmel and Varanovich in [3]. On the pages of this
paper, we use a subset of the MegaL/yEd visual notation
with entities of four types, which is explained in sufficient
level of detail to not require acquaintance with the origi-
nal paper. The entity types are distinguished by the colour
(second shown is for grayscale) and an associated icon:

• Language (yellow/light gray, talk bubble icon): a soft-
ware language in the broad sense of creating languages
using metamodels [6].

• Artefact (blue/dark gray, box icon): a tangible soft-
ware artefact—i.e., a file, a file fragment, a language
definition, a language instance, a library etc.

• Function (light green/light gray, cogwheel): a func-
tion in the model transformation sense; for the sake of
brevity, partially evaluated functions are also depicted
as functions.

• Function application (dark green/dark gray, cogwheel):
a concrete transformation, usually conforming to some
function definition, but also having all arguments at its
disposal.

Figure 1 lists all MegaL relationship types [3] that will be
used within this paper:



Figure 4: Guided grammar convergence motivation: the correspondence and transformability properties are
articulated explicitly by the presence of the intended language and two transformation functions.

• We say that a language is a domain of a function when
the function operates on structured input that com-
mits to the grammatical structure of the language [7].

• We say that a function has a language as range when
the function produces structured content that commits
to the structure of that language.

• An artefact is an input of function application, when
this artefact (a file, a program, another tangible en-
tity) is necessary for the function to run and serves to
instantiate the function.

• Similarly, function application has an artefact as an
output, when this artefact is expected to be generated
when a valid input is provided.

• An artefact is a definition of a language, when it con-
stitutes a specification of the structural definition of
this language (e.g., a grammar, a metamodel, a schema).

• An artefact is a realisation of a function or a function
application, when it represents a tangible serialisation
of this function or a function application.

• A language corresponds to a language, when there is
some (possibly unknown explicitly) correspondence re-
lation between instances of the languages. This corre-

Figure 3: Guided grammar convergence motivation:
we introduce a “transformableIn” relation type.

spondence can be depicted as unidirectional or bidi-
rectional, depending on the intended emphasis.

• An artefact corresponds to an artefact, when there
is some (possibly unspecified) correspondence relation
between the artefacts.

• Function application is an element of a function, when
the function application truly conforms to the function
definition and is supplied with appropriate parameters.

• An artefact is an element of a language, when it com-
mits to its grammatical structure and can therefore be
claimed to be an instance of that language.

3. RENARRATIONS
In the following subsections we present parts and slices of

the megamodel from Figure 2 and narrate their stories. The
analysis of these renarrations will follow in §4.

3.1 Motivation
The need for a guided grammar convergence technique is

motivated by the need to establish and maintain executable
relationships between software languages [12].

Narration 1. Consider Figure 3: if we have any two
grammars that exhibit some correspondence, each of those
grammars defines its language, which is populated by appro-
priately conforming programs that also have correspondence
across languages. We want these languages to be trans-
formable in each other — that is, we assume the existence
of appropriate transformation functions, but intentionally do
not introduce them directly.

Narration 2. Consider Figure 4: if we have any two
grammars, then the languages they define, should both have
correspondence to some common intended language, in order
for this technique to be applicable. If this is the case, we
may want to obtain either a grammar transformation, which,
applied to one of the given grammars, yields another one; or
a program transformation that performs a similar task on
the language instance level; or both.

Narration 2 is more detailed than Narration 1, but does
not introduce a new relation and can help establishing ground



Figure 5: Contemporary grammar convergence re-
lies on the output of the Grammar Diff Tool (GDT)
being turned into the transformation script by an
experienced grammar engineer.

for further explanations of the intended language and the
transformations. Both operate only on abstract uninstan-
tiated entities: the fact that the intended language is fixed
before the start of convergence, is irrelevant to establishing
the motivation.

3.2 Technique
If we assume that the motivation is clear and established,

we can focus on the technical contribution of the guided
grammar convergence method:

Narration 3. In the original grammar convergence ap-
proach (Figure 5, see [9]) we have a Grammar Diff Tool to
report differences between any two given grammars. Con-
suming its output repeatedly and turning it into a trans-
formation script that resolves any spotted mismatches, is
a function (marked by a bold black border) performed by a
human stakeholder — a grammar engineer who is familiar
with the transformation operator suite. In the case of guided
grammar convergence (Figure 6), the transformations are
directly inferred by an automated tool that consumes both
input grammars.

Narration 4. As can be seen on Figures 5 and 6, the
guided grammar convergence method outputs the transfor-
mation script directly without relying on a human grammar
engineer for support (its function marked by a bold black
border). Besides that, it also uses bidirectional ΞBGF as a
base language instead of unidirectional XBGF, so all inferred

Figure 6: Guided grammar convergence (GCC) pro-
duces a bidirectional transformation script automat-
ically.

transformations are bidirectional by construction. The pro-
totyped algorithm of guided grammar convergence is realised
in Rascal, which makes it easier to reuse the technology from
within the Eclipse IDE.

Both narrations use two megamodels as a base for their
story: the second one is an enriched slice of the original
megamodel from Figure 2, while the first one is a revised
adjustment, since it is needed to explain a different technique
(the original method on which guided convergence is based).
Narration 4 can be used as a plain extension of Narration 3,
but we intentionally phrase it differently to raise the level of
abstraction for the same megamodels.

3.3 Programmable transformations
As it has been explained in the motivation section, by lan-

guage correspondence or by its transformability we assume
the existence of transformation functions. Let us consider
them closer and explain some details not present in or not
apparent from the original megamodel.

Narration 5. A bidirectional grammar transformation
can be seen on Figure 7, where the composition is shown
with boxing and not with connectors only for the sake of
visual clarity. Any instance of the ΞBGF language imple-
ments a bidirectional transformation, which has two possible
applications: forward and reverse. These two applications
agree to the extent that their inputs and outputs are gram-
mars specified in the same BNF-like Grammar Formalism
(BGF) language.

Narration 6. A bidirectional grammar transformation
can be seen on Figure 8. Any instance of the ΞBGF language
implements a bidirectional transformation, which has four



Figure 7: Bidirectional grammar transformations.

possible applications: forward and reverse, language level
and instance level. Combinations of these form pairs: the
two applications that work on the grammar level, agree on
their inputs and outputs; the two forward applications also
agree on producing a program that commits to the grammat-
ical structure of the produced grammar.

These two narrations are substantially different, and the
choice depends not only on the audience, but also on the fac-
tual side: which scenario was technically implemented? (In
our case, Narration 5 explains the current state and Narra-
tion 6 relates to future work [13]).

3.4 Conclusion
After the fragments of Figure 1 are explained individu-

ally, it becomes much easier to consume the whole meg-
amodel: we start with two grammars, assume the intended
language, substantiate the assumption by composing a mas-
ter grammar that defines it, and run the guided grammar
convergence algorithm in order to infer bidirectional gram-
mar transformation steps.

4. SUMMARY
This case study was meant to demonstrate some possible

uses for renarrating megamodels or similar high level models
of linguistic architecture of a software system. Renarration
is a method from which we can benefit not only for giving
presentations and lectures, but also for writing more easily
understandable papers and for packaging useful auxiliary
material to accompany those papers online.

The claim that we need more than simple grouping and
slicing, was demonstrated by the following cases.

• In Narration 1 (Figure 3) we introduce a new relation-
ship kind (transformableIn).

• In Narration 2 (Figure 4) we narrate a concrete entity
(the intended language) as a variable.

• In Narrations 3 and 4 we used two megamodels (Fig-
ures 5 and 6) for one story.

• In Narrations 3 and 4 we used a severely adjusted meg-
amodel slice (Figure 5) to show the difference with the
previously published work.

• Figure 5 used in Narrations 3 and 4, intentionally con-
flicts the baseline megamodel to unveil parts of its evo-
lution.

• In Narration 5 (Figure 7) the megamodel was sliced
and refined to expose some implementation details.

• In Narration 6 (Figure 8) the megamodel was sliced
and refined to sketch future implementation plans.

• In Narrations 5 and 6 (Figures 7 and 8) a new en-
tity notation was introduced for encapsulating several
possible function applications in one function..

Currently ongoing work on renarrating linguistic architec-
ture focuses on the following items:

• Composition of the disciplined megamodel transforma-
tion operator suite appropriate for renarration, so that
all renarrations shown above can be represented sys-
tematically as transformation scripts.

• Partial automation of the activities of renarration: smart
slicing, shadowing, verification; tool support thereof.

• Technical support for renarrations of megamodels as
clickable animated visualisations.

• Modelling multi-megamodel scenarios such as renarra-
tion, to uncover the big picture of their results at a
glance.

• Investigating possibilities and prospects of the applica-
tion of renarration to software engineering in general,
in particular to comprehension and visualisation tech-
niques other than megamodelling.



Figure 8: Bidirectional grammar transformations and coupled bidirectional instance transformations.

Acknowledgement
The author would like to express his gratitude to T. B. Di-
nesh who has introduced him to the notion of renarration at
the PEM Colloquium at CWI, as well as to Jean-Marie Favre
and Ralf Lämmel for fruitful discussions on megamodelling.

5. REFERENCES
[1] M. Baker and A. Chesterman. Ethics of renarration.

Cultus, 1(1):10–33, 2008. Mona Baker is interviewed
by Andrew Chesterman.

[2] J. Bézivin, F. Jouault, and P. Valduriez. On the Need
for Megamodels. OOPSLA & GPCE, Workshop on
best MDSD practices, 2004.

[3] J.-M. Favre, R. Lämmel, and A. Varanovich. Modeling
the Linguistic Architecture of Software Products. In
Proceedings of MODELS 2012, LNCS. Springer, 2012.
17 pages. To appear.

[4] J.-M. Favre and T. NGuyen. Towards a Megamodel to
Model Software Evolution through Transformations.
Electronic Notes in Theoretical Computer Science,
Proceedings of the SETra Workshop, 127(3), 2004.

[5] R. Hilliard, I. Malavolta, H. Muccini, and
P. Pelliccione. Realizing Architecture Frameworks
Through Megamodelling Techniques. In Proceedings of
ASE’10, pages 305–308, New York, 2010. ACM.

[6] A. Kleppe. Software Language Engineering: Creating
Domain-Specific Languages Using Metamodels.
Addison-Wesley Professional, 2008.

[7] P. Klint, R. Lämmel, and C. Verhoef. Toward an

Engineering Discipline for Grammarware. ACM
TOSEM, 14(3):331–380, 2005.

[8] I. Kurtev, J. Bézivin, and M. Akşit. Technological
Spaces: an Initial Appraisal. In Proceedings of CoopIS,
DOA’2002, Industrial track, 2002.

[9] R. Lämmel and V. Zaytsev. An Introduction to
Grammar Convergence. In M. Leuschel and
H. Wehrheim, editors, Proceedings of iFM 2009,
volume 5423 of LNCS, pages 246–260.
Springer-Verlag, February 2009.

[10] B. Meyers and H. Vangheluwe. A Framework for
Evolution of Modelling Languages. Science of
Computer Programming, 76(12):1223 – 1246, 2011.
Special Issue on Software Evolution, Adaptability and
Variability.

[11] V. Zaytsev. Recovery, Convergence and
Documentation of Languages. PhD thesis, Vrije
Universiteit, Amsterdam, The Netherlands, 2010.

[12] V. Zaytsev. Guided Grammar Convergence. Full Case
Study Report. Technical report, CWI, 2012. Available
at http://grammarware.net/writes/#Guided2012.

[13] V. Zaytsev, R. Lämmel, T. van der Storm, L. Renggli,
and G. Wachsmuth. Software Language Processing
Suite1, 2008–2012. http://grammarware.github.com.

1The authors are given according to the statistics at http:
//github.com/grammarware/slps/graphs/contributors.

http://grammarware.net/writes/#Guided2012
http://grammarware.github.com
http://github.com/grammarware/slps/graphs/contributors
http://github.com/grammarware/slps/graphs/contributors

