
Comparison of Context-free Grammars
Based on Parsing Generated Test Data

Bernd Fischer?, Ralf Lämmel†, Vadim Zaytsev‡

? School of Electronics and Computer Science, University of Southampton,
Southampton, United Kingdom

† Software Languages Team, Universität Koblenz-Landau,
Koblenz, Germany

‡ Software Analysis and Transformation Team,
Centrum Wiskunde en Informatica, Amsterdam, The Netherlands

Abstract. There exist a number of software engineering scenarios that
essentially involve equivalence or correspondence assertions for some of
the context-free grammars in the scenarios. For instance, when applying
grammar transformations during parser development—be it for the sake
of disambiguation or grammar-class compliance—one would like to pre-
serve the generated language. Even though equivalence is generally unde-
cidable for context-free grammars, we have developed an automated ap-
proach that is practically useful in revealing evidence of nonequivalence
of grammars and discovering correspondence mappings for grammar non-
terminals. The approach is based on systematic test data generation and
parsing. We discuss two studies that show how the approach is used in
comparing grammars of open source Java parsers as well as grammars
from the course work for a compiler construction class.

Keywords: grammar-based testing, test data generation, coverage cri-
teria, grammar equivalence, parsing, compiler construction, course work

1 Introduction

The paper is concerned with the automated comparison of context-free gram-
mars based on grammar-based test data generation. The goal is here to reveal
evidence, if any, for grammar nonequivalence, and to suggest a correspondence
mapping between the nonterminals of the compared grammars. If no evidence
of grammar nonequivalence is found, then this status may support an assertion
of grammar equivalence (against the odds of undecidability). We develop a cor-
responding approach for grammar comparison which we demonstrate with two
studies. The resulting infrastructure and two studies in grammar comparison are
available online1.

1 http://slps.sourceforge.net/testmatch

http://slps.sourceforge.net/testmatch

2 Bernd Fischer, Ralf Lämmel, Vadim Zaytsev

The following scenarios hint at the relevance of the presented work.

Grammar comparison scenarios

� Parser implementation: The implementor of a parser may start from the
“readable” grammar in a language manual and then transform it so that
ambiguities or inefficiencies or grammar class violations are addressed. For
instance, the (recovered) Cobol grammar from IBM’s standard [9,13] requires
substantial transformations before a quality parser is obtained. Grammar
comparison can be used to shield this laborious process against errors.

� Language documentation: The documenter is supposed to provide a read-
able grammar for which it may be hard to establish though that it precisely
represents the intended language. For instance, each version of the Java Lan-
guage Specification contains a “more readable” and a “more implementable”
grammar [4], and a substantial number of deviations have been identified by
a complex and laborious process of grammar convergence [17]. Grammar
comparison can be used to improve automation of this process.

� Interoperability testing : Suppose that there exist multiple grammars (in fact,
front-ends) for the same (intended) language. Interoperability testing may be
based on code reviews or manually developed testsuites. Grammar compar-
ison techniques can be used to test for interoperability more automatically
and systematically while even preparing for a mapping, if needed.

� Teaching language processing : Compiler construction is a very established
subject in computer science education and there are continuous efforts to
improve and update corresponding courses [1,5,24,27]. However, the typical
course involves laborious efforts—on the educator’s side—some of which can
be reduced with grammar comparison. For instance, the nonterminal names
of student solutions can be automatically connected with a reference solution.
Differences between the generated languages can be automatically identified.

Contributions of the paper

� We develop a framework for grammar-based test data generation and various
related coverage criteria with associated and modularized generation algo-
rithms. This results in a simple and integrated framework—when compared
to previous work.

� We develop a grammar matching algorithm which uses a systematic classifi-
cation scheme for the nonterminal correspondences between two grammars
starting from accept/reject results obtained by “combinatorial” parsing: all
mappings between nonterminals of the grammars are evaluated.

� We produce empirical evidence for the power of grammar-based test data
generation in practical situations based on two complementary studies. Dif-
ferent coverage criteria are shown to make a contribution in this context.

Comparison of Context-free Grammars 3

Roadmap of this paper: §2 presents a methodology for grammar comparison.
§3 describes a set of coverage criteria and test data generation algorithms for use in
grammar comparison. §4 reports on a grammar comparison study for Java grammars
which concludes with a nonequivalence result in particular. §5 develops a matching
algorithm for nonterminals based on parser applications to test data. §6 reports on
a grammar comparison study for a compiler construction class managing to match
grammars of the course work. §7 discusses related work. §8 concludes the paper.

2 Methodology

Overall, the idea of test-based comparison of grammars may appear relatively
straightforward. Nevertheless, a suitable methodology has to be set up.

Asymmetric comparison. Given are two grammars G and G′ which have
been extracted from or can be turned uniformly into parsers (acceptors) A and
A′. Here we call G the reference grammar and G′ the grammar under test. Ac-
cordingly, G represents the intended language, and we want to support assertions
of correctness and completeness for G′ relative to G. We say that G′ is complete,
if A′ accepts all strings that A accepts. We say that G′ is correct, if A′ rejects
all strings that A rejects. With test-based comparison we can attempt to find
counterexamples. That is, we generate (positive) test cases from G and apply A′

to them; rejection provides evidence of incompleteness of G′. We also generate
(positive) test cases from G′ and apply A to them; rejection provides evidence
of incorrectness of G′.

Symmetric comparison. In practice, we cannot always assume that one gram-
mar is clearly a reference grammar. Instead, both grammars may simply compete
with each other to appropriately capture an intended language. In this case, it
does not make sense any longer to speak of correctness and completeness. One
can still exercise both of the above-mentioned directions of test data generation
and parser application, but what was called evidence of incompleteness or incor-
rectness previously simply reduces to evidence of nonequivalence. (A)symmetric
comparison, as discussed here, is a form of differential testing [20].

Non-context-free effects. When discussing (a)symmetric grammar compar-
ison so far, we stipulated that A and A′ should precisely accept the languages
generated by G and G′. Obviously, this is not necessarily true in practice. For
instance, grammar-class restrictions may imply that a generated parser rejects
some part of the formal language. Also, parser descriptions may provide addi-
tional control that also goes beyond plain context-free grammars; see, for exam-
ple, syntactic and semantic predicates in ANTLR. Further, a parser may rely
on a designated lexer whose description may be incorporated into the grammar,
but some aspects may be hard to model explicitly, e.g., whitespace handing.
These and other differences between grammar and parser challenge the sound-
ness of any grammar comparison approach. We encounter such effects in the case
studies, but we defer a more general investigation of these effects to future work.

4 Bernd Fischer, Ralf Lämmel, Vadim Zaytsev

Nonterminal matching. When discussing (a)symmetric grammar comparison
so far, we focused on confidence for equivalence or evidence for nonequivalence.
As some of the introductory scenarios indicated, one may want to go beyond
(non)equivalence and aim at nonterminal matching. This generalization is useful
for understanding grammars and for preparing an effective mapping between
derivation trees of the compared grammars, if needed. The key idea here is
to use data sets indexed by nonterminals so that acceptance/rejection can be
tested per nonterminal which eventually allows to match nonterminals from the
two grammars when they accept each other test data sets better than for any
other combination of nonterminals. For practicality’s sake, it is important to
support nonterminal matching even for grammars that are not fully equivalent.

Stochastic vs. systematic test data generation. As we discuss in [15], prior
art in grammar-based testing focuses on stochastic test data generation (e.g.,
[19,25]). The canonical approach is to annotate a grammar with probabilistic
weights on the productions and other hints. A test data set is then generated us-
ing probabilistic production selection and potentially further heuristics. Stochas-
tic approaches have been successfully applied to practical problems. One concep-
tual challenge with stochastic approaches is that they require some amount of
configuration to achieve coverage. For instance, recursive nonterminals in gram-
mars imply a need for appropriate probabilistic weights so that divergence is
avoided. This needs to be done carefully to avoid, in turn, insufficient coverage.
In the present paper, we leverage systematic test data generation, by which we
mean that test data sets are generated by effective enumeration methods for the
coverage criteria of interest. These methods do not require any configuration.
Also, these methods imply minimality of the test data sets in both an intuitive
and a formal sense.

Larger sets of smaller test data items. Starting with Purdom’s seminal
work [22], there is the question of how to trade off size of test data set vs. size
of test data items. For instance, when attempting to cover all productions of
a grammar, one may generate a smaller test data set with each item covering
as many additional productions as possible (thereby implying larger items); in-
stead, one may also generate a larger test data set with each item covering as
few individual productions as possible (thereby implying smaller items). In the
present paper, without loss of generality, we adopt the latter principle which is
well in line with general (unit) testing advice. We also refer to [20] for support
of this principle.

3 Test data generation

Based on previous work on grammar-based test data generation [7,14,15,18,22,25],
we develop a generation framework which accumulates a number of coverage cri-
teria and associated generation algorithms in a modular manner. We have spec-
ified all ingredients in a declarative logic program of which we show excerpts

Comparison of Context-free Grammars 5

below. (The complete specification, which also includes some optimizations, is
available online; see the footnote on the first page.)

3.1 Grammars and trees

We depart from a straightforward representation of grammars and (derivation)
trees. Generation algorithms process a grammar and generate trees. Grammars
are lists of productions. A production is a triplet consisting of optional label, left-
hand side nonterminal, right-hand side expression. There are expression forms for
BNF and EBNF: true—ε; t—terminals; n—nonterminals; ‘,’—sequences; ‘;’—
choices; ‘?’—optional parts; ‘*’ and ‘+’—repetitions. The structure of trees fol-
lows exactly the one of grammars, and hence all functors are overloaded to
represent grammars as well as trees. Grammar fragments are included into trees
for origin tracking (see n and ‘;’ on the right). We refer to Figure 1 for details,
assuming higher-order predicates maplist/2, maplist1/2, mapopt/2 for applying
unary predicates to arbitrary lists, to lists with at least one element, or to lists
of zero or one elements, respectively.

grammar(Ps)
⇐

maplist(prod,Ps).

prod(p(L,N,X))
⇐

mapopt(atom,L),atom(N), expr(X).

expr(true).
expr(t(T)) ⇐ atom(T).
expr(n(N)) ⇐ atom(N).
expr(’,’(Xs)) ⇐ maplist(expr,Xs).
expr(’;’(Xs)) ⇐ maplist(expr,Xs).
expr(’?’(X)) ⇐ expr(X).
expr(’∗’(X)) ⇐ expr(X).
expr(’+’(X)) ⇐ expr(X).

tree(true).
tree(t(T)) ⇐ atom(T).
tree(n(P,T)) ⇐ prod(P).
tree(’,’(Ts)) ⇐ maplist(tree,Ts).
tree(’;’(X,T)) ⇐ expr(X), tree(T).
tree(’?’(Ts)) ⇐ mapopt(tree(Ts).
tree(’∗’(Ts)) ⇐ maplist(tree,Ts).
tree(’+’(Ts)) ⇐ maplist1(tree,Ts).

Fig. 1. Logic programming-based specification of grammars and trees.

3.2 Coverage criteria

Suppose that S is a set of derivation trees for a given grammar G. We say
that S achieves trivial coverage (TC), if S is not empty; S achieves nonterminal
coverage (NC), if S exercises each nonterminal of G at least once; S achieves
production coverage (PC), if S exercises each production of G at least once; S

6 Bernd Fischer, Ralf Lämmel, Vadim Zaytsev

achieves branch coverage (BC), if S exercises each branch for each occurrence of
‘;’, ‘?’, ‘*’, ‘+’ at least once; S achieves unfolding coverage (UC), if S exercises
each production of each right-hand side nonterminal occurrence at least once.
For backwards compatibility with terminology of the past [14], we also give the
name context-dependent branch coverage (CDBC) to the combination of BC and
UC.

Trivial, nonterminal and production coverage presumably do not require fur-
ther formal clarification. The predicate mark/3 in Figure 2 precisely enumerates
all possible foci for branch and unfolding coverage in an expression (or an entire
production). In the case of BC, all expressions that involve a form of choice are
foci. In the case of UC, all expressions that denote a nonterminal occurrence
are foci. In mark(C,X1,X2), C is the name of the coverage criterion (bc or uc),
X1 is the original expression, X2 is X1 updated so that one subterm contains a
marked focus; see the use of {. . .}.

mark(C,p(L,N,X1),p(L,N,X2)) ⇐
mark(C,X1,X2).

mark(uc,n(N),{n(N)}).
mark(bc,’;’(Xs),{’;’(Xs)}).
mark(bc,’?’(X),{’?’(X)}).
mark(bc,’∗’(X),{’∗’(X)}).
mark(bc,’+’(X),{’+’(X)}).

mark(C,’?’(X1),’?’(X2)) ⇐
mark(C,X1,X2).

mark(C,’∗’(X1),’∗’(X2)) ⇐
mark(C,X1,X2).

mark(C,’+’(X1),’+’(X2)) ⇐
mark(C,X1,X2).

mark(C,’,’(Xs1),’,’(Xs2)) ⇐
append(Xs1a,[X1|Xs1b],Xs1),
append(Xs1a,[X2|Xs1b],Xs2),
mark(C,X1,X2).

mark(C,’;’(Xs1),’;’(Xs2)) ⇐
append(Xs1a,[X1|Xs1b],Xs1),
append(Xs1a,[X2|Xs1b],Xs2),
mark(C,X1,X2).

Marked productions are essentially
marked expressions.

A nonterminal occurrence provides a fo-
cus for unfolding coverage. The EBNF
forms ‘;’, ‘?’, ‘*’, ‘+’ provide foci for
branch coverage.

Foci for BC and UC may also be found
by recursing into subexpressions.

Sequences and choices combine multiple
expressions, and foci are found by con-
sidering one subexpression at the time.

Fig. 2. Marking foci for branch and unfolding coverage.

The remarkable property of this uniform specification is that it facilitates
effectively systematic test data generation for the coverage criteria BC and UC
in the sense that a generation algorithm may simple iterate over the extension
of the predicate and exercise all options for any marked focus.

Comparison of Context-free Grammars 7

3.3 Generation primitives

Generation algorithms for the five coverage criteria can be composed from a
small set of primitives; one of which is the predicate mark/3 described above.
These are the remaining ones; we include mode annotations for the intended
direction of usage2.

� complete(+G,+X,−T): the tree T is the shortest completion of expression
X according to grammar G—we omit the definition of this primitive here as
it is reasonably understood [18,22].

� mindepth(+G,+N,−D): the natural number D is the minimum depth of
derivation trees rooted by nonterminal N according to grammar G in terms
of the nonterminal nodes on paths—this is the essential relationship for
shortest completion and possibly further generation algorithms; it can be
computed by a simple fixed point computation.

� hole(+G,+N,+H,−T ,−V): the tree T is rooted in nonterminal N with a
“hole” for a derivation tree for nonterminal H where the hole is accessible
through the place holder (logical variable) V —the tree is the smallest one in
the sense of the shortest path from N to H (in terms of nonterminal nodes)
while using shortest completion everywhere else.

� dist(+G,+N1,+N2,−D): the natural number D is the (minimum) distance
between nonterminals N1 and N2 in the sense of nonterminal nodes on paths
in derivation trees from N1 to N2—this is the essential relationship for small-
est trees with holes; it can be computed by a simple fixed point computation
similar to mindepth/3.

� vary(+G,+X,−T): the expression X contains exactly one focus ({. . . }) and
trees T are enumerated such that they are shortest completions overall, but
all “immediate options” for the focus are exercised.

Figure 3 lists the specification of vary/3 ; it uses the primitive complete/3
and a trivial selector def/3 with arguments def(+G,?N,−Ps) to associate a given
grammar G with its defined nonterminals N and the productions for those non-
terminals Ps.

3.4 Generation algorithms

We are ready to define algorithms for the coverage criteria TC, NC, PC, BC, and
UC. We leverage the primitives mentioned above. See Figure 4 for the specifica-
tion of the algorithms. The remarkable property of these simple specifications is
that they are effective in generating “larger sets of smaller trees” (see §2) that
achieve coverage in the intended manner. For instance uc/3 with arguments
uc(+G,?R,−T) generates (by backtracking) derivation trees T for nonterminals

2 The modes “+” and “−” are used for (instantiated) input or (uninstantiated) output
arguments, respectively. In principle, there is also the mode “?” for unconstrained
arguments.

8 Bernd Fischer, Ralf Lämmel, Vadim Zaytsev

vary(G,{n(N)},n(P,T)) ⇐
def(G,N,Ps),
member(P,Ps),
P = p(, ,X),
complete(G,X,T).

vary(G,{’;’(Xs)},’;’(X,T)) ⇐
member(X,Xs),
complete(G,X,T).

vary(,{’?’()},’?’([])).
vary(G,{’?’(X)},’?’([T])) ⇐

complete(G,X,T).
vary(,{’∗’()},’∗’([])).
vary(G,{’∗’(X)},’∗’([T])) ⇐

complete(G,X,T).
vary(G,{’+’(X)},’+’([T])) ⇐

complete(G,X,T).
vary(G,{’+’(X)},’+’([T1,T2])) ⇐

complete(G,X,T1),
complete(G,X,T2).

A nonterminal occurrence in focus is varied
so that all productions are exercised. (The
complete spec also deals with chain produc-
tions and top-level choices in a manner that
increases variation in a reasonable sense.)

A choice in focus is varied so that all
branches are exercised.

An optional expression and a ‘*’ repetition
in focus are varied so that the cases for no
tree and one tree are exercised. A ‘+’ repeti-
tion is varied so that the cases for sequences
of length 1 and 2 are exercised.

We omit all clauses for recursing into com-
pound expressions; they mimic shortest
completion but they are directed in a way
that they reach the focus.

Fig. 3. Varying foci for branch and unfolding coverage.

tc(G,R,T)
⇐ def(G,R,), complete(G,n(R),T).

nc(G,R,T)
⇐ def(G,R,), dist(G,R,H,), hole(G,n(R),H,T,V), complete(G,n(H),V).

pc(G,R,T)
⇐ def(G,R,Ps), member(P,Ps), complete(G,P,T).

pc(G,R,T)
⇐ def(G,R,), dist(G,R,H,), hole(G,n(R),H,T,V), pc(G,H,V).

bc(G,R,T)
⇐ cdbc(bc,G,R,T).

uc(G,R,T)
⇐ cdbc(uc,G,R,T).

cdbc(C,G,R,T)
⇐ def(G,R,Ps), member(P,Ps), mark(C,P,F), vary(G,F,T).

cdbc(C,G,R,T)
⇐ def(G,R,), dist(G,R,H,), hole(G,n(R),H,T,V), cdbc(C,G,H,V).

Fig. 4. Enumeration of test data achieving coverage.

R from grammar G. It is important to notice that the predicates of Figure 4
iterate over all possible nonterminals for the root R of the generated trees (as-

Comparison of Context-free Grammars 9

suming R is left uninstantiated). This implies that we can generate test data
sets that are indexed by the nonterminals of the grammar (see again §2).

Let us pick one generation algorithm for discussion. For instance, predicate
pc/3 enumerates trees achieving PC as follows. The first clause of pc/3 models
the case that we want to cover a production P of the rooting nonterminal R,
in which case we simply apply shortest completion to P . The second clause of
pc/3 models the case that we want to cover a production of some nonterminal
H that is only reachable through a nonempty path starting from the rooting
nonterminal R, in which case we create a tree with a hole for nonterminal H to
be filled by recursive invocation of pc/3.

4 Grammar nonequivalence study: Java 5

In this study, we apply symmetric grammar comparison to four different gram-
mars, in fact, parsers of the Java programming language. That is, we generate
test data for all the grammars, and each test case from each of the test sets is
then fed into each of the parsers. In this manner, we discover differences between
the languages generated by the four grammars. (All involved grammars and tools
are available online; see the footnote on the first page.)

4.1 Grammar sources

In previous work, we have extracted Java grammars from the Java Language
Specification [4], with many inconsistencies and irregularities reported in [17]. A
significant subsequence grammar recovery effort is needed to make those gram-
mars executable. In fact, this recovery process would have to include taking a list
of decisions, each of them bringing the final result further away from the original.
However, several handmade adaptations already exist and are deployed in prac-
tice. Thus, in the current work we acquired four operational grammars for J2SE
5.0 (“Java 5”) from four widely used ANTLR sources, distributed under the
BSD license. The underlying ANTLR-based parser descriptions strive to cover
the same language; they were developed independently from one another by dif-
ferent grammar engineers, based on their experience, style and understanding of
the Java Language Specification [4]:

Technology Author year PROD VAR TERM

Habelitz ANTLR33 Dieter Habelitz4 2008 397 226 166
Parr ANTLR3 Terence Parr5 2006 425 151 157
Stahl ANTLR26 Michael Stahl7 2004 262 155 167
Studman ANTLR2 Michael Studman8 2004 267 161 168

3
http://www.antlr.org

4
http://www.antlr.org/grammar/1207932239307/Java1_5Grammars/Java.g

5
http://www.antlr.org/grammar/1152141644268/Java.g

6
http://www.antlr2.org

7
http://www.antlr.org/grammar/1093454600181/java15-grammar.zip

8
http://www.antlr.org/grammar/1090713067533/java15.g

http://www.antlr.org
http://www.antlr.org/grammar/1207932239307/Java1_5Grammars/Java.g
http://www.antlr.org/grammar/1152141644268/Java.g
http://www.antlr2.org
http://www.antlr.org/grammar/1093454600181/java15-grammar.zip
http://www.antlr.org/grammar/1090713067533/java15.g

10 Bernd Fischer, Ralf Lämmel, Vadim Zaytsev

PROD, VAR and TERM values in the table refer to simple grammar met-
rics [21] of the number of top alternatives in grammar production rules, the
number of nonterminal and the number of terminal symbols correspondingly. We
have developed a simple infrastructure for driving a set of ANTLR-based parsers
including aspects of parser generation and selecting the appropriate ANTLR ver-
sion.

4.2 Grammar extraction

Based on previous work on grammar convergence [16], we were able to extract
the context-free grammars from the ANTLR-based parser description. That is,
we developed a designated extractor, using the Rascal [11] meta-programming
language, so that the following ANTLR constructs are abstracted away:

� Semantic actions — {...}
� Rule arguments — [...]
� Semantic predicates — {...}?
� Syntactic predicates — (...)=>
� Rewriting rules — -> ^(...)
� Return types of the rules — returns ...
� Specific sections — options, @header, @members, @rulecatch, ...
� Rule modifiers — options, scope, @after, @init, ...

Also some minor notational features like character class negation (∼) or range
operator (..) needed to be translated into basic context-free grammar notation.
Tokens defined as terminals were merged with the normal grammar rules. By
doing so, we are able to fit most of the grammar knowledge in our infrastructure
without focusing on idiosyncratic details. An abstracted grammar differs from
the original in terms of the accepted language, and these effects are yet to be
fully studied (see §2).

4.3 Test set generation

Using the algorithm and the infrastructure described in §3, we generated test
data for (only) the start symbols of each of the Java grammars. Figure 5 reports
on the amount of test data. As an exercise in studying the effectiveness of the
different coverage criteria, we explicitly divided test data based on the coverage
criteria, and ultimately found out that the CDBC set contains the largest number
of test cases and usually includes TC, PC, NC and BC sets.

Trivial coverage only involves one test case (rooted in the start symbol). One
may expect that the shortest completions of all grammars are mutually accepted
by the parsers. The test sets for production and nonterminal coverage yield the
same test sets because of ANTLR-implied9 and author-specific grammar style.
The way BC and UC (and hence CDBC) are defined, the corresponding test sets
need not to imply PC and NC, but, in practice, the implication holds. Hence, for
the rest of the paper, we use test sets of CDBC for drawing actual conclusions
on grammar comparison.

9 For instance, definitions of nonterminals in ANTLR have exactly one production
because choices are used instead of multiple productions.

Comparison of Context-free Grammars 11

0

250

500

750

1,000

1,250

1,500

TC PC NC BC CDBC TC PC NC BC CDBC TC PC NC BC CDBC TC PC NC BC CDBC TC PC NC BC CDBC

Chart 2

Java (Habelitz) Java (Parr) Java (Stahl) Java (Studman) TESCOL (00001)

Fig. 5. Test set sizes. Amount of test data generated to satisfy trivial, production,
nonterminal, branch and context-dependent branch coverage criteria. For comparison,
we also show test set sizes for a grammar of the study in §6.

4.4 Results

Figure 6 reports on the degree of observed nonequivalence during testing. The
blue dots represent acceptance rate for each of the criteria-driven subsets, while
the green block behind them reports on all test data together. Let us first ex-
amine the diagonal plots which are expected to be equal to 100%, not just close
to it. Namely, consider one of the test cases generated from Habelitz grammar
and not parseable with it:

class a { { switch (++ this) { } } }

According to the extracted grammar, switch block labels are defined by a
nillable nonterminal aptly called switchBlockLabels:

switchBlockLabels:

switchCaseLabels switchDefaultLabel? switchCaseLabels

switchDefaultLabel:

DEFAULT COLON blockStatement*

switchCaseLabels:

switchCaseLabel*

However, the original parser specification contained an AST rewriting rule:

switchBlockLabels

: switchCaseLabels switchDefaultLabel? switchCaseLabels

-> ^(SWITCH_BLOCK_LABEL_LIST switchCaseLabels

switchDefaultLabel? switchCaseLabels) ;

This rule raises an exception if an attempt is made to rewrite an empty tree,
and the unhandled exception is then treated as a failure to parse code. Since
the context-free part allows switchBlockLabels to be ε, generated test data
explores the option, but the idiosyncrasy with which its structure was originally
defined, leads to false nonequivalence reports. It is also worth mentioning that

12 Bernd Fischer, Ralf Lämmel, Vadim Zaytsev

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

H
a

b
e

litz
 !

 H
a

b
e

litz
H

a
b

e
litz

 !
 P

a
r
r

H
a

b
e

litz
 !

 S
ta

h
l

H
a

b
e

litz
 !

 S
tu

d
m

a
n

P
a

r
r
 !

 H
a

b
e

litz
P

a
r
r
 !

 P
a

r
r

P
a

r
r
 !

 S
ta

h
l

P
a

r
r
 !

 S
tu

d
m

a
n

S
ta

h
l !

 H
a

b
e

litz
S

ta
h

l !
 P

a
r
r

S
ta

h
l !

 S
ta

h
l

S
ta

h
l !

 S
tu

d
m

a
n

S
tu

d
m

a
n

 !
 H

a
b

e
litz

S
tu

d
m

a
n

 !
 P

a
r
r

S
tu

d
m

a
n

 !
 S

ta
h

l
S

tu
d

m
a

n
 !

 S
tu

d
m

a
n

Fig. 6. Testing Java grammars and parsers. Habelitz grammar is apparently much
more permissive than the rest. All parsers accept almost all test cases generated from
their corresponding grammars (diagonal plots).

Comparison of Context-free Grammars 13

the grammar with the highest self-acceptance rate (99%) is Parr, which was
designed by the creator of the ANTLR notation.

From the non-diagonal plots of Figure 6 one can see that Parr, Stahl and
Studman grammars are rather close to one another, but Habelitz is much more
permissive. Indeed, manual cursory examination of the failing test cases shows
that Habelitz parser accepts, among other things:

� class a < a extends a {}, class a < a >> {}, class a < a >>> {}

(the piece of grammar dealing with angle brackets is annotated with a “dirty
trick” comment)

� native class a { } (“native” is a modifier for a method, not for a class)
� @ a (++ 0) (annotation followed by neither class nor package declaration)

The last mentioned example is responsible for most of the failures. In fact, the
only place we were able to spot where Habelitz grammar is more restrictive than
the rest is enumeration definitions (it does not allow for empty enumerations).

5 Matching algorithm

We start from a test set indexed by nonterminals of a grammar. We take all
its test cases and apply a parser generated from another (the original, not the
abstracted one) grammar, while also varying the start symbol so that all non-
terminals are exercised. For each run of a parser with one test case, we get a
positive response (meaning that this particular test case has been accepted as
valid according to a particular nonterminal) or a negative one (meaning that a
parse error occurred, AST building failed, a predicate did not hold, etc.).

We can group these results into triples {reference nonterminal, nonterminal
under test, percentage of successfully parsed test data}. Such a relation, when
displayed in table form with reference nonterminals as rows and nonterminals
under test as columns, and when sorted alphabetically, looks like Figure 7 (left).
Cells with 0% successes are left blank, up to 25% are yellow, below 75% are blue,
up to 99% are green and exactly 100% successes are red.

The results are processed further by making actual matches between nonter-
minals. First, universal(·, y) matches are made by removing nonterminals under
test that accept all test data generated by more than 75% of the reference non-
terminals. Then, different rules for matching are attempted exhaustively. Each
single match is recorded and the matched nonterminals are removed from fur-
ther checks for the rest of the matching loop. There are the following rules for
matches; these options are attempted in the given order for each matching step:

void(x, ·) all nonterminals under test accept less than 25% for x’s test data.
perfect(x, y) x generates test data which can always be parsed by y and never

by any other nonterminal, and y also exclusively accepts only x’s test data;
nearlyPerfect(x, y) x generates test data of which more than 75% can be

parsed by y and never by any other nonterminal, and y also exclusively
accepts only x’s test data;

14 Bernd Fischer, Ralf Lämmel, Vadim Zaytsev

00001.bgf → 00001.jar
1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lexicographic order

00001.bgf → 00001.jar
1 0

1 0

1 0

1 0

1 1 0

1 0 1 0

1 0 0 1 0

1 0 0 0 1 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0

1 0 1 1 0 0 0 0

1 0 1 1 0 0 0 0

1 0

Matching order

1 100% 1 75–99% 1 26–74% 0 1–25% 0 0%

Fig. 7. Visualized nonterminal matching. In every color matrix, each row repre-
sents a producing nonterminal and each column denotes an accepting nonterminal. On
the left color matrix, nonterminals (i.e., rows and columns) are sorted alphabetically;
on the right one, in the order of matching.

exclusive(x, y) x generates test data which is best parsed by y at more than
75%, and y exclusively accepts only x’s test data;

probable(x, y) x generates test data which is parsed only by y, and acceptance
rate is at least 25%;

block(xi, yi) all xi yield test data that is well accepted (> 75%) by all yi;
probableBlock(xi, yi) all xi yield test data accepted at > 25% by all yi;
maximum(x, y) of all candidates, y has the highest acceptance rate.

If any nonterminals are left once the above rules have been exhausted, then
that rest is assumed to match none(x, ·). If rows and columns of the relation are
resorted in the order of matching, we can see a picture like the one on Figure 7
(right). There we see a universal match being made, followed by a long series
of perfect and then nearly perfect matches, several exclusive matches, a big
block match and some less reliable matches at the end of the process.

6 Nonterminal matching study: course work

TESCOL (TESt COmpiler Language) is an artificial DSL used by the first
coauthor in a compiler engineering course. A TESCOL program contains a
list of semicolon-separated declarations and a single statement. The program
starts with the keyword trolley, followed by a constant identifier, the keyword
contains, and the declarations. The statement is separated from the declara-
tions by the keyword checkout and followed by a semicolon, the mandatory

Comparison of Context-free Grammars 15

done and another semicolon. There are also some contextual restrictions: global
naming scheme, non-recursive procedures, declarations preceding uses, etc.

A class of students was asked to implement TESCOL in ANTLR, resulting
in a codebase of many grammars claiming to conform to the same language
specification. The following actions were part of the preparations of the TESCOL
grammarbase:

� ANTLR3 grammars were recovered from the submitted tarballs;
� The grammars were extracted as described in §4.2;
� Based on the list of nonterminals from the grammar, we generated boilerplate

Java code for passing a file name and a nonterminal name as parameters;
� The code produced by ANTLR from the grammar was compiled together

with the boilerplate code to form a JAR;
� The filenames were obfuscated to avoid disclosing students’ identities.

In this way we were able to obtain 32 pairs, each consisting of a valid context-
free grammar and a runnable JAR with a parser. Each grammar was used to
generate test data for all nonterminals it contained. Such a test data set for one
grammar consisted of around 1000 test cases (min. 599, max. 1354), distributed
among coverage criteria as shown in Figure 5 (right). One test data set took
around 5 hours to test against all 2300 nonterminals of available 32 candidate
grammars on an Intel Core i7 machine with a 2.80GHz CPU (see also Table 3).
The results reported in this paper refer specifically to one test data set for the
reference grammar nicknamed 00001, fed into all of the available parsers. The
choice of 00001 over other TESCOL grammars was purely incidental.

TESCOL grammars are considerably smaller than Java grammars, having
on average four times less top alternatives, three times less nonterminal symbols
and almost half less terminals (compare with the table on page 9):

PROD VAR TERM

Minimum 69 54 101
Average 85 67 104
Maximum 126 83 120

Let us return to Figure 7, which we already used for illustration of non-
terminal matching. In fact, the two matrices in the figure represent matches
of the reference grammar against its own parser. The only universal match is
with a nonterminal called token, which serves error handling. Void matches for
comment, COMMENT and WS (whitespace) make sense because of the way how a
parser handles, in fact, skips such lexical categories. However, a void match for
procDec is suspicious; when investigated, we see the same problem encountered
earlier in §4.4: a RewriteEmptyStreamException.

Nominal inspection of all 50 singular matches shows that they are correct.
There are also two group matches: one correct (comprising expr, multExpr,
compExpr, andExpr, etc, closely related nonterminals from one grammatical

16 Bernd Fischer, Ralf Lämmel, Vadim Zaytsev

00001.bgf → 11011.jar
1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 1 0

1 0 1 0

1 0 0 1 0

1 0 0 0 1 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0

1 0

1 0 1 1 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0

Well-matching grammars

00001.bgf → 10100.jar
1 0

1 0

0 1 0

0 1 0

0 1 0

0 0 1 0

0 0 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 1 0

0 0

0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 1 1 1 1 1 1 1 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Poorly matching grammars

1 100% 1 75–99% 1 26–74% 0 1–25% 0 0%

Fig. 8. Visualized nonterminal matching. A good match between languages can
be seen on the left; a considerably worse one on the right.

level) and one incorrect (constDec and declarations with themselves). The
incorrectness of the latter is a direct consequence of the problem with procDec.

Figure 8 shows two more examples of nonterminal matching which we will
discuss very briefly. The one on the left is well-matched, with a couple of groups
and many perfect matches, most of which could not have been inferred from nom-
inal matching: MULTI with ARITH-MUL, NEQ with COND-NONEQUAL, grstatement
with statement-group, etc. The one on the right is matching rather poorly,
with 41 nonterminals matching void or none and the rest being in blocks.

We have condensed the results of matching all grammars with the refer-
ence grammar in Figure 9, where matches are counted based on their type.
Universal, void and none belong to a group of usually unwanted matches
since they fail to provide any information to the grammar engineer. On the
other end, block and probable block matches give some information which
requires more sophisticated heuristics or human interpretation. The remaining
matches are singular: one reference nonterminal matches with one nonterminal
under test. As it becomes apparent from the diagram, perfect, nearly perfect,
exclusive, probable and maximum matches cover the majority of reference
nonterminals. Group matches also provide useful and adequate results. Hence,
nonterminal matching is successful in the context of the study.

7 Related Work

§2 already provided some general background on the established topic of grammar-
based testing; we refer to [3,7,8,12,14,15,18,19,20,25] for extensive discussion of
methods and applications of grammar-based testing. Our work is original in so

Comparison of Context-free Grammars 17

0

17.5

35

52.5

70

00000 00010 00100 00110 01000 01010 01100 01110 10000 10010 10100 10110 11000 11010 11100 11110

TESCOL

NO SINGULAR GROUP

Fig. 9. TESCOL nonterminal matching. Blue (dark grey) bar parts denote non-
terminals that did not match anything (universal, void, none); green (grey) denotes
nonterminals for which a match was found (perfect, nearly perfect, exclusive, proba-
ble, maximum); yellow (light grey) is for nonterminals which were matched in a group
(block, probable block).

far that we are the first to actually use grammar-based testing for the com-
parison of grammars. Usually, grammar-based testing is used to test parsers or
compilers.

In both studies in §4 and §6, we have noticed imperfect self-matching and ex-
plained reasons for it. One of the ways to improve on this issue would be to take
into account the constraints expressed by the parser specification. There are re-
lated methods of extending grammar-based testing to attribute grammars [6,10].

In our current development, we do not yet leverage any sort of negative test
data generation. There are grammar-based testing scenarios that clearly benefit
from inclusion of negative test cases [29]. For instance, a parser for which no
grammar-based parser description is available can only be tested for completeness
with regard to reference grammar with positive test cases whereas testing for
correctness would require negative test cases. In our comparison-based context
of the present paper, negative test data is “less important” because evidence
of both non-completeness and non-correctness can be found with the help of
positive test cases that are obtained from the compared grammars; see again §2.

Grammar nonequivalence is a well-known undecidable problem. One related
problem is the status of a grammar to be ambiguous (or not). Some sort of
testing has been successfully applied though in this context [2]. Another related
problem is grammar-class/non-ambiguity preservation under composition. While
context-free grammars can always be combined together to form new context-
free grammars, smaller subclasses related to specific parsing technology (or to
the requirement of non-ambiguity) usually do not exhibit this property. Several
attempts to provide painless language modularity are known, such as Kiama [26],

18 Bernd Fischer, Ralf Lämmel, Vadim Zaytsev

generate unparse run
Test set TC PC NC BC CDBC Habelitz Parr Stahl Studman

Habelitz 00:21 00:58 00:59 02:14 04:46 00:30 02:29 02:02 01:23 01:20
Parr 00:08 00:29 00:29 02:10 03:51 00:34 02:50 02:21 01:33 01:34
Stahl 00:08 00:35 00:35 02:45 05:01 00:39 03:02 02:34 01:40 01:39
Studman 00:09 00:38 00:39 02:59 05:12 00:37 03:05 02:35 01:41 01:41

TC PC NC BC CDBC unparse 00000 00001

00000 00:31 00:47 00:50 00:59 01:27 00:57 5:08:48 4:40:23
00001 00:05 00:14 00:51 01:12 01:53 01:47 5:41:22 5:10:36
... ...
All TESCOL 02:21 08:44 27:21 34:21 59:19 17:32 —

Table 3. Performance. Time (in minutes, seconds and, if necessary, hours) to gen-
erate test data, unparse it (turn parse trees to source code), and run. Generation
was measured separately for satisfying trivial, production, nonterminal, branch and
context-dependent branch coverage criteria.

Silver/Copper [28], language boxes methodology [23], etc. Grammar comparison-
like methods may be potentially useful in supporting safe composition.

8 Conclusion

We have developed and demonstrated an approach to grammar comparison
which relies on systematic grammar-based test data generation and parsing.
We have shown, in particular, that the approach can be used for revealing differ-
ences between sizable grammars and for matching many grammars. We conclude
with a discussion of future work.

The results of nonterminal matching turn out to be useful based on our
nominal inspection. Further research is needed to see how the information that
is derived from nonterminal matching can be usefully consumed by grammar
engineers for different scenarios. For instance, someone who likes to converge
two grammars may need to turn the matches into appropriate transformations.

We already mentioned the possibility of generating negative test cases. In
theory, more evidence can be found by applying parsers to negative test cases.
Whether or not this evidence makes a difference in practical scenarios like ours
is an open question.

There is also the related question whether we can improve precision of match-
ing by generating larger test sets for more demanding coverage criteria. While it
may lead to bad scalability to universally replace CDBC by a more demanding
criterion, a more selective approach could be scalable enough: generate more test
data when about to match a block (see §5).

Our implementation leaves much room for optimization. As apparent from
Table 3, the generation phase is not a problem: it is required only once, and

Comparison of Context-free Grammars 19

takes only a few minutes. However, our current infrastructure for parser execu-
tion loops over test cases such that the parser is run separately for each test
case, causing excessive overhead with loading and unloading in the JVM. The
computation of the results of the present paper relied on parallelism/distribu-
tion10.

References

1. Aho, A.V.: Teaching the Compilers Course. SIGCSE Bull. 40, 6–8 (Nov 2008)
2. Basten, H.J.S.: Tracking Down the Origins of Ambiguity in Context-free Gram-

mars. In: Proceedings of the 7th International colloquium conference on Theoretical
aspects of computing. pp. 76–90. ICTAC’10, Springer-Verlag, Berlin, Heidelberg
(2010)

3. Burgess, C.J.: The Automated Generation of Test Cases for Compilers. Software
Testing, Verification and Reliability 4(2), 81–99 (Jun 1994)

4. Gosling, J., Joy, B., Steele, G.L., Bracha, G.: The Java Language Specification.
Addison-Wesley, third edn. (2005), all versions of the JLS are available at http:

//java.sun.com/docs/books/jls

5. Griswold, W.G.: Teaching Software Engineering in a Compiler Project Course.
Journal on Educational Resources in Computing 2 (Dec 2002)

6. Harm, J., Lämmel, R.: Two-dimensional Approximation Coverage. Informatica
24(3) (2000)

7. Hennessy, M., Power, J.F.: Analysing the effectiveness of rule-coverage as a re-
duction criterion for test suites of grammar-based software. Empirical Software
Engineering 13, 343–368 (August 2008)

8. Hoffman, D., Wang, H.Y., Chang, M., Ly-Gagnon, D., Sobotkiewicz, L., Strooper,
P.: Two Case Studies in Grammar-based Test Generation. Journal of Systems and
Software 83, 2369–2378 (December 2010)

9. IBM Corporation: VS COBOL II Application Programming Language Reference,
4th edn. (1993), Publication number GC26-4047-07

10. Kastens, U.: Studie zur Erzeugung von Testprogrammen für Übersetzer. Bericht
12/80, Institut für Informatik II, University Karlsruhe (1980)

11. Klint, P., van der Storm, T., Vinju, J.: EASY Meta-programming with Rascal.
In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) Post-proceedings of
GTTSE 2009. LNCS, vol. 6491, pp. 222–289. Springer-Verlag (January 2011)

12. Kossatchev, A.S., Posypkin, M.A.: Survey of compiler testing methods. Program-
ming and Computing Software 31, 10–19 (January 2005)

13. Lämmel, R., Verhoef, C.: VS COBOL II grammar Version 1.0.4 (1999), available
at: http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/

14. Lämmel, R.: Grammar Testing. In: Hussmann, H. (ed.) Proceedings of Fundamen-
tal Approaches to Software Engineering (FASE’01). LNCS, vol. 2029, pp. 201–216.
Springer-Verlag (2001)

15. Lämmel, R., Schulte, W.: Controllable Combinatorial Coverage in Grammar-
Based Testing. In: Uyar, U., Fecko, M., Duale, A. (eds.) Proceedings of the 18th
IFIP TC6/WG6.1 International Conference on Testing of Communicating Systems
(TestCom’06). LNCS, vol. 3964, pp. 19–38. Springer Verlag (2006)

10 We used several machines at the CWI SWAT department. The estimated, sequential
time to run all TESCOL-based test data against all parsers is 300 days.

http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/jls
http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/

20 Bernd Fischer, Ralf Lämmel, Vadim Zaytsev

16. Lämmel, R., Zaytsev, V.: An Introduction to Grammar Convergence. In: Proceed-
ings of iFM. LNCS, vol. 5423, pp. 246–260. Springer (2009)

17. Lämmel, R., Zaytsev, V.: Recovering Grammar Relationships for the Java Lan-
guage Specification. Software Quality Journal 19(2), 333–378 (2011)

18. Malloy, B.A., Power, J.F.: An Interpretation of Purdoms Algorithm for Automatic
Generation of Test Cases. In: In 1st Annual International Conference on Computer
and Information Science. pp. 3–5 (2001)

19. Maurer, P.: Generating Test Data with Enhanced Context-free Grammars. IEEE
Software 7(4), 50–56 (1990)

20. McKeeman, W.M.: Differential Testing for Software. Digital Technical Journal of
Digital Equipment Corporation 10(1), 100–107 (1998)

21. Power, J.F., Malloy, B.A.: A metrics suite for grammar-based software. Journal of
Software Maintenance and Evolution: Research and Practice 16, 405–426 (Novem-
ber 2004)

22. Purdom, P.: A Sentence Generator for Testing Parsers. BIT 12(3), 366–375 (1972)
23. Renggli, L., Denker, M., Nierstrasz, O.: Language Boxes: Bending the Host Lan-

guage with Modular Language Changes. In: van den Brand, M., Gaševic, D., Gray,
J. (eds.) Software Language Engineering, LNCS, vol. 5969, pp. 274–293. Springer
Berlin / Heidelberg (2010)

24. Schwartzbach, M.I.: Design Choices in a Compiler Course or How to Make Un-
dergraduates Love Formal Notation. In: Proceedings of the Joint European Con-
ferences on Theory and Practice of Software 17th International Conference on
Compiler Construction. pp. 1–15. CC’08/ETAPS’08, Springer-Verlag (2008)

25. Sirer, E.G., Bershad, B.N.: Using Production Grammars in Software Testing. SIG-
PLAN Notices 35, 1–13 (December 1999)

26. Sloane, A.M., Kats, L.C.L., Visser, E.: A Pure Object-Oriented Embedding of At-
tribute Grammars. In: Ekman, T., Vinju, J. (eds.) Proceedings of the Ninth Work-
shop on Language Descriptions, Tools, and Applications (LDTA 2009). Electronic
Notes in Theoretical Computer Science, Elsevier Science Publishers (2009)

27. Waite, W.M.: The Compiler Course in Today’s Curriculum: Three Strategies. In:
Proceedings of the 37th SIGCSE technical symposium on Computer science edu-
cation. pp. 87–91. SIGCSE ’06, ACM (2006)

28. van Wyk, E., Krishnan, L., Schwerdfeger, A., Bodin, D.: Attribute Grammar-
based Language Extensions for Java. In: European Conference on Object Oriented
Programming (ECOOP). LNCS, vol. 4609. Springer Verlag (2007)

29. Zelenov, S., Zelenova, S.: Automated Generation of Positive and Negative Tests
for Parsers. In: Grieskamp, W., Weise, C. (eds.) Formal Approaches to Software
Testing, LNCS, vol. 3997, pp. 187–202. Springer Berlin / Heidelberg (2006)

