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Abstract. The process of grammar convergence involves grammar ex-
traction and transformation for structural equivalence and contains a
range of technical challenges. These need to be addressed in order for
the method to deliver useful results. The paper describes a DSL and the
infrastructure behind it that automates the convergence process, hides
negligible back-end details, aids development/debugging and enables ap-
plication of grammar convergence technology to large scale projects. The
necessity of having a strong framework is explained by listing case stud-
ies. Domain elements such as extractors and transformation operators
are described to illustrate the issues that were successfully addressed.

1 Introduction

The method of grammar convergence has been presented in [15] and elaborated in a
large case study [16], with a journal version being in print. The basic idea behind it
is to extract grammars from available grammar artefacts, transform them until they
become identical, and draw conclusions from the properties of the transformation chain:
its length, the type of steps it consisted of, the correspondence with the properties

XSL:FO

PDF

fop

BGF

text

XSLT

TeX

XSLT XBGF

generators

dot

LaTeX

LDF

XSLT

XSLT

XLDF

HTML

XSLT

XSLT
Python

XSLTXSLT

slicer

ANTLR

ANTLR

SDF

ASF

TXL/XML

XSLT

Ecore

XSLT Java

Eclipse

AsFix

BTF

ASF

Prolog

XBTF

XSD

Prolog

Python Eclipse

Graphviz

LCF

LCI

slicer

TXL

TXL

Java

XML Prolog

LLL

GDK

trafo

DCG

Prolog

DMS BNF

XSLT
Python

XBGF

XSLT

Python

Fig. 1. The megamodel of SLPS: every vertex is a language, every arc is a lan-
guage transformation. Thin grey lines denote tools present prior to this research:
e.g., GDK [13] or TXL [3]. Thick grey edges are for co-authored transformations.



expected a priori from documentation, etc. Grammar convergence can be used among
other ways to establish an agreement between a hand-crafted object model for a specific
domain and an XML Schema for standard serialisation of the same domain; to prove
that various grammarware such as parsers, code analysers and reverse engineering tools
agree on the language; to synchronise the language definition in the manual with the
reference implementation; to aid in disciplined grammar adaptation.

In this paper we will use the terms “grammar convergence” and “language con-
vergence” almost interchangeably. In fact, language convergence is a broader term
that includes convergence of not only the syntax, but also parse trees, documentation,
possibly even semantics. We focus on dealing with grammars here, but the reader in-
terested in consistency management for language specifications can imagine additional
automated steps like extracting a grammar from the language document before the
transformation and inserting it back afterwards [12,14].

Language convergence was developed and implemented as a part of an open source
project called SLPS, or Software Language Processing Suite1. It comprises several
stand-alone scripts targeting comparison, transformation, benchmarking, validation,
extraction, pretty-printing. Most of those scripts were written in Python, Prolog, Shell
and XSLT. Grammar convergence is a complicated process that can only be automated
partially and therefore requires expert knowledge to be used successfully. In order to
simplify the work of a grammar engineer, a specific technical infrastructure is needed
with a solid transformation operators suite, steadily defined internal notations and
a powerful tool support for every stage. This paper presents such a framework and
explains both engineering and scientific design choices behind it.

Figure 1 presents a “megamodel” [2] of SLPS. Every arc from this graph is a
language transformation tool or a sequence of pipelined tools. Many of the new DSLs
developed for this infrastructure are in fact XML: BGF, XBGF, BTF, XBTF, LDF,
XLDF, LCF—just an engineering decision that let them profit fully from XMLware
facilities like validation against schemata and transformation with pattern matching.
(These advantages are not unique for XML, of course). Others are mostly well-known
languages that existed prior to this research: ANTLR [18], SDF [9], LLL [13], XSD [5],
etc.

The left hand side of the megamodel is mostly dedicated to language documentation-
related components: LDF is a Language Document Format [23], an extension of gram-
mar notation that covers most commonly encountered elements of language manuals
and specifications. The central part contains the grammar notation itself: the BGF
node has a big fan-in since every incoming arc represents a grammar extraction tool
(see §4.1). The only outgoing arcs are the main presentation forms: pure text, marked
up LATEX and a graph form, plus transformation generators (see §5.4) and integration
tools (see §6.3).

The inherent complexity of the domain and the methodology led to the development
of what we call LCI, or Language Convergence Infrastructure. It is the central point of
SLPS, it provides full technical support to its functionalities, operating on a DSL called
LCF (LCI Configuration Format) in which the input configuration must be expressed.
The DSL details are also provided in this paper.

§2 motivates the need for language convergence by giving three example scenarios of
its application. §3 starts describing the domain by explaining the DSL, while §4, §5 and
§6 address the notions linked to sources, transformations and targets correspondingly.

1 Software Language Processing Suite: http://slps.sf.net

http://slps.sf.net
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Fig. 2. The overall convergence graph for the Factorial Language. The grey
arrows show grammar relations that are expressed in LCF but not performed
directly by the convergence infrastructure (the reason is that, for example, gen-
erating Ecore from XML Schema cannot be done from command line and must
be performed via Eclipse IDE).

2 Motivation

In this section three distinct applications of grammar convergence are briefly presented
together with the results acquired from them.

2.1 Same Language, Multiple Implementations: Factorial Language

A trivial functional programming language was defined in [15] to test out the method
of grammar convergence, we called it Factorial Language. We modelled the common
scenario of one language having several independently developed grammars by writing
or generating nine grammar artefacts within various frameworks, as seen on Figure 2:

antlr. A parser description in the input language language of ANTLR [18]. Semantic
actions (in Java) are intertwined with EBNF-like productions.

dcg. A logic program written in the style of definite clause grammars.
sdf. A concrete syntax definition in the notation of SDF (Syntax Definition Formal-

ism [9]), a parser description targeted for SGLR parsing.
txl. Another transformational framework that allows for agile development of tools

based on language descriptions [3].
ecore. An Ecore model, created manually in Eclipse and represented in XMI [17].
ecore2. An alternative Ecore model, generated automatically by Eclipse, given the

XML Schema of the domain.
xsd. An XML schema [5] for the abstract syntax of FL. In fact, this is the schema

that served as the input for generating both the object model of the jaxb source
and the Ecore model of the ecore2 source.

om. A hand-crafted object model (Java classes) for the abstract syntax of FL. It is
used by a Java-based implementation of an FL interpreter.

jaxb. Also an object model, but generated by the JAXB data binding technology [10]
from the XML schema for FL.
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Fig. 3. Binary convergence tree for the JLS grammars—or rather two trees with
shared leaves. As usual, the nodes on the top (the leaves) are grammars extracted
directly from the JLS. All other nodes are derived by transformation chains
denoted as arcs. We use a (cascaded) binary tree here: i.e., each non-leaf node
is derived from two grammars.

2.2 Language Evolution: Java Language Specification

In [16] we describe a completed effort to recover the relationships between all the gram-
mars that occur in the different versions of the Java Language Specification (JLS). The
case study concerns the 3 different versions of the JLS [6,7,8] where each of the 3 ver-
sions contains 2 grammars: one grammar is optimised for readability (i.e., read1–read3
on Figure 3), and another one is intended to serve as a basis for implementation (i.e.,
impl1–impl3 on Figure 3). The JLS is critical to the Java platform — it is a foun-
dation for compilers, code generators, pretty-printers, IDEs, code analysis and mani-
pulation tools and other grammarware for the Java language. One would expect that
the different grammars per version are essentially equivalent in terms of the gener-
ated language. For implementability reasons one grammar may be more liberal than
the other. One would also expect that the grammars for the different versions engage
in an inclusion ordering (again, in terms of the generated languages) because of the
backwards-compatible evolution of the Java language.

The case study comprised around 17000 transformation steps and has shown that
the expected relationships of (liberal) equivalence and inclusion ordering are signifi-
cantly violated by the JLS grammars. Thus, grammar convergence can be used as a
form of consistency management for the JLS in particular, and language specifications
in general.

2.3 BNF-like Grammar Format

The abstract syntax of BGF, which is the internal representation for grammars in our
infrastructure, is defined by the corresponding XML Schema. There is also a pretty-
printer that helps to present BGF grammars for debugging and publishing purposes
(let us call this presentation notation “BNF”). This pretty-printer is grammarware, the
concrete syntax of its output can be specified by a grammar. How does this grammar
relate to the XML Schema of BGF? We applied grammar convergence method to these
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Fig. 4. The abstract view on the grammar convergence process.

two grammars: the hand-crafted one for the concrete syntax and the one derived from
the XSD for the abstract syntax. (We had to be satisfied with a manually engineered
grammar since grammar inference from an XSL transformation sheet is far from trivial
and perhaps even undecidable).

The convergence graph is trivial and thus not shown here. The transformation
scripts are also considerably simple for this case study, which allowed us to examine
them in detail. The conclusion was that: BGF allows for empty grammars, BNF
does not (as expected, since BNF is used for presentation); BNF contains indenta-
tion rules and abstract syntax, BGF does not (as expected due to the abstract
nature of BGF); BGF includes root elements, BNF does not (as expected, since
EBNF dialects never specify starting symbols).

This case study shows that grammar convergence can also be used for validating
implicit assumptions within a grammar engineering infrastructure. The cost of such
use is low (the case study took no more than an hour), but it brings more discipline to
the grammar engineering process. The additional confidence comes from the guarantee
that there are no other differences besides those included in our list.

3 Grammar Convergence Domain Overview

Grammar convergence is a method of establishing relationships between language gram-
mars by extracting them and transforming towards equivalence. Thus, we distinguish
three core domain elements: the source grammars that are obtained from available
grammar artefacts; the target grammars that are the common denominators of the
source grammars; and the transformation chains that bind them together and rep-
resent their relationships, as shown on Figure 4. The methodology has been presented
in [15] and elaborated in a large case study [16].

LCF is a configurational domain specific language that is used by the LCI. Since
it encapsulates all crucial domain concepts, we will examine its grammar and explain
them while doing so. The grammar is presented in an EBNF dialect specific for SLPS:
beside the usual notation it has selectors. By writing a::b we refer to a nonterminal b
but label its particular occurrence as a. There are also four built-in symbols: string for
any string, xstring for a macro expanded string, id for a unique identifier denoting
an entity such as a grammar or a tool and refid for a reference to such an identifier.

scenario:

shortcut? tools source+ target+ testset?

shortcut:
name::id expansion::xstring



Each convergence scenario contains shortcuts, tools, sources, targets and test sets.
Shortcuts are macro definitions used mostly for maintainability purposes: for example,
it is possible with them to define the path to the main working directory once and refer
to it in all necessary places. Shortcuts can be defined based on other shortcuts.

tools:
transformer::tool comparator::tool validator::tool? generator?

tool:
grammar::xstring tree::xstring ?

Two tools are crucial for grammar convergence and must always be defined: the
transformer and the comparator. The transformer takes a BGF grammar and an
XBGF script and applies the latter to the former, resulting in a transformed BGF
grammar (or an error return code, which is handled by the LCI). §5 will address this
tool in detail. The comparator takes two BGF grammars and returns the verdict
on their equivalence. Since the premise of grammar convergence method was to docu-
ment grammar relationships, the comparator is not expected to do any sophisticated
matching besides applying basic algebraic laws. A validator tool is optional and can
check each one of the many XML files generated in the convergence process for well-
formedness and conformance to a schema. Both tools will be described in §6. Each of
these tools can consist of a pair of references to external programs: one program that
operates on a grammar level and one on a parse tree level. The latter part is optional,
but if it is absent, no coupled transformations can take place.

generator:
name::id command::xstring

A transformation generator is a named tool that takes a BGF grammar as an
input and produces an XBGF script applicable to that grammar and containing trans-
formations of a certain nature, see §5.

testset:
name::id command::xstring

A test set is also used for coupled transformations and for more thorough valida-
tion: each test case is tried with a corresponding parser and is co-transformed. This
subdomain will not be addressed in this paper since it is a separate big research area
and still work in progress for us.

4 Convergence Sources

source:
name::id derived? source-grammar source-tree? test-set::refid ?

derived:
from::refid using::string

source-grammar:
extraction::xstring parsing::xstring ? evaluation::xstring ?

source-tree:
extraction::xstring evaluation::xstring ?

A convergence source is defined at least by a name and the command that will be
executed for its extraction. Possible additional properties include for a derived source
its previously known (but invisible for LCI otherwise) relation to another source, which
allows LCI to draw grey links in Figure 2. A grammar-based parser and evaluator
detailed in the next subsections, can also be specified. The extractor and evaluator
for the tree level are also optional (the corresponding parser does not make sense since



TXL BGF

program bgf:grammar

defineStatement bgf:production

repeat barLiteralsAndTypes bgf:expression/choice

repeat literalOrType bgf:expression/sequence if length> 1

literalOrType/type/typeSpec bgf:expression/plus/bgf:expression or
(depending on bgf:expression/star/bgf:expression or
opt typeRepeater/typeRepeater) bgf:expression/optional/bgf:expression or

bgf:expression

literalOrType/literal bgf:expression/terminal

typeid/id nonterminal

Table 1. The mapping between the XML output of the TXL parser and BGF.

a parse tree is stored in a BTF which is either correct by definition or filtered out by
a validator). Test sets compatible with this source can also be listed here to be used
later to find bugs in the source grammar.

One of the crucial parts of our infrastructure is the format for storing gram-
mars. Instead of trying to model all possible peculiar or even idiosyncratic details
deployed within grammar artefacts in various frameworks: semantic actions, lexical
syntax descriptions, precedence declarations, classes/interfaces or elements/attributes
dichotomy, etc—we opted for sacrificing them and storing only the crucial core gram-
mar knowledge. In fact, by abstracting from these details at the extraction stage, we
get an XML-based dialect of EBNF.

4.1 Extractors

Extraction happens only once per source even if the source is used more than once.
When it succeeds, LCI stores the extracted grammar in order to fall back to the old
snapshot if it ever goes wrong in one of the future runs. The extracted grammar is also
subject to validation, in case the validator is specified.

An extractor is simply a software component that processes a software artefact and
produces a BGF grammar. In the simplest case, extraction boils down to a straight-
forward mapping defined by a single pass over the input. Extractors are typically
implemented within the computational framework of the kind of source, or in its affin-
ity: e.g., in Prolog for DCG, in ASF+SDF for SDF, in ANTLR for ANTLR. Several
examples follow.

TXL to BGF mapping. TXL [3] distribution contains a TXL grammar for TXL
grammars. By using that, we can parse any correct TXL grammar and serialise the
resulting abstract syntax tree in the XML form. After that the mapping becomes trivial
and is easily implemented in the form of XSLT templates that match TXL tags and
generate BGF tags with the equivalent internal details, as shown on Table 1.

SDF to BGF mapping. The Meta-Environment [11] contains both SDF defini-
tion for SDF definitions and the transformational facitilies needed for mapping. After
specifying the mapping in ASF in the form of traversal functions and rewriting rules,
this sequence of actions is required for extraction:



impl1 impl2 impl3 read1 read2 read3 Total

Arbitrary lexical decisions 2 109 60 1 90 161 423

Well-formedness violations 5 0 7 4 11 4 31

Indentation violations 1 2 7 1 4 8 23

Recovery rules 3 12 18 2 59 47 141
◦ Match parentheses 0 3 6 0 0 0 9
◦ Metasymbol to terminal 0 1 7 0 27 7 42
◦ Merge adjacent symbols 1 0 0 1 1 0 3
◦ Split compound symbol 0 1 1 0 3 8 13
◦ Nonterminal to terminal 0 7 3 0 8 11 29
◦ Terminal to nonterminal 1 0 1 1 17 13 33
◦ Recover optionality 1 0 0 0 3 8 12

Purge duplicate definitions 0 0 0 16 17 18 51

Total 11 123 92 24 181 238 669

Table 2. Irregularities resolved by grammar extraction given the HTML source.

� pack-sdf for combining all extractor modules into one definition
� sdf2table for making a parse table out of that definition
� eqs-dump for compiling ASF formulæ
� sglr for parsing the SDF source grammar with the table
� asfe for rewriting the resulting parse tree
� unparsePT for serialising the transformed parse tree into the file

These tools are tied together by appropriate makefiles and shell scripts. The first
three steps are performed once and need to be redone only if the extractor itself changes;
the last three steps are executed per extracted grammar.

HTML to BGF recovery. A JLS document is basically a structured text docu-
ment with embedded grammar sections. In fact, the more readable grammar is develo-
ped throughout the document where the whole more implementable grammar is given
at once in the last section.

The JLS is available electronically in HTML and PDF format. Neither of these
formats was designed with convenient access to the grammars in mind. We have opted
for the HTML format here. The grammar format slightly varies across the different
JLS grammars and versions; we had to reverse engineer formatting rules from different
documents and sections — in particular from [6,7,8, §2.4] and [7,8, §18].

In order to deal with irregularities of the input format, such as liberal use of markup
tags, misleading indentation, duplicate definitions as well as numerous smaller issues,
we needed to design and implement a non-classic parser to extract and analyse the
grammar segments of the documents and to perform a recovery. About 700 fixes were
performed that way, as can be seen from Table 2.

We face a few syntax errors with regard to the syntax of the grammar notation. We
also face a number of “obvious” semantic errors in the sense of the language generated
by the grammar. We call them obvious errors because they can be spotted by sim-
ple, generic grammar analyses that involve only very little Java knowledge, if any. We
have opted for an error-recovery approach that relies on a uniform, rule-based mech-



anism that performs transformations on each sequence of tokens that corresponds to
an alternative.

The rules are implemented in Python by regular expression matching. They are
applied until they are no longer applicable. Examples of them include matching up
missing parentheses by deriving their absence from the context, converting improperly
positioned metasymbols to terminals and removing duplicate definitions. The complete
list is given with details and examples in the journal version of [16].

4.2 Parsers and Evaluators

A parser is one of the most commonly available grammar artefacts: it is a syntactic
analyser that can tell whether some input sequence matches the given grammar. If
such a tool is indeed present, it can be referenced in LCF as well and will be used for
testing purposes. A compatible test set must also be provided separately.

It is possible to implement all transformation operators to be applicable not only
to languages (grammars), but also to instances (parse trees). If this is done and the
corresponding tree extractors and parsers are provided in LCF, then LCI is not limited
to converging grammars only. For every source that has a test set attached, for every
test case in that set, LCI performs coupled extraction, transformation and comparison.

Additionally, evaluators can be provided that can execute test cases and compare
return values with expected ones (for simplicity our prototype works with integers).
Test sets must be present in a unified format for LCI to figure out applicable actions.
Test cases will also be validated if the validation tool is specified. The evaluators
play a similar role, but their return value is not an error code, but rather the result
of evaluating the given expression. The difference between an evaluator listed in the
grammar properties and an evaluator given in the instance properties is that the input
of the former is a correct program in the original format and the latter takes a parse
tree of an instance, presented in BTF (BGF Tree Format).

5 Grammar Transformation

We have developed a suite of sophisticated grammar transformation operators that
can be parametrised appropriately and called from a script. The resulting language
is called XBGF (X stands for transformation), and is processed by the transformer.
Some XBGF commands have been presented in [15,16], we give several examples here
as well; the complete language manual is available as [22].

5.1 Unfolding

There are several folding and unfolding transformation operators in XBGF, of which
the simplest one is just called unfold. It searches the scope for all the instances of the
given nonterminal usage and replaces such occurrences with the defining expression of
that nonterminal. By default the scope of the transformation is the full grammar, but
it can be limited to all the definitions of one nonterminal or to one labelled production.
Regardless of the specified scope, unfolding is not applied to the definition of the
argument nonterminal.

The definition that is being unfolded is assumed to consist of one single production.
When only one of several existing productions is used for unfolding, such a transfor-
mation makes the language (as a set of strings generated by the context-free grammar)



smaller. The corresponding XBGF command is called downgrade. Other refactoring
variants of unfold operator include inline that unfolds the definition and purges it
from the grammar, and unchain which removes chain productions (a: b; b: ...;

with no other use for b).

5.2 Massaging

The massage operator is used to rewrite the grammar by local transformations such
that the language generated by the grammar (or the denotation according to any other
semantics for that matter) is preserved. There are two expression arguments: one to be
matched, and another one that replaces the matched expression. One of them must be
in a “massage relation” to the other. The scope of the transformation can be limited
to one labelled production or to all productions for a specific nonterminal symbol.

The massage-equality relation is defined by these algebraic laws:
x? = (x; ε) (x?)? = x? (x, x?) = x+

x? = (x?; ε) (x?)+ = x? (x?, x) = x+

x? = (x+; ε) (x?)? = x? (x?, x?) = x?

x? = (x?; ε) (x+)? = x? (x?, x?) = x?

x? = (x?;x) (x+)+ = x+ (x+, x?) = x+

x+ = (x+;x) (x+)? = x? (x?, x+) = x+

x? = (x?;x) (x?)? = x? (x+, x?) = x+

x? = (x?;x+) (x?)+ = x? (x?, x+) = x+

x? = (x?;x?) (x?)? = x? (x?, x?) = x?

x? = (x+;x?) x = (s1 :: x; s2 :: x)

The selectors are needed in the bottom right formula because a choice between two
unnamed x will always be normalized as x, as explained in §6.1.

5.3 Projection and injection

A good example of the transformation operators that do not preserve semantics of a
language will be inject and project. Projection means removing components of a se-
quential composition, injection means adding them. The operators take one production
as a parameter with additional or unnecessary components marked in a special way.
For projection the transformation engine checks that the complete production exists
in the grammar and replaces it with the new production with fewer components, injec-
tion works similarly, but the other way around. If the projected part is nillable, i.e. it
can evaluate to ε, the operator is always semantic-decreasing and is called disappear.
If the projected part corresponds to the concrete syntax, i.e. contains only terminal
symbols, the operator preserves abstract semantics and is called abstractize.

5.4 Transformation Generators

Grammar convergence research has started with an objective to use programmable
grammar transformations to surface the relationships between grammars extracted
from sources of different nature. Hence, we mostly aimed to provide a comprehensive



transformation suite, a convergence strategy and an infrastructure support. However,
at some point we found it easier to generate the scripts to resolve specific mismatches
rather than to program them manually. A full-scale research on this topic remains
future work, yet below we present the results obtained so far and the considerations
that can serve as foundation for the next research steps.

Consider an example of converging concrete and abstract syntax definitions. This
situation requires a transformation that removes all details that are specific to con-
crete syntax definitions, i.e., first and foremost strips all the terminals away from the
grammar. Given the grammar, it is always possible to generate a sequence of transfor-
mations that will remove all the terminal symbols. It will take every production in the
grammar, search for the terminals in it and if found, produce a corresponding call to
abstractize (the name refers to going from concrete syntax to abstract syntax). For
instance, given the production:

[ifThenElse] expr:
"if" expr "then" expr "else" expr

the following transformation will be generated (the angle brackets denote parts
that will be projected away):

abstractize(
[ifThenElse] expr:

〈"if"〉 expr 〈"then"〉 expr 〈"else"〉 expr
);

Other generators we used in the FL case study were meant for removing all se-
lectors from the grammar (works quite similar to removing terminals), for disciplined
renamings (e.g., aligning all names to be lower-case) and for automated setting of the
root nonterminals by evaluating them to be equal to top nonterminals of the grammar.

Eliminating all unused nonterminals can also be a valuable generator in some cases.
For us it was not particularly practical since we wanted to look into each nominal
difference (which unused terminal is a subtype of) in order to better align the grammars.

A more aggressive transformation generator example can be the one that inlines or
unchains all nonterminals that are used only once in the grammar. This can become
a powerful tool when converging two slightly different grammars and thus can be
considered a form of aggressive normalisation. We did not work out such an application
scenario for grammar convergence so far.

Deyaccification [12,20], a well-studied mapping between recursion-based and itera-
tion-based nonterminal definitions, can also be performed in an automated fashion. In
general, all grammar transformations that have a precondition enabling their execution,
can be generated—we only need to try to apply them everywhere and treat failed
preconditions as identical transformations.

On various occasions we also talk about “vertical” and “horizontal” productions.
The former means having separate productions for one nonterminal, as in:

x:
foo

x:
bar

The latter (horizontal) means having one production with a top choice, as in:

x:
foo
bar



There are also singleton productions that are neither horizontal nor vertical (as in
just “x: foo”), and productions that can be made horizontal by distribution (as in “x:
foo | bar”). According to this classification and to the need of grammar engineers,
it is possible to define a range of generators of different aggressiveness levels that
would search for horizontal productions and apply vertical to them; or search for
vertical productions and apply horizontal to them; or search for potential horizontal
productions and apply distribute and vertical to them; etc.

It is important to note here that even though complete investigation of the possible
generators and their implementation remain future work, this alone will not be enough
to replace human expertise. Semi-automation will only be shifted from “choose which
transformation to apply” to “choose which generator to apply”. A strongly validated
strategy for automating the choice is needed, which is not easy to develop, even if
possible.

6 Convergence Targets

A target needs a name and one or more branches it consists of:

target:

name::id branch+

branch:
input::refid preparation::phase? nominal-matching::phase? structural-matching::phase?

(extension::phase | correction::phase | relaxation::phase)?

Each branch is defined as an input node and optionally some phases. The input can
refer to a source or to another target, which is then called an intermediate target.
Phases of convergence have been related to the strategy advised by [16], the notion
is used to separate preliminary nominal matching scripts from language-preserving
refactorings doing structural matching and from unsafe steps like relaxation, correction
or extension. In case of no phases specified, the input grammar is propagated to the
output of the branch.

phase:

step::(perform-transformation::string | automated-transformation)+

automated-transformation:
method::id result::string

Any transformation step is either bound to an XBGF file or relates to a generator.
The latter is not necessarily a one-to-one relation, in the Java case study some scripts
were designed so universally that they were re-used several times for different sources.
The re-use requires higher expertise level and better accuracy in grammar manipula-
tion, but pays off in large projects. Transformation generators are external tools that
take a BGF grammar as an input and produce an XBGF script applicable to that
grammar and containing transformations of a certain nature, see §5.4. Generators are
defined at the top-level just as transformers or comparators, so that they can be applied
in different places. LCI is prepared for a generator to fail or to produce inapplicable
scripts.

Whenever a generator or a script fails, that branch is terminated prematurely,
implying that all consecutive transformations will fail. For all branches that reach the
target, their results are compared pairwise to all others. If all branches fail or the
comparator reports a mismatch, the target fails.

The graph that depicts all sources and targets as vertices and all branches as edges,
is called a convergence graph (or a convergence tree, if it is a tree). The examples
have already been provided on Figures 2 and 3.



6.1 Grammar Comparison and Measurement

If (x, y) represents sequential composition of symbols x and y, and (x; y) represents a
choice with x and y as alternatives, then the following formulæ are used for normalising
grammars as a post-transformation or pre-comparison activity:

(, )⇒ ε (; )⇒ fail

(. . . , (x, . . . , z), . . .)⇒ (. . . , x, . . . , z, . . .) (x, )⇒ x

(. . . , x, ε, z, . . .)⇒ (. . . , x, z, . . .) (x; )⇒ x

(. . . ; (x; . . . ; z); . . .)⇒ (. . . ;x; . . . ; z; . . .) ε+ ⇒ ε

(. . . ;x; fail; z; . . .)⇒ (. . . ;x; z; . . .) ε? ⇒ ε

(. . . ;x; . . . ;x; z; . . .)⇒ (. . . ;x; . . . ; z; . . .) ε?⇒ ε

The output of the comparator, boiled down to the number of mismatches, is used for
measuring the progress when working on huge convergence scenarios like the JLS one.
We say that we face a nominal mismatch when a nonterminal is defined or referenced
in one of the grammars but not in the other. We face a structural mismatch when
the definitions of a shared nonterminal differ. For every nonterminal, we count the
maximum number of unmatched alternatives (of either grammar) as the number of
structural mismatches [16].

The Levenshtein distance and similar clone detection metrics used for code anal-
ysis [21] can be applied to grammars. The result of such comparison can possibly
be suggestive enough for automated generation of transformation scripts—this is our
future work in progress at the moment. There is significant related work on schema
matching [19] and model diffing [4] as well.

6.2 Validation and Error Control

Validator is an optional tool that is asked to check the XML validity of every grammar
produced in the convergence process. Normally all BGF grammars produced during
convergence are valid, which means if validation fails, there is something fundamen-
tally wrong with the extractor or another part that produced it. The LCI is ready
for any external tool to fail or behave inappropriately. For example, the generators
discussed in the previous section can fail; can produce invalid scripts; can produce
inapplicable scripts; can produce scripts that produce invalid grammars. The error
handling mechanism must be prepared for any of those possibilities and the report of
the LCI should be useful for a grammar engineer.

6.3 Pretty-Printing

Strictly speaking, the presentation level itself is not a necessary part in the grammar
convergence approach. However, the LCI does not exist in vacuum, and in this section
we describe three most important application points for grammar representation. We
call the presentation layer “pretty-printing” since it mostly comprises taking a grammar
stored in its abstract form and serialising it in a specific concrete notation.

Debugging activities are unavoidable even for the best grammar engineers. When
grammars are extracted, they need some kind of cursory examination that is cumber-
some in pure XML. When grammars are compared, the comparison results need to



be presented in the most concise and the most expressive way possible. To create a
comprehensive test set one needs a way to print out any particular test case in a clear
form. For tasks like these in our infrastructure we have uniform pretty-printers from
BGF (grammars), XBGF (transformations) and LDF (documentation).

Publishing can take a form of an example included in a paper or in a thesis, or
it can be a complete hypertext manual. Somewhat more sophisticated pretty-printers
are required at this stage: for instance, a language manual in LDF can be transformed
to a PDF document, to an HTML web page, to a LATEX source, to an XSL:FO sheet,
etc.

Connecting to other frameworks is the most complicated form of pretty-
printing. When a functionality is required by our research that is already handled
by an existing framework, it is better to pretty-print the input that is expected by that
framework, use the external tool, and import back the result. For instance, the DMS
software engineering toolkit [1] contains much more advanced grammar comparator
which we can utilise after pretty-printing BGF as DMS. Another example can be the
lack of parser generation facility in our own infrastructure: the MetaEnvironment [11]
can generate it for us, if we serialise BGF as SDF. (Naturally, the lexical part could
not be derived and had to be added by hand).

7 Conclusion

Essentially the LCI tool set is a model-driven framework for the domain of language
recovery, transformation and convergence. LCI Configuration Format is a DSL that
allows a language engineer to express the domain concepts in a concise and abstract
form. Several other DSLs were designed to be used for expressing grammar knowledge,
transformation steps, parse trees, language documents. It has been shown both by argu-
ment and by example that utilising these DSLs helps to take on convergence scenarios
of considerable size. Our future areas of research interest include both strengthening
the automation aspect by providing more generators and introducing inferred trans-
formation steps, on one hand, and widening the application area to full-scale language
convergence by working on bidirectional and coupled transformations, on the other
hand.
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15. R. Lämmel and V. Zaytsev. An Introduction to Grammar Convergence. In Pro-
ceedings of 7th International Conference on Integrated Formal Methods (iFM’09),
volume 5423 of LNCS, pages 246–260. Springer, 2009.
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