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Chapter 1

Introduction

1.1 Research context
A language is formally defined as a countable set of finite sequences of symbols from a
given alphabet [2]. Conversely, anything that can be expressed or perceived as a set of
symbol sequences, can be considered a language and treated with similar technology:

� programming languages such as Java, C#, COBOL, Python,
� mark-up languages such as XML, YAML, HTML, RTF, DITA, LATEX, MediaWiki,
� data definition languages like DDL, XML Schema, ASN.1,
� command issuing languages such as JCL, DCL, Unix shells,
� fourth generation languages such as Informix, RPG, FoxPro,
� presentation and transformation languages such as CSS, XSL,
� query languages such as SQL, .QL, XQuery, JGrok, Rscript, JRelCal, JGraLab,
� modelling languages such as UML, SDL, Z notation, Promela,
� other domain-specific languages,
� application programming interfaces,
� libraries.

A language is commonly defined by a grammar. Most of language processing tools
and methodologies rely on the parsing process, which analyses the source code accord-
ing to the rules of the grammar. This places the grammar at the foundation of almost
any language processing infrastructure. The software which input can be described by
a grammar, is called grammar-based software or grammarware. There exist many kinds
of grammarware, they will be listed in section 2.2. The grammars are engineered from
scratch, reverse engineered from the tools that contain them implicitly, extracted from
available sources. The list of possible artefacts bearing grammar knowledge includes
language processor source code, language documentation, a codebase. The extraction
process often comprises more than simple mapping activities, in this case we speak of
grammar recovery, of which we will see several case studies in this thesis.

In practice there often exist several grammars for one language. There are those that
are implicitly encoded in grammarware (e.g., source code of the parser), others are readily
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available in explicit form (e.g., parser definition for a compiler generator). Grammars are
also commonly adapted for their users’ needs: for instance, during development of source
code transformation tools [39]. In order to reduce engineering and maintenance effort,
grammar transformation can be used to derive adapted grammars. In the case of one
primary grammar and a set of secondary grammars derived from it, the former is usually
called a base-line grammar.

Recovering several grammar variants from different sources is also common practice.
These grammars are not necessarily equivalent in the formal sense. It is possible to employ
grammar transformation, among other goals:

� to make sure that the compiler indeed implements the features listed in the specifi-
cation of the language,

� to provide strong evidence that a code analysis tool set operates on the same dialect
as the compiler,

� to argue that the X/O mapping (e.g., in data binding) is correct,
� to see that the new version of a language is indeed backwards compatible, or
� to prove that the base-line grammar covers a set of dialect grammars.

If such transformations make the grammars converge, one can interpret the properties of
these transformations as a form of representation of relationships between the grammars.
For instance, if all utilised transformations preserve the semantics, the grammars define
identical languages. This method proposed in this thesis is presented in detail in Chapters
4 and 5.

Language evolution is a process of changing the language over time by reflecting lan-
guage users’ needs, advances in language engineering and design paradigm shifts. In the
current practice language evolution happens as a combination of parallel activities, and
the language documentation is updated occasionally by using error-prone methods. We
propose to replace a range of these methods by language engineering technology: manual
updates of grammar productions can be superseded by grammar extraction and insertion;
inline code samples can be pretty-printed when needed from an operational test suite;
hand-made change documents are not needed when disciplined language document trans-
formations take their place. Introducing new language features and changing the syntax
of existing language constructs can be mapped to transformation operators, as will be
shown in chapter 7 for grammar transformation and in chapter 6 for language documen-
tation transformation. The original language documents need to be adjusted accordingly
by adding new sections, updating textual paragraphs, regenerating the samples, renewing
internal and external links.

1.2 Motivation and objectives
For each of the language engineering areas mentioned in the previous section there exist
multiple well-known approaches to problem solving. This section proposes the vision that
we adopt in this thesis in order to explain our later methodological choices. After that a
real specification excerpt will be presented to exemplify grammar extraction, transforma-
tion, documentation and life-cycle for the reader.
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We strive towards automated grammar extraction. This means that the mapping be-
tween a real grammar artefact in the form of a parser specification, a data format definition
or a syntax diagram, and the executable and transformable grammar in the form accepted
by the chosen infrastructure, should be completely automated. We think in terms of gen-
eral extractors, tools that implement the recovery activities, perform necessary abstraction
activities and map the core grammar knowledge. These extractors should be sufficiently
customisable in order to be adapted, possibly with an interference of a human expert, to
the concrete source of grammar knowledge, but they should be universal per type of gram-
mar knowledge, not per source. The list of such extractors is included in the deliverables
list in section 8.3. The detailed description of one of the non-trivial extractors is given in
section 5.4.

There are different approaches to grammar transformation. We opt for semi-
automated, programmable grammar transformation. This means that the infrastructure
provides the language engineer with an operator suite, a set of parametric transformation
operators that help to refactor or edit the base-line grammar by introducing changes con-
sistently and retaining the relationship with the original. Then, it is a manual job of a
language engineer to pick an operator from the suite, to assign values to its parameters so
that it becomes applicable and accomplishes the desired goal, and to save this information
for the automated transformation engine to execute. Transforming grammars this way is
very much alike conventional programming. Our transformation suite for grammar engi-
neering is presented in chapter 7, another suite for language documentation transformation
is give in section 6.6.

Thus, language evolution and language document evolution can be technically related
and the tool support for one can simplify the other. If updating language documentation
is also semi-automated and relies on a set of well-defined transformation operators with
predictable behaviour, it will surface and strengthen the relationship between the gram-
mar(s) and the specification(s). We utilise our own infrastructure for our needs in order
not only to help ourselves, but also to strengthen the proposed approach with case stud-
ies. In particular chapter 7, subsection 4.10.1, section 6.4 and section 6.6 have been fully
generated with our prototype implementation.

1.3 Example scenario
Having stated the design intent in the first two sections, we now take a concrete example
and observe the meaning and the impact of the above mentioned technologies. Consider
Listing 1.1, which presents a piece of a language document, namely Java Language Spec-
ification (a deliberately incomplete section). Our points of interest here are:

� The section describes one domain concept (one programming language construct).
� It contains a marked up grammar production that defines its syntax.
� It contains a written explanation of the language construct in unstructured English.
� The text contains references to other related sections.
� The section contains an executable example.
� It contains written explanation of the example in unstructured English.
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8.1 Class Declaration CLASSES

128

A field may be declared final (§8.3.1.2), in which case it cannot be assigned to

except as part of its declaration. Any field declaration may include an initializer;

the declaration of a final field must include an initializer.

Method declarations (§8.4) describe code that may be invoked by method

invocation expressions (§15.11). A class method is invoked relative to the class

type; an instance method is invoked with respect to some particular object that is

an instance of the class type. A method whose declaration does not indicate how it

is implemented must be declared abstract. A method may be declared final
(§8.4.3.3), in which case it cannot be hidden or overridden. A method may be

implemented by platform-dependent native code (§8.4.3.4). A synchronized
method (§8.4.3.5) automatically locks an object before executing its body and

automatically unlocks the object on return, as if by use of a synchronized state-

ment (§14.17), thus allowing its activities to be synchronized with those of other

threads (§17).

Method names may be overloaded (§8.4.7).

Static initializers (§8.5) are blocks of executable code that may be used to

help initialize a class when it is first loaded (§12.4).

Constructors (§8.6) are similar to methods, but cannot be invoked directly by

a method call; they are used to initialize new class instances. Like methods, they

may be overloaded (§8.6.6).

8.1   Class Declaration

A class declaration specifies a new reference type:

ClassDeclaration:

ClassModifiersopt class Identifier Superopt Interfacesopt ClassBody

If a class is declared in a named package (§7.4.1) with fully qualified name P
(§6.7), then the class has the fully qualified name P.Identifier. If the class is in an

unnamed package (§7.4.2), then the class has the fully qualified name Identifier.

In the example:

class Point { int x, y; }

the class Point is declared in a compilation unit with no package statement, and

thus Point is its fully qualified name, whereas in the example:

package vista;

class Point { int x, y; }

· · ·
Listing 1.1: Class declaration section from JLS 1 [77, p.128].

Suppose this document is stored in a format that we have the functionality to access
and to parse—say, in HTML. Then, we can start by retrieving a grammar production for
ClassDeclaration. This is an example of grammar extraction. Once we have extracted all
grammar productions from the whole document and collected them in the form that we
can further operate on, grammar recovery is completed. The original production can be
then pretty-printed in our BNF-like notation (see section 7.4) as follows:

ClassDeclaration:
ClassModifiers? "class" Identifier Super? Interfaces? ClassBody

Despite the notational differences of the presentation, this is the same piece of gram-
mar knowledge that was in the original language document. The mapping between the
original grammar artefact type (i.e., hypertext multi-font language document) and our tar-
get BNF-like format is established at this point. Having this mapping available means that
we can repeat the same (now automated) process to obtain the productions—i.e., we have
the extractor. The extracted grammar knowledge will now be used in grammar transfor-
mations to be beautified, deyaccified, disambiguated, optimised and otherwise adapted to
the needs of the language end user.

Meanwhile let us return to the original document. Suppose we have an automated
extractor that is able to recover not only the grammar productions scattered in the text, but
also all other heterogeneous artefacts: blocks of text, keywords, samples, cross-references,
etc. The result of its application to Listing 1.1 would be Listing 1.2. The extraction pro-
cess is a fully automated action. By migrating the document from the original format to
the common format for language documentation, we abstract from presentation idiosyn-
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Listing 1.2: LDF as extracted. Three blocks are selected on the figure—the simple extrac-
tor was not able to recognise them. One can see that the third block depicts an example,
and it contains samples as such, as well as the accompanying text.
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Listing 1.3: LDF as intended. The blocks identified on the previous figure now belong to
different subsections of §8.1, namely to Synopsis, Syntax and Example.
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8.1 Class Declaration CLASSES
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Field declarations (§8.3) describe class variables, which are incarnated once,

and instance variables, which are freshly incarnated for each instance of the class.

A field may be declared final (§8.3.1.2), in which case it can be assigned to only

once. Any field declaration may include an initializer.

Member class declarations (§8.5) describe nested classes that are members of

the surrounding class. Member classes may be static, in which case they have

no access to the instance variables of the surrounding class; or they may be inner

classes (§8.1.2).

Member interface declarations (§8.5) describe nested interfaces that are mem-

bers of the surrounding class.

Method declarations (§8.4) describe code that may be invoked by method

invocation expressions (§15.12). A class method is invoked relative to the class

type; an instance method is invoked with respect to some particular object that is

an instance of the class type. A method whose declaration does not indicate how it

is implemented must be declared abstract. A method may be declared final
(§8.4.3.3), in which case it cannot be hidden or overridden. A method may be

implemented by platform-dependent native code (§8.4.3.4). A synchronized
method (§8.4.3.6) automatically locks an object before executing its body and

automatically unlocks the object on return, as if by use of a synchronized state-

ment (§14.18), thus allowing its activities to be synchronized with those of other

threads (§17).

Method names may be overloaded (§8.4.7).

Instance initializers (§8.6) are blocks of executable code that may be used to

help initialize an instance when it is created (§15.9).

Static initializers (§8.7) are blocks of executable code that may be used to

help initialize a class when it is first loaded (§12.4).

Constructors (§8.8) are similar to methods, but cannot be invoked directly by

a method call; they are used to initialize new class instances. Like methods, they

may be overloaded (§8.8.6).

8.1   Class Declaration

A class declaration specifies a new named reference type:

ClassDeclaration:

ClassModifiersopt class Identifier Superopt Interfacesopt ClassBody

The Identifier in a class declaration specifies the name of the class. A com-

pile-time error occurs if a class has the same simple name as any of its enclosing

classes or interfaces.

· · ·
Listing 1.4: Class declaration section from JLS 2 [78, p.136].

crasies. Once the document is inside our infrastructure, we do not depend on irrelevant
storage format peculiarities and can focus completely on crucial points of interest.

If we take a closer look at Listing 1.2, we will notice that the synopsis, the syntax def-
inition and the example—all three parts of the original section—ended up as consequent
content blocks of one “description” section. If we had a smarter context-aware extractor
or asked a human domain expert to look into the document’s internal structure, the lan-
guage documentation ontology would have been utilised more consistently, representing
examples, syntax definitions and other parts as on Listing 1.3. This semantic shift could
be achieved by means of language document transformations, an extension of grammar
transformations. The old functionality of producing a seemingly homogeneous language
document is retained. However, by keeping the internal representation well-structured,
the result of transformation will also be easily useful to perform sophisticated actions like
extracting test cases or listing all subsections of the same type.

We now compare Listing 1.1 with 1.4. The documentation excerpts displayed on them
express the same language construct in different versions of the Java Language Specifi-
cation. However, they are not syntactically identical. The grammar production in both
versions is the same, but the differences are:

� In 1.4 there is no longer a code example.
� The text in 1.1 and 1.4 is different.
� The role of the text has also changed: cf. the semantic details on naming in 1.1 and

the compile-time errors in 1.4.

It is quite normal for language documentation to evolve, and the technology support
for that process can also be provided by the same language document transformations.

In the previous example we have seen the language document changed. Also the
language itself can evolve. For instance, consider Listing 1.5. It is different from both 1.1
and 1.4 in the sense that their grammar fragments are not equal:
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8.1   Class Declaration

A class declaration specifies a new named reference type. There are two kinds of

class declarations - normal class declarations and enum declarations:

ClassDeclaration:

NormalClassDeclaration

EnumDeclaration

NormalClassDeclaration:

ClassModifiersopt class Identifier TypeParametersopt Superopt

Interfacesopt ClassBody

The rules in this section apply to all class declarations unless this specification

explicitly states otherwise. In many cases, special restrictions apply to enum dec-

larations. Enum declarations are described in detail in §8.9.

The Identifier in a class declaration specifies the name of the class. A com-

pile-time error occurs if a class has the same simple name as any of its enclosing

classes or interfaces.

8.1.1 Class Modifiers

A class declaration may include class modifiers.

ClassModifiers:

ClassModifier

ClassModifiers ClassModifier

ClassModifier: one of

Annotation public protected private
abstract static final strictfp

Not all modifiers are applicable to all kinds of class declarations. The access

modifier public pertains only to top level classes (§7.6) and to member classes

(§8.5, §9.5), and is discussed in §6.6, §8.5 and §9.5. The access modifiers

protected and private pertain only to member classes within a directly enclos-

ing class declaration (§8.5) and are discussed in §8.5.1. The access modifier

static pertains only to member classes (§8.5, §9.5). A compile-time error occurs

if the same modifier appears more than once in a class declaration.

If an annotation a on a class declaration corresponds to an annotation type T,
and T has a (meta-)annotation m that corresponds to annotation.Target, then m
must have an element whose value is annotation.ElementType.TYPE, or a

compile-time error occurs. Annotation modifiers are described further in §9.7.

· · ·
Listing 1.5: Class declaration section from JLS 3 [79, p.175].

Listing 1.1 and 1.4

ClassDeclaration:
ClassModifiers? "class" Identifier Super? Interfaces?

ClassBody

Listing 1.5

ClassDeclaration:
NormalClassDeclaration
EnumDeclaration

NormalClassDeclaration:
ClassModifiers? "class" Identifier TypeParameters? Super?

Interfaces? ClassBody

Hence, grammar transformations are needed to align Listing 1.5 with 1.1 and 1.4.
Beside evolutionary aspects there is another scenario to consider. Suppose the lan-

guage manual exists in different forms: for instance, one compiler vendor version, one
international standard and one parser definition. There should be a relationship between
these documents and the grammars in them, which is usually hidden or undefined. To
make this relationship explicit, we use the process of language convergence. Language
document transformations are used to establish the relationship between the documents.

An uninitiated reader would assume that the relationship between different grammars
of presumably the same language is guaranteed, i.e. grammar convergence would show
their equivalence. At this moment this is not the case, because the grammars were not en-
gineered with automated tools and can contain inconsistencies that grammar convergence
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aids to locate. For instance, subsection 3.2.7 presents this mismatch between different
parts of the C# specification:

C# standard, §22.1, page 297, lines 15–16
delegate-declaration:

attributes? delegate-modifiers? "delegate"
return-type identifier
"(" formal-parameter-list? ")" ";"

C# standard, Appendix A.2.11, page 357, lines 34–35
delegate-declaration:

attributes? delegate-modifiers? "delegate"
type identifier
"(" formal-parameter-list? ")" ";"

The difference in these two productions is structural: one nonterminal symbol is used
instead of the other. Since we know from §17.5 on page 282 that return-type is
defined as type or "void", we also know that the former production is more permissive
than the latter.

Another example for the Java specification is presented in subsection 5.6.3:
JLS2, §14.14, page 297

BreakStatement:
"break" Identifier? ";"

JLS2, §18.1, page 453

Statement:
"break" Identifier?

We see two differences here: one nominal which is intentional and is caused by the
way each grammar was engineered, whereas the other one is structural—the absence of a
semicolon in the second excerpt is a bug.

We found these mismatches with our engineering approach proposed in this thesis.
If this technology is adopted for usage on early stages of language documentation de-
velopment, it can prevent the appearance of many errors. A strong and well-designed
infrastructure is needed, and our work contains such a prototype.

The contributions that we propose in this thesis are dedicated to the recovery, evolution
and convergence of language documents. The most prominent structures that repeatedly
appear in the analysed language specifications and manuals, are captured in the prototype
ontology for language documentation. We have also developed a range of tools to support
the recovery, evolution and convergence of languages. The tools themselves, as well as
the working grammars that were derived with their help, were made freely available on
the internet.
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1.4 Thesis outline and contributions
The entire organisation of the thesis will be sketched in a single paragraph, and then we
will proceed with a chapter by chapter overview of its contents, its main contributions and
details on publication and collaboration.

The rest of the thesis is organised as follows. There are six core chapters: one back-
ground chapter; one about a grammar recovery case study; one on convergence; one on a
bigger case study in recovery and convergence; one on documentation and one on trans-
formation. Each of them presents the research goals, methods and contributions on its
subtopic, relying on the results of the previous chapters. For instance, in chapter 3 there
is a case study with one grammar that is manually extracted by copy and paste from a
language definition and transformed with very simple instruments that basically redefine
parts of it. In chapter 4 we already employ automated extraction and start developing
notions of semantic preservation to introduce and utilise more accurate transformation
operators. In chapter 5 another case study is presented and evaluated, containing six
grammars, each of the size of the first case study, and thousands of carefully planned and
laid out transformation steps. In chapter 6 we are in a position to report on how lan-
guage documents are currently organised and to propose how to improve on that using
our proposed methods that we support with an implementation. By arrival at chapter 7
we are ready to draw conclusions about categories of grammar transformation operators
and claim to have a comprehensive transformation suite capable of handling grammars
of industrial size. Besides that, we already have a language documentation infrastructure
and use it ourselves for making this chapter.

1.4.1 Chapter 2 overview: additional background
Keywords: grammarware, grammar engineering, grammar recovery, grammar con-
vergence, language documentation, grammar transformation, language evolution.

Summary: After the first chapter having introduced the basic terms briefly, additional
background material is discussed in Chapter 2. It starts by introducing prominent back-
ground concepts about grammar engineering and lists the methods, notions and consider-
ations important for all three main topics of the thesis: recovery, convergence and docu-
mentation of languages.
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1.4.2 Chapter 3 overview: case study on language recovery
Keywords: C#, grammar engineering, semi-automatic grammar recovery, grammar
adaptation.

Summary: Chapter 3 is an application of grammar engineering methodology to a real
life case study. A comparatively new language standard at the time of research, ECMA-
334 or ISO/IEC 23270:2003, which defines the C# programming language, was taken in
order to extract a grammar from it and use that grammar for parsing C# code. It turned
out that the grammar recovery of C# was far from trivial. It took us 217 transformations to
achieve a correct and complete C# grammar. Intuitively one would expect such an effort
for older languages like COBOL due to their decades-long evolution, but this seems to be
a problem of all times. The presented process is not limited to C#. We provide a general
step-wise plan to recover a correct working formal language grammar from an existing
language specification in a semi-automated way. At the end of the chapter the research
objectives are revisited to conform to the lessons learnt from the C# experiment.

Contribution: Using existing technology, a working grammar of C# was recov-
ered directly from the corresponding language specification and tested on small scale
(100KLOC). After our initial idea of the research objectives we carried out a first case
study with promising results. This case study further refined and shaped the research
objectives, as displayed by subsection 3.4.2.

Publication: The technical results of this chapter were briefly described, published and
presented at the participants’ workshop of the International Summer School on Gener-
ative and Transformational Techniques in Software Engineering as Correct C# Gram-
mar too Sharp for ISO [257]. In the next version of the standard some of the errors
were removed [115]. We have no information about Microsoft actually using our re-
sults in their work, but since not all errors were fixed, we presume they did not use an
engineering approach for this. Our C# grammar was later made publicly available via
http://www.cs.vu.nl/grammarware/browsable/CSharp [241] and forms
now a part of the SLPS Grammar Zoo at http://slps.sf.net/zoo [260]. General
discussion on EBNF as a grammar definition formalism, as well as on grammar engineer-
ing techniques like de-layering and relaxation overlaps somewhat with the ISO note titled
Language Standardization Needs Grammarware [143].

Acknowledgement: [143] was written in collaboration with Dr. Steven Klusener (Vrije
Universiteit Amsterdam), who also presented the work to the international programming
languages subcommittee ISO/IEC JTC1/SC22.

http://www.cs.vu.nl/grammarware/browsable/CSharp
http://slps.sf.net/zoo


12 Introduction

1.4.3 Chapter 4 overview: language convergence
Keywords: grammar convergence, grammar re-engineering, grammar extraction, pro-
grammable grammar transformations, grammar synchronisation, domain specific lan-
guages.

Summary: Chapter 4 introduces the method of grammar convergence. Our proposal is
to take two or more grammars that are expected to be related, use grammar transformation
to make them identical, then analyse these transformation steps and draw conclusions
about the real relationship between the grammars. The chapter illustrates our viewpoint
with a small case study, namely FL, the Factorial Language. Grammar convergence is
a lightweight verification method for establishing and maintaining the correspondence
between grammar knowledge ingrained in different kinds of software artefacts such as
object models, XML schemata, parser descriptions or language documents. The central
idea of the approach is to extract grammar knowledge, and to use programmable grammar
transformations as means to constructively prove the convergence of different sources to
a shared limit.

Contribution: Grammar convergence using programmable grammar transformations is
a grammar re-engineering approach that comprises not only recovery of individual gram-
mars, but also comparing them, applying benchmarks and choosing the right places for
changes. Overall this is a methodology chapter that introduces an approach for solving
a particular class of problems, namely those where several grammars of a language can
be obtained but cannot be explicitly related based on any other hard evidence—which
grammar convergence process aims to provide.

Publication: Parts of this chapter were published in condensed form as An Introduction
to Grammar Convergence [166] and Recovering Grammar Relationships for the Java
Language Specification [167, 168]. The former is an introductory paper presented at the
7th International Conference on Integrated Formal Methods. The version included in the
thesis is substantially enhanced with respect to the original paper, and also includes full
diagrams and listings presented in a unified notation. The notion of phases of convergence
(section 4.7) has emerged later during the work on [167] for the 9th IEEE International
Working Conference on Source Code Analysis and Manipulation where it received the
Best Paper Award. A significantly extended version is being printed in the special issue of
Software Quality Journal [168]. An implementation of grammar convergence is publicly
available through the Software Language Processing Suite [263].

Acknowledgement: The idea of using programmable grammar transformations to con-
verge grammars has emerged in collaboration with Prof. Dr. Ralf Lämmel (Software Lan-
guages Team, Universität Koblenz), as was the subsequent development of the prototype.
All three papers mentioned above [166, 167, 168] are co-authored with him.
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1.4.4 Chapter 5 overview: case study on recovery and convergence
Keywords: Java, language documentation, grammar extraction, programmable gram-
mar transformations, grammar convergence.

Summary: Chapter 5 describes a completed effort to recover the relationships between
all the grammars that occur in the different versions of the Java Language Specification
(JLS). According to the method from the previous chapter, the relationships are repre-
sented as grammar transformations that capture all accidental or intended differences be-
tween the JLS grammars. The process is mechanised and it is driven by simple measures
of nominal or structural differences between any pair of grammars involved.

Contribution: A large case study such as this one (1627 transformation steps) serves as
stress test for any methodology. While working on it, we were able to justify the grammar
convergence method as well as to stress it enough to redesign certain elements. In partic-
ular the overall workflow of grammar convergence got shaped in this chapter, benchmarks
were introduced to allow a language engineer to measure the progress. The engineering
contribution of this chapter comprises three grammars that correspond to JDK 1.0 “Oak”,
J2SE 1.2 “Playground” and J2SE 5.0 “Tiger”, as well as transformation scripts document-
ing their relationship to one another. A number of inconsistencies were observed, some
of them known to exist, but some yet unreported.

Publication: A condensed version of this case study description was published as Re-
covering Grammar Relationships for the Java Language Specification [167] in the pro-
ceedings of the 9th IEEE International Working Conference on Source Code Analysis and
Manipulation. The paper received the Best Paper Award. A significantly extended version
is being printed in the special issue of Software Quality Journal [168]. This chapter is a
further extension of both papers. We included important information on the extractor (sec-
tion 5.4) and displayed detailed tables such as Table 5.4 and Table 5.6. The tables contain
important information about the extraction process and the recovered relationship; it was
mentioned in the paper but not included there due to space constraints. An application of
our grammar convergence method to various versions of the Java Language Specification
is publicly available through the Software Language Processing Suite [263], including all
Java grammars being displayed as a part of SLPS Grammar Zoo [260].

Acknowledgement: As stated above, Prof. Dr. Ralf Lämmel (Software Languages
Team, Universität Koblenz) was a co-author of [167, 168].
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1.4.5 Chapter 6 overview: language documentation
Keywords: language documentation, grammarware, language evolution, language
adaptation, language manuals, language specifications, data model, programmable trans-
formations.

Summary: Chapter 6 dives into the issues of consistency management of language
specifications that were mentioned and discussed in previous chapters. The current state
of affairs is presented and examined based on freely available standards, as well as internal
knowledge of the ISO working groups. The chapter explains the meaning of standardisa-
tion for language engineering and defines a unified data model for language specifications
and a suite of transformations that operate on it. Previously presented advancements in
grammar notation and programmable grammar transformations are utilised here as well.

Contribution: This chapter reports on an elaborate domain analysis in the field of lan-
guage documentation. It contains several tables that collect the information about how the
language specifications are composed, what they consist of and what differences various
syntax definition formalisms demonstrate. The core of the reverse engineering contri-
bution is the summary of language definition notations and the summary of language
documentation elements collected by examination of a range of existing language docu-
ments. The technical contribution of the chapter is generalising grammar transformation
and grammar convergence concepts and processes to cover the conceptual prerequisites.
Full technical support for automating activities related to language documentation is also
given. The document schema is of particular interest, the chapter shows how it can be used
to map any of the existing language specifications. It is also explained how the technology
was prototyped and applied to the following chapter.

Publication: The concepts of handling language documentation with technical disci-
pline and providing proper tool support were formulated on an early stage of research as
Language Standardization Needs Grammarware [143]. The paper titled Language Con-
vergence Infrastructure [259] being published the post-proceedings of 3rd International
Summer School on Generative and Transformational Techniques in Software Engineer-
ing included a more up-to-date view, with an extended abstract already published in the
pre-proceedings as [258] and reported at the aforementioned summer school. Language
Documentation: Survey and Synthesis of a Unified Format [262] is accepted for publica-
tion at the 3rd International Conference on Software Language Engineering. The complete
description of LDF and XLDF is publicly available through the Software Language Pro-
cessing Suite [263].

Acknowledgement: The conceptual prerequisites of this chapter were formulated in
collaboration with Dr. Steven Klusener (Vrije Universiteit Amsterdam) and delivered with
his help to the ISO SC22 committee in 2005. [262] was co-authored with Prof. Dr. Ralf
Lämmel.
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1.4.6 Chapter 7 overview: XBGF language manual
Keywords: programmable grammar transformations, transformation suite, language
manual, grammar refactoring, language semantics, term-oriented semantics, string-
oriented semantics, semantic preservation.

Summary: The purpose of Chapter 7 is twofold. On the one hand, it elaborates on
the XBGF transformation suite that was fleshed out during the research in chapters 4 and
5. All the operators that have been mentioned or even used so far, are presented here
systematically, classified and exemplified by test cases. On the other hand, Chapter 7 is
also a demonstration of our tools. It is a case study where the chapter was fully generated
from its input using our implementation.

Contribution: The conceptual contribution of this chapter is a complete and thorough
definition and explanation of the XBGF transformation suite utilised in the previous two
chapters. This chapter is also a correct language document by itself, and as such demon-
strates the way of dealing with language documents and serves as a case study for the
methods that were explained in Chapter 6.

Publication: The contents of this chapter are identical with the XBGF online manual
[261] that can be found online at http://slps.sf.net/xbgf. Both the HTML
manual and the LaTeX source of the chapter were generated from the data extracted from
the XML Schema for XBGF with the transformational scripts—the technology explained
in the Chapter 6. Beside language transformations, two XSLT pretty-printers were used
to produce XHTML and TEX.

Acknowledgement: The XBGF transformation suite was designed in collaboration
with Prof. Dr. Ralf Lämmel (Software Languages Team, Universität Koblenz) who also
was the lead developer in its Prolog implementation.

http://slps.sf.net/xbgf
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Chapter 2

Additional background

The previous chapter, especially section 1.2, has already introduced the most important
background concepts. However, we need to provide additional, more detailed information
on the research context. This chapter will present the notions used throughout the thesis,
explain the existing methods of grammar engineering and define our view on them. Both
purpose and importance of grammar transformation, recovery, convergence and docu-
mentation should become clear, enabling the remaining chapters to focus directly on the
contributions.

2.1 Terminology
There are notions that will be used extensively in this chapter yet could have remained
unclear from the previous sections:

A grammar is a strict and precise definition of a language in its formal sense (as
a set of allowed words). Hence, the grammar defines the structure of a piece of source
code. Grammars for mainstream languages used in industry are big, they are not sup-
posed to be read by humans and be manually checked for completeness, correctness and
other properties. Instead, an automated approach is taken with an infrastructure accepting
a formal grammar as an input and producing a parser, a transformational tool or other
grammarware as an output.

The words “schema”, “ontology” or “metamodel” are used instead of the word “gram-
mar” in different areas. Schemata and data models are notions related to grammars
in database and data manipulation research, although not all data models can be easily
mapped to grammars. XML also calls its grammars schemata, whether they conform to
XML Schema [75, 208], RELAX NG [34], DTD [20] or any other standard. Ontologies
are used in complex matters such as semantic web, business process modelling or artifi-
cial intelligence [221]. They mostly fall outside the scope of this thesis because of their
complicate nature. Grammar domain is smaller, simpler and does not face the kind of
challenges that are typical for ontology alignments.

Grammar definition formalism is any kind of notation for modelling the syntax
of a language. It can be textual with only a few basic features for denoting terminals,
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nonterminals and productions, or it can be a complicated graphic notation with arrows
and boxes.

BNF [9] is a very well-known format for describing grammars, standing for Backus-
Naur Form or Backus Normal Form. John Backus introduced the format back in 1960s
as a part of his work on Algol 60 [10]. Peter Naur contributed to it later, significantly
improving readability [144]. Niklaus Wirth made another improvement in 1977 with Ex-
tended BNF (EBNF) that included more advanced and more abstract iteration constructs
together with other features described in detail in section 6.3 and section 2.7.

The structure of the source code is typically represented by a data structure called
a parse tree. A parser is an application that takes a piece of source code as an input
and constructs the corresponding parse tree. If the source code does not conform to the
grammar, a parser reports a parse error. Parsers can be generated from grammars auto-
matically by so called parser generators [2, 83, 128].

2.2 Grammarware
The term grammarware is introduced in [141], widely used nowadays [64, 153, 251]
and will be encountered numerous times on the pages of this thesis. In natural linguistics,
the term “lingware engineering” is used [191]. According to the definition, grammarware
comprises grammars and all related grammar-dependent software. Examples of grammar-
ware include, but are not limited to:

� A parser (a hierarchical analyser or a syntactic analyser) that combines tokens of a
source program into grammar phrases in a form of a parse tree [2, 83].

� A compiler that translates a program in the source language to its equivalent in the
target language [2, 23].

� A pretty-printer (a formatter, a code beautifier) that transforms a program in such a
way that the whitespace is organised for better human comprehension and making
its structure explicit [24, 29].

� A scanner (a lexical analyser) that composes a stream of tokens out of a program
text [2].

� A browser that shows web pages from internet with adjusting the layout for the
particular user needs and loading additional files, menus, movie clips and other
plug-ins [256].

� A static checker (e.g., a code optimiser or a type checker) that performs certain
verification techniques without actually executing the program [71].

� A development environment together with built-in tools such as structural editors,
debuggers or profilers that aid programmers in their job by suggesting the right
libraries or modules, pointing out errors or possible bug sources and otherwise or-
ganising all daily activities [88].
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� A preprocessor and a postprocessor that manipulate the code before and after the
compilation respectively [63, 223].

� An interpreter or any other run-time environment [215].

� A code refactoring tool that aids the developer or programmer to restructure the
source code in order to improve its readability, maintainability, integrability or ex-
tendability without changing its behaviour [70, 138, 156, 200].

� A program slicing tool that identifies the source code that can affect or can be
affected by a value of a given variable [247].

� A reverse engineering tool that helps to extract business logic from a system which
source code is unavailable or untrusted [84]

� XMLware, or software that is based on XML: an XML parser, an XML valida-
tor, data binding tools, Extensible Stylesheet Language Transformations (XSLT),
XPath and XQuery processors — everything that uses XML Schema schemata or
Document Type Definitions (they describe structure of XML data and are therefore
in fact grammars) [64].

� Numerous (re)documentation tools and software analysis tools [65, 214].

� Even API (Application Programming Interfaces) can be seen as languages that have
grammars. Domain specific languages (DSL) and Modelware (MDE-related tech-
nology) can also be treated as grammarware [153, 251].

2.3 Techniques for grammars
A number of techniques and approaches will be mentioned and utilised on the pages of
this thesis:

� Grammar adaptation [154] refers to grammar transformations employed for the
sake of adapting it for grammar development, grammar maintenance, grammar
reengineering, grammar recovery, etc.

� Grammar extension [167] is a semantic increasing grammar transformation that
makes explicit additions to existing functionality by introducing previously nonex-
istent operators, clauses, statement types, etc.

� Grammar relaxation is a semantic increasing variant of grammar adaptation where
parts of the grammar are removed or generalised in order to simplify the structure.
As a result, functionality is partially lost, but usually the language engineer is aware
of that. Tolerant parsing [142] and island grammars [186, 187, 227, 236] are exam-
ples of technological support for grammar relaxation, but it can also take form of
simpler adjustments.
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� Grammar hacking [155, 219] is a process when a grammar is changed for the
purpose of making it fit into certain parsing technology limitations. The name im-
plies some degree of error-proneness, uncontrollability and the lack of testing, as
opposed to disciplined grammar engineering.

� Yaccification [132, 154] is a variation of it that involves YACC parser genera-
tor [128] or tendencies and traditions triggered earlier by the use of YACC [139]. In
a broader sense, by yaccification we will mean conscious introduction of idiosyn-
cratic constructs for the sake of fitting the grammar within limitations of a certain
parsing technology, be it LR(1), LALR or recursive descent.

� De-yaccification [27, 217] is a complementary process that removes the binding
to any particular parsing technology to form a generic base-line grammar from a
yaccified or otherwise “optimised” one.

� Grammar beautification is a name for grammar transformation steps taken for the
sake of improving its performance and readability. There is sometimes no clear
practical goal set for beautification, but rather a general idea of a better way to
implement the same functionality.

� Grammar correction is a grammar transformation step that removes an error. The
nature of the error can be such that the grammar was still operational, but the se-
mantics of the resulting parse tree was wrong and insufficient testing did not show
it.

2.4 Language evolution: versions and dialects
The making of grammars and parsers is an activity that is neither easy nor common.
Parsers are usually constructed not only on basis of a standard, but also on different
considerations of a specific vendor. Besides that, parsers are developed as a back-end
for bigger grammarware (most commonly a compiler) and sometimes they become non-
detachable and, therefore, non-reusable. If someone wants a solid grammar, it should be
re-engineered from such compiler’s sources.

Often grammars are constructed in a way that they belong to a specific class of gram-
mars. While Chomsky’s grammar classes [32] are compositional in a sense that two
context-free grammars combined make a context-free grammar, the grammars that con-
form to a specific parsing technology are not always compositional. That means that two
LR grammars, when combined, make a context-free grammar that may or may not be
LR. Inability to fit into a specific class can make the grammar useless for the developer’s
goal, so that usually means grammars are not modular: they are built as a whole and not
constructed from small components.

The practice shows us that only very few languages can stay in the same form as they
were first invented. Most languages evolve or die. We can name several reasons for that:

� Languages evolve because new features need to be introduced. Software develop-
ment methods have not been the same during the last years, and language evolution
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must keep up with them. For example, object-oriented analysis and design meth-
ods [18] led to introducing object-oriented programming constructs into many lan-
guages (actually, to all high level mainstream languages). The last years emphasis
on modularisation and re-use lead to introducing language constructs supporting
design patterns [73] and component-oriented development [228].

� Languages also evolve when contemporary development methods prove themselves
harmful and need to be extracted from the language to avoid their further abuse.
The most famous example in this category is elimination of an unconditional trans-
fer of control statement, GO TO [48, 133, 146, 188, 216]. Almost every language
has “all sorts of programming language features that seem better ignored than ex-
ploited” [47]. Recent work on bug patterns [4] and anti-patterns [229] collects
other examples of the commonly used design and development moves that were
deemed to be inappropriate or error-prone.

� Languages just evolve because their authors want to make it easier for the program-
mers to use them, since language usability issues have never been really researched
anyway. One of the frequently encountered improvements is introducing so called
syntactic sugar constructs that do not formally make the language more powerful in
a sense of declarativity, but rather let the programmers do their job more efficiently.
The yield statement introduced in C# 2.0 is a good example of such a language
change [115], as is the coalesce operator considered in section 2.9.

� The languages co-evolve with their compilers and IDEs. No modern language can
exist in vacuum, or at least it will have no chance of being used in industry. They
all have supporting libraries that play important role in making a design choice in
favour of this or that programming language. Introducing a new API library is not a
change to the language in a strict sense, but by our definition it is—simply because
it changes the way the programs are written. Besides that, the APIs give rise to
grammars themselves. Sometimes the platform and the application programming
interface it provides are more important than the underlying language as such—a
source code of a web-service written in C# will have much more common with
the same web-service created in any other .NET language than with a web-service
made in Java with CORBA.

Language specifications that represent languages, are of dynamic nature as well. In an
ideal situation the grammarware and the specification it conforms to are co-evolving, but
in practice one often makes the first step with the other one hopefully following. Early
classical language standards were developed by a special committee of experts with gram-
marware developers starting their work only after receiving a completed standard docu-
ment, while compiler specific language reference manuals are apparently updated only
after the changes take place in the compiler itself. If properly and flawlessly organised,
this process can be considered co-evolution anyway.
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2.5 Grammar levels
In [164] the notion of grammar levels is introduced, which we utilise here and adopt to
the broader context as follows:

� A Level 1 Grammar is a raw grammar that is a starting point of whole grammar
recovery process: it has just been extracted from a language definition, corrected
of all typographical, text recognition and similar errors and converted into a BNF
dialect.

� A Level 2 Grammar is maximally connected Level 1 Grammar. That is, it does not
contain unwanted top sorts (nonterminals that are defined but never used) and bot-
tom sorts (nonterminals that are used but not defined). These two quality indicators
were proposed in [217, 219] and discussed in more detail in [154].

� A Level 3 Grammar is a Level 2 Grammar complemented with a lexical part:
on the second level only those top sorts remained that are either true root sorts or
lexical. Some language standards such as [77] (as well as [114, 115, 225] that are
heavily based on it) have a special part dedicated to a lexical grammar, while others
such as [90] do not (that means it must be created manually).

� A Level 4 Grammar is a Level 3 Grammar that has been tested on a scale of
considerable volume of code coming from different sources, companies, countries
and coding traditions—in languages such as C or COBOL a codebase used for
testing can contain millions of lines of code.

� A Level 5 Grammar is a grammar that was fully recovered from a source code of
a compiler in an automated way. If it has been done correctly, it can be claimed
that the Level 5 Grammars are the ones most close to the ideal since they accept
everything that can be accepted by a compiler and nothing more.

2.6 Grammar recovery methodology
Grammar recovery process can be broken down roughly into two distinct phases: grammar
extraction and grammar transformation. Grammar extraction process involves taking a
grammar artefact: language specification, parser source code, XML schema, etc, and
producing a Level 1 Grammar that contains the same grammar knowledge as the one
engraved there. Grammar transformation process operates on the extracted grammar and
produces a Level 2 or 3 Grammar.

Practice shows that automated software maintenance, analysis, migration and renova-
tion can be much more profitable in terms of costs and human effort than the alternatives
(manual changes, legacy rebuild, etc), especially on large scale [234]. However, auto-
mated methods do require special foundation for their successful usage. The basis is
formed by two things here: the grammar and the transformational rules.

A working grammar is needed to parse the code, to get it from a textual form that the
programmers created into a specialised generational and transformational infrastructure
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that usually utilises a tree-like internal format. In spite of the fact that the formal grammar
theory is quite an established area since 1956 [32], the grammars themselves are rarely
freely obtainable, they are complex artefacts that are seen as valuable assets, require con-
siderable effort and expertise to compose and therefore are not always readily disclosed
to public by those who develop or reverse engineer them. A syntax grammar is basically
nothing more than a formal description of what can and what cannot be considered valid
in a language. Thus, the most obvious source for this kind of information is a language
documentation.

However, documentation is neither ever complete nor error-free. Special tech-
niques are needed to obtain correct grammars, such as grammar adaptation [154], gram-
mar recovery [164], grammar engineering, grammar reverse engineering, grammar re-
engineering [141], grammar archæology [158], grammar extraction, assessment, correc-
tion, completion, testing, and so on.

Grammar recovery—the methodology for extracting a complete grammar from an
existing programming language’s manual, a specification or a compiler’s source code,
assessing the grammar, correcting it, testing, making it complete, and so on—is not a
new approach. This technique has been used in 1998 for the first time with Programming
Language for EXchanges (PLEX), a proprietary DSL for real time embedded software
systems by Ericsson [219]. A successful application of the same technology to COBOL
followed [28].

It is a widespread misunderstanding that grammar recovery is needed only if the
language has decades-long evolution and legacy as in the aforementioned examples of
COBOL and PLEX. It is easy to assume that newer standards such as the C# specifica-
tion [115, 225] are of much better quality; that they are easily accessible, and that their
formal contents can be used in their existing condition (i.e., without any grammar adap-
tation steps whatsoever). Unfortunately, this is not the case. The research presented in
the chapter 3 shows that C#, a fairly modern programming language, needed recovery as
well. In that project the grammar was adapted by engineering more than 200 transforma-
tion rules.

2.7 Grammar definition formalism

There are many metasyntaxes in use. BNF (Backus-Naur Form or Backus Normal
Form) [9] and EBNF (Extended BNF) [252] are used practically everywhere, but other
formalisms exist as well. One good example of a completely different grammar defini-
tion formalisms would be PEG, Parsing Expression Grammar [69]. Visual formalisms
exist as well, in the form of “railroad tracks” [182, 183] and other kinds of syntax dia-
grams [76, 113, 176]. Graphical form is believed to be easier to understand, but it poses
technical problems for translation, such forms are usually more difficult to parse than plain
(E)BNF. The work in this thesis mostly confines itself to (E)BNF, because other forms are
either easily transformed to it (as syntax diagrams) or do not have enough experience and
acceptance behind them (as PEGs).

BNF itself is not well-standardised, and every ENBF dialect extends it in its own way.
For example, the original proposition [252] suggested the use of square brackets to mark
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optional parts of a rule: [a] stood for a|ε. Nowadays the question sign is used more
often instead: a? stands for a|ε. Every standard usually includes the definition, formal
or otherwise, of the “BNF-like notation” it will use throughout the text. EBNF was stan-
dardised by ISO [112], but the standard is not used. Sadly enough, the question Niklaus
Wirth put into his title “what can we do about the unnecessary diversity of notation for
syntactic definitions?” [252] in 1977 is yet to be answered.

Ultimately, BNF offers basic ways of defining nonterminals by combining them with
terminal symbols. All EBNF dialects make use of the following extensions:

� They distinguish clearly between terminals and nonterminals by quoting terminal
symbols or putting them in another font. It was not done in BNF, so the meaning
of a b c would depend on whether there is a definition for b, and then b is a
nonterminal symbol, or there is no definition, and b is a terminal symbol (text).

� They contain an explicit iteration construct to avoid heavy use of recursion for such
simple cases. Usually it is {a} or a?, both can stand for ε|a|aa|aaa| · · · . The orig-
inal proposition did not have the iteration construct, forcing the grammar engineer
to choose between right and left recursion right away: for the example given above
instead of b ::= a?; one would write either b ::= ε|ab; or b ::= ε|ba;.
Later it deemed to be inappropriate [27].

� They allow bracketing for putting things together in order to decrease the number
of unnecessary nonterminals and rules for them. Earlier it was believed to be better
to have simpler productions.

� They provide means to mark a symbol or a group of symbols as optional to avoid
the explicit use of ε or <EMPTY>. For example, a? or aopt may be defined equal
to a|ε. A frequently used alternative is definition of [a b] equal to (a b)|ε. This
alternative was used on early stages more often due to the lack of normal brackets,
nowadays a question sign is more commonly used, see Table 6.1.

� They explicitly mark the end of a rule by introducing a final character, a dot or a
semicolon, or by paragraphing. In the early days of BNF a production was only
observed by having a “::=” or similar sign. This is hardly appropriate for automatic
language processing.

The section 6.3 contains a more detailed overview of various grammar definition no-
tations used in language documentation.

2.8 Grammar idiosyncrasies and parsing technology
In order to perform syntactic analysis (parsing) of a program with a given grammar, a
parsing algorithm needs to be used. Various approaches co-exist, like top-down parsing:
LL(1), LL(k), LL(?); bottom-up parsing: CYK [255], LR(0)/SLR, LR(1), LR(k) [145],
LALR(1) [204], LALR(k) [44, 128, 171], GLR [231], SGLR [26, 238]—each having
its own restrictions on the way the grammar must be engineered to enable it. Several



2.9 Grammarware and tool generation 25

normalisation strategies were introduced to better define the classes a grammar needs to
fit for a specific parsing algorithm—such as Kuroda normal form [152], Greibach normal
form [3], Chomsky normal form [170]. Backus-Naur Form [9] and Extended Backus-
Normal Form [252] are de facto notational standards, but they exist in a variety of dialects
that can be considerably different not only in terms of concrete notation, but also in terms
of expressive power. When extracting a grammar from a software engineering artefact
containing grammar knowledge, one needs to take care of them.

In [27] it is explained that the grammars are often not declarative but already geared to-
wards a specific parsing technology or a grammar class. It is also motivated there that the
declarativity and readability of such grammars is sacrificed considerably by the idiosyn-
cratic constructs. For a more in-depth discussion about this issue the reader is referred to
the quoted paper, whose title Current Parsing Techniques in Software Renovation Consid-
ered Harmful says enough. Its message is that nowadays one should use a parser generator
that supports all context free grammars, i.e., a parser generator that puts no limitations on
the grammar.

In this thesis we try to abstain from favouring one particular technology. In the next
chapter, however, we will use scannerless generalised LR (SGLR) parser engine of the
ASF+SDF Meta-Environment [16, 45, 140, 169, 213]. Since this is not the main topic of
the thesis, the reader is referred for an overview of them to standard textbooks like [2, 83]
or scientific papers like [17, 27].

It is important to be aware of existing grammar classes and their relations when con-
structing a unified grammar formalism as we will do in subsection 4.3.3. They are also an
inevitable issue when developing a grammar extractor that maps a context-free grammar
in a source notation to our unified formalism.

Grammars are usually considered extremely static objects, made once and not subject
to any change. This is apparently not completely true, especially in the modern practice
of dynamic and iterative engineering of domain specific languages that can be found ev-
erywhere. Continuous changing and maintenance of a grammar is extremely expensive
in terms of man-effort, and in many tool building organisations the required knowledge is
limited to a small number of specialists. By consistently using a well-developed grammar
definition notation while keeping the grammar engineering activities free from idiosyn-
crasies, these costs can be reduced.

2.9 Grammarware and tool generation

A grammar forms the very basis of a language definition [143]. From a grammar, tools
like parsers can be generated automatically. We have seen in section 2.2 and in papers
like [141] that there are much more examples of grammarware than just parsers. Explicit
or implicit, the grammars are omnipresent. However, there is a large difference between
a formal executable grammar and a human readable language reference, either an ISO
Language Standard [36, 113, 114, 115] or a compiler vendor specific Language Reference
Manual [1, 37, 72, 183, 215, etc]. While language references are widely available on the
Internet, formal grammars are not.

Lämmel and Verhoef have shown in their paper [164] how an IBM VS II COBOL



26 Additional background

Coalesce operator introduction
if (a==null)
return b; return a ?? b;
else
return a;

Figure 2.1: Code example of a transformation caused by changes in the language.

grammar can be obtained from the language reference manual made by IBM. The result
of that research was made available via [241], it was the first COBOL grammar freely
available on the web.

We have already mentioned that parsers can be generated from grammars. Many
other tools can be generated from grammars and language definitions in general, directly
or indirectly, such as:

� Tools that check that certain constructs, like obsolete keywords, are not used;

� Tools that migrate source code from one language variant to another, as in [218]
where a collection of rules was introduced to go from COBOL’74 to COBOL’85
and [235] where these rules were extended and integrated into an algorithm that
can be used on a large scale (millions of lines of code);

� Tools that enforce certain layout standards, which are called pretty-printers [24, 29];

� Browsable versions of a language definition [241], as described above.

For example, consider C# programming language updating its language specification
to C# 2.0. Change in language features implies change in the source code. Transforma-
tions like the one shown on Figure 2.1 can be shipped with the specification and deployed
semi-automatically in order to update the source code with C# 2.0 features.

Changes in a programming language lead to changes in the source code written in
that programming language, this is a process called co-evolution [64, 33]. New construc-
tions are introduced, old solutions are deemed unreliable or inefficient, API changes, new
design methods come into play, etc. C# is still a new language and its code is never con-
sidered legacy, but sooner or later even C# code will require restructuring and renovation.

New language features can be roughly classified into two groups: syntactic sugar and
paradigm shifting. Replacing nested enumerator classes with a yield construct (C# 2.0,
§22.4), replacing traditional database access with LINQ (C# 3.0, §26.7), introduction of
nullable types (C# 2.0, §24) or anonymous types (C# 3.0, §26.5) can serve as examples of
paradigm shifts. The automation of those requires considerable research effort. One of the
examples of the syntactic sugar is shown in Figure 2.1: §19.5 introduces a null coalescing
operator a ?? b, which results in a if a is not null and b otherwise. null could be
used in earlier versions of C# for objects and therefore the pattern on the left can possibly
be found in the source code, with a and b being any arbitrary expressions. Replacing this
pattern with new operator will increase code effectiveness and future maintainability and
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extendability. The actual corresponding transformational rules can be written in a special
grammar-based language like XBGF or ASF.

2.10 Language documentation qualities

The intended purpose of language documentation is not always stated clearly and explic-
itly, but most of the time it is twofold: to define the language and to explain it. The first
objective is intended for computers and is traditionally achieved by presenting a grammar
and sometimes a formal semantic definition. The second objective is intended for humans,
mostly it is plain English text with tables and figures. The document itself is a combina-
tion of parts defining the language for computers and parts explaining it for human users.
They are mixed with each other and practically non-detachable.

As explained above, the defining part should be good enough to provide a language
engineer with sufficient material to adapt the existing infrastructure to deal with the code
in the defined language: to parse it, transform it, detect errors, perform analyses, generate
grammarware. The explaining part, however, has significantly different goals.

The human readable part of a language definition is meant for people to read or em-
ploy otherwise in order to learn about certain language characteristics. It can be utilised as
a complementary part to the formal grammar when it is unclear, ambiguous or just over-
complicated. It can be utilised to learn the language as a whole. It should also be possible
to utilise it to understand small aspects of the language when an adjustment about them
is about to be made in the IT portfolio. The requirements for this part are rather different.
This thesis is mainly aimed at solving technical problems for the formal part, due to the
fact that its author is a computer scientist and neither a linguist nor a psychologist, but the
rest of this section is dedicated to this issue nevertheless.

Usability is a vaguely defined term that refers to the overall clarity with which the
users learn how to use the product and the satisfaction of such use. ISO 9126 [116]
defines it as “a set of attributes that bear on the effort needed for use, and on the individual
assessment of such use, by a stated or implied set of users”. When talking about language
specifications, good usability means that anyone can take the standard and deploy it. A
standard that is several thousand pages long, contains incorrect grammar, incompatible
code samples and vague explanations, ranks low on usability.

Searchability means locating the wanted items quickly and efficiently without having
to browse manually through big volumes of data. Browsability [241] and the use of other
cross-references addresses this problem very well by separating content from the presen-
tation with making the presentation highly interactive on a basis of information devised
from the content. Most of the standards that exist nowadays and continue to evolve are
becoming more searchable and browsable, usually distributed as hyperlinked PDF files or
an on-line manual.

Reusability means that existing pieces of code and knowledge can be used to build new
ones. Software reuse is an everyday practice and one of the basic and crucial foundations
of software engineering industry since 1968 [177]. Language standards can be reused as
well; right now they are not reused explicitly even within the same organisation and among
similar languages. For example, ISO C [119] and ISO C++ [110] standards have tons of
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subtle differences in places that should be identical and stored in a separate repository. The
structure of language specifications—sectioning, text organisation, etc.—can certainly be
reused for all languages almost without any adjustments. Syntax definition formalism
should be re-used, as will be discussed later in section 6.3.

Readability (understandability) refers to the ease with which a human reader can com-
prehend the content. While there do exist formal methods of measuring the readability
(such as Automated Readability Index, Harry McLaughlin’s Simple Measure of Gob-
bledygook, Flesch–Kincaid Readability Test and others), this issue will not be pursued in
this thesis.

Learnability1 is an abstract measure of how fast and effective it is for a human to learn
new concepts from the documentation. Consistent presentation of the data does help to
achieve this goal and make the language standard learnable.

Operability and maintainability refer to the ability to keep system operational or be
able to quickly return it to operational state once a bug is found or experienced. Language
standards that are kept up to date with the latest development and language engineering
results and have good supportive infrastructure are maintainable. Extensibility, adaptabil-
ity, integrability and similar properties measure the extent to which maintenance activities
can include major improvements.

While it is up to usability experts and cognitive scientists to fully judge the quality
of the completed manual, it is certainly possible for grammarware technology to pinpoint
technical problems that can be found and fixed in a semi-automated fashion in order to
raise the quality level of language specifications.

2.11 Standardisation bodies

There are many organisations in the world that are dedicated to developing, quality check-
ing, approving and maintaining language documents. The complete list follows, it will be
used in the language document schema in subsection 6.5.2 directly, and specific remarks
will be made in chapter 6 about the work of different subcommittees and working groups.

ANSI (American National Standards Institute) is a private non-profit organisation
that is based in the USA [7]. It oversees the development of a wide range of Amer-
ican standards, and coordinates that those standards can be used worldwide. ANSI is
an ISO/IEC representative via United States National Committee (USNC), and it partic-
ipates in most ISO/IEC activities. Several programming language specifications started
out as ANSI standards and were later adopted by ISO (most notably ISO C [119] and ISO
COBOL [113]).

ECMA (European Computer Manufacturers Association), or Ecma Interna-
tional (new name since 1994), is an international private standards development organisa-
tion that takes care of ICT-related issues [60]. It started in Europe in the early sixties, now
it operates worldwide. Most well-known Ecma specifications are those for C# [225] and
JavaScript [224]. The Java programming language specification was submitted to ECMA

1Not to be confused with “language learnability” [210] which is a linguistic synonym for “grammar infer-
ence” or “fuzzy parsing” [148].
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but withdrawn afterwards without receiving official status. Some Ecma standards are ISO
standards as well.

IEEE-SA (Institute of Electrical and Electronics Engineers Standards Asso-
ciation) is a standardising branch of IEEE [93]. It maintains almost a thousand of active
industry standards in electrical and electronics engineering and computer science, and
processes around 200 new proposals each year. However, its activity in the field of lan-
guages is limited to the Scheme programming language that was standardised as IEEE
Std 1178-1990 (later it became an ANSI standard as well).

ISO (International Organization for Standardization) [97] and IEC (Interna-
tional Electrotechnical Commission) [92] are huge international standards development
and distribution bodies. While the former concentrates its effort more or less on software-
related issues and the latter one on hardware ones, there was quite an overlap that led to
establishing a Joint Technical Committee (JTC1) with 18 sub-committees dealing with
different areas. The work of SC22 [100] a sub-committee on programming Languages,
their environments and systems software interfaces, and its components were described in
earlier sections.

ISO (International Organization for Standardization) is one of the biggest stan-
dardisation bodies that maintains a standardisation committee or a working group for
every significant topic. ISO/IEC JTC1/SC22 [100] is the international standardisation
subcommittee that deals with programming languages, their environments and system
software interfaces. Inside the subcommittee there are active working groups for several
mainstream programming languages:

� WG4 [101]: COBOL is the most used programming language in industry. While
the part of modern programming languages like Java is growing rapidly, they still
have to beat more than 225 billion lines of COBOL code [129, 163] which are
already in use. WG4 maintains the ISO/IEC 1989:2002 standard [113] keeping it up
to date and constantly introducing new features like object-oriented programming
or Unicode support.

� WG14 [104]: C is a widely used general-purpose middle-level imperative proce-
dural programming language. The unsatisfactorily low level of the language and
drastic maintainability deterioration due to heavy use of the C Preprocessor [223]
narrow its application area considerably (mainly as an alternative to the assembly
language in system programming and embedded software).

� WG21 [108]: C++ started as a high-level object-oriented extension to C, later
evolved into a much bigger independent language with data abstraction, generics,
runtime typing and multiple inheritance. C++ is slowly being replaced by mod-
ern successors like Java or C#. If counted together, C/C++ is the second most
used programming language with 20% of installed software and 180 billion lines of
code [130].

� WG9 [103]: Ada was created as a language for embedded and real-time systems.
It was a result of extensive research done by the High Order Language Working
Group, a group of professionals employed by the United States Department of De-
fense. The use of Ada in DoD projects was mandatory for years, but is not anymore.
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The failure of Ariane 5 launch system due to improper run-time error handling in
Ada programming language [52] raised some questions for its suitability.

� WG5 [102]: Fortran [11] is less used in industry, but still a lot of computational
code was and is being written in it. Popular Fortran libraries LINPACK and EIS-
PACK evolved into an even more widely used programming language and a numer-
ical computing environment called MATLAB. Recently (on 15th of January, 2008)
WG5 released a new beta version of the ISO Fortran specification that is as of now
still in the internal discussion phase.

� WG19 [107]: The working group for standardising extended Backus Naur Form
and Vienna Development Method for declaring syntax and semantics correspond-
ingly. WG19’s notable output used in this research is [112] that will be discussed
in the following chapters together with other (E)BNF dialects.

There are also working groups for mainstream industry-unrelated programming lan-
guages like ISLisp [105] (they have already been outrun by ANSI [81]) or Prolog [106].
All other numbers from WG1 throughout WG22 belong to the working groups which
are no longer active for some reasons (PLIP, Pascal, APL, Algol, PL/I, Basic, Modula-2,
Java).

ITU (International Telecommunication Union) is the oldest standardisation body
in the world [122]. It handles most of standards in radio and telecommunications: for
example, Integrated Services Digital Network (ISDN) and Asymmetric Digital Subscriber
Line (ADSL) are ITU standards.

IETF (Internet Engineering Task Force) is an open standardisation body with no
formal membership [96]. It operates on Requests for Comments (RFCs) that can be sub-
mitted by anyone, are freely passed around for commenting. There is a very fixed struc-
ture of an RFC and there are several strict levels of approval (proposed, draft, full internet
standard). TCP/IP protocol stack, Unicode and Universal Resource Locators (URLs) are
examples of approved RFCs. IETF often collaborates with W3C and ISO/IEC.

OASIS (Organization for the Advancement of Structured Information Stan-
dards) (ex-“SGML Open”) is a global consortium for standardisation on a field of web
services and e-business [194]. DocBook [245] and DITA [195] are OASIS standards.

WSA (Website Standards Association) is a group of industry experts having several
common goals, one of which is to identify and promote the minimum standards that all
websites should meet [253]. This recently created organisation does not have any signif-
icant standards yet, but it seems to strive for a wide range of them, from marketing to
usability.

W3C (World Wide Web Consortium) is one of the largest standardisation bodies
active in the Internet-related areas. It develops inter-operable technologies like specifica-
tions, guidelines and grammarware to “lead the Web to its full potential” [242]. Within
the thesis we do not use W3C recommendations for grammar recovery, but we did use
many of its web-related standards. Basically everything that is used to present, retrieve,
transmit or store information in the world wide web has been or is being standardised
by W3C. CSS [19], XHTML [8], XML [30], XSLT [137], XML Schema [75, 208] and
XPath [15] are W3C Working Drafts and W3C Recommendations used in this thesis.
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Input, Programmed, Generated,
Language LOC LOC LOC
ANTLR 122 345
ASF 763
BGF 5436077 6860 5432766
C# ∼100000
Dot 3206
Ecore 278 51 227
FST 1540
(X)HTML 40089 4926
LCF 816 343
LDF 27616
LLL 731 731 5877
Makefile 2067
Prolog 404 6413
Python 5594
SDF 82 649
TEX 8187 14346
XBGF 34069 28502
XLDF 6746
XML Schema 95 4717
XSLT 5926
XQuery 372

Table 2.1: Languages used in the thesis, in lines of “code”. “Input” means data that
has been used as an input for our tools, whether taken from third parties, programmed or
generated. “Programmed” means the code that we have written. “Generated” means code
produced by our automated tools. It is possible for generated code to be used as an input
on another step (e.g., it is common with BGF). The table is generated automatically from
the repository of SLPS [263].

2.12 Languages used in the thesis
The approach taken involves a string of different languages itself, we briefly introduce
them in this section. Languages to which we have applied our methods, are also listed.
For the sake of convenience we introduce all languages first in lexicographical order, and
then we provide a graph to depict the role of all the languages in our approach. Table 2.1
summarises the number of lines of code per language.

ANTLR — one of the sources for the Factorial Language extractor prototype suite was
ANTLR [202] grammar file, see Listing 4.5.

ASF — Algebraic Specification Formalism [16] is a language for specifying grammar
transformation formulæ in ASF+SDF Meta-Environment [22]; it was used to ex-
tract BGF from SDF and BTF from AsFix [25].
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BGF — BNF-like Grammar Format, our XML-enabled version of Backus Normal Form
that was used for representing grammar knowledge, see subsection 4.3.3 and sec-
tion 7.4.

BTF — BGF Tree Format, was used as a complementary XML format for storing parse
trees. It was needed for coupled transformations (test set convergence), the part of
research that did not end up in the thesis.

C# was one of the case studies [257], its grammar was semi-automatically extracted from
[225] and further refactored, see chapter 3.

Dot was generated by Language Convergence Infrastructure from LCF as a cheap way to
produce a PDF diagram with Graphviz [74]. All convergence graphs, both abridged
and detailed ones, were generated in Dot form with LCI.

EBNF dialects were used while conducting research on language definitions, see sec-
tion 6.3, as well as for pretty-printing BGF, see section 7.4.

Ecore — Eclipse Modeling Framework’s format for models can also be treated as a gram-
mar knowledge source. One of the implementations of Factorial Language was
made in Ecore, extracted and converged with other FL grammars, see Listing 4.3
and Listing 4.8.

FL — Factorial Language, was used for prototyping grammar convergence techniques
in [166]. For that project FL was implemented in ANTLR (see Listing 4.5), SDF
(see Listing 4.7), C#, C++, Converge, Ecore, Haskell, Java, LDF, Prolog (see List-
ing 4.6), Python, Smalltalk, XQuery and XSD (see Listing 4.10). The only ex-
traction sources really used for the thesis were ANTLR, Ecore, JAXB (see List-
ing 4.12), Java object model (see Listing 4.11), SDF, XSD and Prolog.

FST — the grammar transformation language of Grammar Deployment Kit [149] was
used for C# case study detailed in section 3.2.

HTML — non-well-formed HyperText Markup Language documents [77, 78, 79] were
used as a source of Java grammar knowledge in [167] and chapter 5.

Java was used in a large language convergence case study [167]: six different Java pro-
gramming language grammars were extracted from specifications, transformed and
converged.

LCF — LCI Configuration File, an XML-based configuration file for Language Conver-
gence Infrastructure, see section 4.10.

LDF — Language Documentation Format, a BGF-using format for language definitions,
see chapter 6.

LLL was used in Grammar Deployment Kit [149] for storing grammars for input, output
and all intermediate steps, see subsection 3.2.2.
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Makefiles were used as a low-level means of expressing dependencies. When in the
context of grammar convergence the makefiles started to become too complicated
and obfuscated, we developed a domain specific language (see LCF) that delivered
both simplicity and controllability.

Prolog was the main implementation language for XBGF and BGF/BTF-based coupled
transformations (courtesy of Prof. Dr. Ralf Lämmel); Prolog definite clause gram-
mar implementation of Factorial Language was also one of the sources for language
convergence in [166].

PROTO was an ISO toy language we adopted for demonstrating some grammar disci-
pline concepts in [143].

Python was used to wrap regular expressions for ANTLR grammar extractor and in var-
ious other tools that required scripting; Language Convergence Infrastructure [166]
was completely implemented in Python; the scanner and the recovering parser for
the Java Language specification was also done in Python.

SDF — Syntax Definition Formalism [86] is a language for representing grammar knowl-
edge in ASF+SDF Meta-Environment [22]; was used as one of the sources in Fac-
torial Language extractor prototype suite, in the SDF to BGF extractor, and as a
target format for C# case study in Grammar Deployment Kit [149].

TEX — the thesis and the papers were typed in LATEX, as well as, naturally, all automati-
cally generated tables and language documentation.

XBGF was the main transformation language for grammar convergence, see chapter 7.
The total volume of XBGF files in Table 2.1 does not include XBGF calls from
XLDF.

XHTML was used always when hypertext content needed to be generated (e.g., from
LDF)—most importantly in [261].

XLDF was the transformation language behind chapter 6. The total volume of XLDF
files in Table 2.1 includes built-in XBGF calls, as in subsection 6.6.19.

XML was used in form of BGF, BTF, LCF, LDF, XBGF, XLDF, XMI, XSD, XSL.

XML Schema was used for all evolved XML formats: BGF, BTF, XBGF, LDF and LCF;
one of the Factorial Language grammars was also extracted from its XSD, see List-
ing 4.10.

XSL:FO was used as an intermediate stage in one of the ways to generate PDF from
LDF.

XSLT sheets were used to pretty-print BGF grammars and XBGF transformation scripts
presented in this thesis and in corresponding publications; XSLT was also a presen-
tation language for transforming LDF to XHTML and XHTML further to XSL:FO.
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Figure 2.2: Dependency graph showing all language transformations. Thin grey lines
denote tools present prior to this research. Thick grey edges are for co-developed trans-
formations.

XPath dialect [173] was used internally by all Python scripts that were working with
XML (in particular, Language Convergence Infrastructure), and classic XPath as a
standalone tool for analyses, metrics and presentation.

XQuery scripts were generating output when XPath was not able to express the designed
benchmarks.

2.13 Transformations used in the thesis

Figure 2.2 shows a dependency graph of all languages and other artefacts of grammar
knowledge used in this work. Every node in this graph demonstrates a format, a form
or a view of a language or its part. Every edge is a transformation. All solid black
edges were designed and implemented as a part of this research project. Thin grey edges
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represent external transformation facilities such as those provided by Eclipse Modelling
Framework [59], Graphviz [74] or LATEX. Thick grey edges are for transformations that
were co-developed or taken from third parties. We list them below:

� XBGF is a collaboration effort with Prof. Dr. Ralf Lämmel.
� Java2BGF, XSD2BGF, XML2BTF, DCG2BGF and BTF2BGF are courtesy of

Prof. Dr. Ralf Lämmel.
� HTML2XSLFO is courtesy of Antenna House, Inc., use permission granted.
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Chapter 3

Case study on recovery

We found more errors than one would
expect from a language reference
manual.

Ralf Lämmel, Chris Verhoef,
2000 [164]

As a starting point for our research we have conducted an experiment by carrying out a
case study with the most modern language document available at the time, and producing
a working grammar for parsing source code in that language. A modern programming
language was intended to be used to avoid claims that the problems we encounter are
specific to legacy languages only, since prior research was about COBOL and PLEX. It
was during the execution of this experiment that we realised how much effort was required
just due to the simple lack of disciplined grammar engineering in the process of grammar
making and standard making. A range of questions has been raised accordingly to be
answered by the research done in the later chapters of this thesis.

This chapter utilises already existing research results from [154, 164] to show how
they can be incorporated in the scope of section 1.2 in language specification development,
evolution and maintenance. It makes the reader familiar with a range of issues that are
important in such activities and demonstrates how such questions should be dealt with,
providing a step-wise plan illustrated with examples from the C# specification. The aim of
this research was not only to reconstruct the grammar for C#, but also to collect grammar
recovery experience and to provide guidelines that can profitably be used by any scientist
or engineer attempting a similar recovery task.

3.1 Contributions
� This chapter serves as an initial experiment in grammar recovery that used contem-

porary methods for grammar extraction and transformation and utilised a language
specification as a source of grammar knowledge.

37
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� A case study is presented where a grammar of C# is derived from the corresponding
language specification and transformed into a working one capable of parsing C#
code.

� The C# case study is generalised as a plan for semi-automatic grammar recovery
from a language standard, language specification or language reference for its fur-
ther use in the standardisation framework that will be elaborated into a prototype in
the next chapters.

The technical results of this chapter were briefly described, published and pre-
sented at the participants’ workshop of the International Summer School on Genera-
tive and Transformational Techniques in Software Engineering as Correct C# Gram-
mar too Sharp for ISO [257]. In the next version of the standard some of the errors
were removed [115]. We have no information about Microsoft actually using our re-
sults in their work, but since not all errors were fixed, we presume they did not use an
engineering approach for this. Our C# grammar was later made publicly available via
http://www.cs.vu.nl/grammarware/browsable/CSharp [241] and forms
now a part of the SLPS Grammar Zoo at http://slps.sf.net/zoo [260]. General
discussion on EBNF as a grammar definition formalism, as well as on grammar engineer-
ing techniques like de-layering and relaxation overlaps somewhat with the ISO note titled
Language Standardization Needs Grammarware [143]. [143] was written in collabo-
ration with Dr. Steven Klusener (Vrije Universiteit Amsterdam), who also presented the
work to the international programming languages subcommittee ISO/IEC JTC1/SC22.

3.2 Semi-automated recovery of C# grammar
This section is an application of grammar recovery transformations from [154, 164] to the
C# 1.0 grammar from [114, 184, 225]. It demonstrates how such questions should be dealt
with, executing all steps needed to get the working grammar out of the C# specification.
However, the objective will be to provide guidelines that can profitably be used by any
scientist or engineer attempting a similar recovery task.

There is a complementary web page that contains the results of this work
in a browsable form: http://www.cs.vu.nl/grammarware/browsable/
CSharp [241].

3.2.1 Step 1: Obtaining the standard
Some standards are distributed for free, but others require a fee to be paid. In the case
of C#, both ISO/IEC 23270:2003 [114] and ECMA-334 [225] standards are freely down-
loadable from their corresponding web sites (see bibliography or the aforementioned com-
plementary web page for URLs).

The original language specifications for C# are distributed in the form of Microsoft
Word documents (.doc). Jon Jagger used a simple lexical tool to generate a hyperlinked
version of Appendix A of ECMA-334 [125]. Later we will use Jagger’s notation to gener-
ate our hypertext version, but it seemed more trustworthy to rely on the original language
document for the extraction step.

http://www.cs.vu.nl/grammarware/browsable/CSharp
http://slps.sf.net/zoo
http://www.cs.vu.nl/grammarware/browsable/CSharp
http://www.cs.vu.nl/grammarware/browsable/CSharp
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specification : rule+;
rule : ident ":" disjunction ";";
disjunction : {conjunction "|"};
conjunction : term+;
term : basis repetition?;
basis : ident

| literal
| "%epsilon"
| alternation
| group
;

repetition : "+" | "*" | "?";
alternation : "{" basis basis "}" repetition;
group : "(" disjunction ")" ;

Listing 3.1: EBNF of LLL grammar format in LLL notation [149, page 3].

3.2.2 Step 2: Extracting the grammar
Once the grammar is at hand, it must next be fed into the grammar engineering infrastruc-
ture that was chosen to be used throughout the rest of the project. Many tools use dialects
of extended Backus-Naur form, but as we will see in section 6.3, no two (E)BNFs are
alike.

In this case study it was observed that the C# grammar used font face to mark termi-
nal symbols, and that information was inevitably to be lost, and quotation marks must be
added by hand, if the grammar were to be copy-pasted from a PDF of the standard. How-
ever, Microsoft has an hypertext version of the specification [184], which can be parsed
with W3C standards. Jagger’s browsable version mentioned above could have also been
used, but we wanted to eliminate even the slightest chance for introducing mistakes by
preferring the specification itself or the sources that have been derived directly from it by
the trusted parties, such as Microsoft.

LLL (Lightweight LL parsing, pronounced as “el-cube”) is a language used by the
Grammar Deployment Kit [149], which was used for this C# grammar recovery. It is an
EBNF-like language that uses ? to denote optional symbols, double quotes terminals,
treats ; as the end of a rule and regards the bar (traditional | for choice) as the lowest
priority operation. Listing 3.1 gives the full formal definition of LLL.

SDF (Syntax Definition Formalism) [86] is a more advanced formalism employed
in the ASF+SDF Meta-Environment, which was also used in this project (GDK gener-
ates SDF automatically from LLL). It allows for specifying in much more detail how the
source code must be parsed, providing a grammar engineer with access to lexical rules
and production priorities.

LLL and SDF also make a distinction between “one or more” (+) and “zero or more”
(?) repetitions (closures). Another extension of both LLL and SDF gives support for
“comma-separated lists” as a special kind of repetition when a terminal—a dot, a comma
or a semicolon in most cases—is inserted between entities, but not at the end. The syntax
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is:

{a ","}+ ≡ a ("," a)?

3.2.3 Step 3: Fixing misprints
As long as language specifications are created by hand, they are to bound contain some
amount of misprints, mistypings, multiple different names for the same entity, duplicate
definitions, etc. For instance, in the recovery of the COBOL grammar from the IBM
manual [28] a misspelled “DEGUGGING MODE” terminal was found considerably later
than the recovered result was put online.

The boolean-expression nonterminal symbol was defined twice in the C#
grammar: one time with other kinds of expressions in §A.2.4 of [225], and the other
time along with conditional operators in §A.2.5 of [225]. This issue has been fixed by
removing the second definition in the next versions of the standard. A couple of other
mistakes found and described in the forthcoming sections were most probably mistypings
as well.

3.2.4 Step 4: Completing a formal part
The C# grammar had informal words scattered inside it:

letter-character::
A Unicode character of classes
Lu, Ll, Lt, Lm, Lo, or Nl

A unicode-character-escape-sequence representing
a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

decimal-digit:: one of
0 1 2 3 4 5 6 7 8 9

integer-type-suffix:: one of
U u L l UL Ul uL ul LU Lu lU lu

The “one of” looks quite similar to “the bar” in BNF, and indeed it can be automati-
cally translated to the bar notation in the case of limited number of choices (like above).
The textual references to the Unicode standard should be either removed or formally ex-
panded. While the latter solution is certainly cleaner and better if one had the Unicode
standard already available, in this project we removed such references at all. They were
replaced with lexical rules that were written manually to be as close to the original as
possible1. Those rules were used for parsing, yet the browsable version generated as the
result of this project contains the original verbal descriptions put back—they are better
readable and make the grammar identical even in Unicode-enabled environments.

The completed lexical part of C# is shown on Listings 3.2–3.4.

3.2.5 Step 5: Relaxation
Consider the following part of the C# grammar (A.2.2 Types):

1ASF+SDF Meta-Environment is not Unicode-friendly.
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%% C# Language Specification, section A.1.6, pages 336−337
[A-Za-z\_][A-Za-z01-9\_]? → Identifier
%% C# Language Specification, section A.1.8, pages 338−339
”true” | ”false” → Boolean-literal
”null” → Null-literal
[FfDdMm] → Real-type-suffix
[\"][\"] → Quote-escape-sequence
[x][01-9a-fA-F]([01-9a-fA-F]([01-9a-fA-F][01-9a-fA-F]?)?)?
→ Hexadecimal-escape-sequence

%% Optimisation by VVZ:
%% Simple−escape−sequence +

%% Hexadecimal−escape−sequence +

%% Unicode−character−escape−sequence =
[\’\"\\0abfnrtv]
| Hexadecimal-escape-sequence
| Unicode-character-escape-sequence → Escape-sequence
˜[\’\\\n] | ( [\\] Escape-sequence ) → Character
[\’] Character [\’] → Character-literal
˜[\"\\\n] | ( [\\] Escape-sequence ) → Regular-string-character
˜[\"] | Quote-escape-sequence → Verbatim-string-character
[\"] Regular-string-character? [\"] → String-literal
[\@][\"] Verbatim-string-character? [\"] → String-literal
%% C# Language Specification, section A.1.3, page 335
([uUlL]|”UL”|”Ul”|”uL”|”ul”|”LU”|”Lu”|”lU”|”lu”) → UL

[01-9]+UL? → Integer-literal

(”0x”|”0X”)[01-9a-fA-F]+UL? → Integer-literal

[01-9]?[\.][01-9]+Exponent-part? Real-type-suffix? → Real-literal

[01-9]+ Exponent-part Real-type-suffix? → Real-literal

[01-9]+ Real-type-suffix → Real-literal

[eE][\+\-]?[01-9]+ → Exponent-part
%% C# Language Specification, section A.1.5, page 336
[u][01-9a-fA-F][01-9a-fA-F][01-9a-fA-F][01-9a-fA-F]
→ Unicode-character-escape-sequence

[U][01-9a-fA-F][01-9a-fA-F][01-9a-fA-F][01-9a-fA-F]
[01-9a-fA-F][01-9a-fA-F][01-9a-fA-F][01-9a-fA-F]
→ Unicode-character-escape-sequence

Listing 3.2: Lexical part of C# grammar in SDF, part 1: lexical syntax
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”null” → Identifier {reject}
”true” → Identifier {reject}
” false ” → Identifier {reject}
%% C# Language Specification, section A.1.8, pages 338−339
Boolean-literal
| Integer-literal
| Real-literal
| Character-literal
| String-literal
| Null-literal → Literal
lexical restrictions
Identifier 6—[A-Za-z01-9\_]
Literal 6—[A-Za-z01-9\_]
Integer-literal 6—[A-Za-z01-9\_]
Hexadecimal-escape-sequence 6—[01-9A-Fa-f]
Unicode-character-escape-sequence 6—[01-9A-Fa-f]

Listing 3.3: Lexical part of C# grammar in SDF, part 2: restrictions

non-array-type:
type

array-type:
non-array-type rank-specifiers

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

type:
value-type
reference-type

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type

enum-type:
type-name

reference-type:
class-type
interface-type
array-type
delegate-type

class-type:
type-name
"object"
"string"

interface-type:
type-name

delegate-type:
type-name
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module Comment-layout
imports Layout
exports sorts Asterisk Comment LineComment
exports lexical syntax

”/?” ( ˜[\?] | Asterisk )? ”?/” → Comment
[\?] → Asterisk
”//” ˜[\n]? [\n] → LineComment
Comment → LAYOUT {prefer}
LineComment → LAYOUT {prefer}

lexical restrictions
Asterisk 6—[\/]

context-free restrictions
LAYOUT? 6—[\/].[\?]
LAYOUT? 6—[\/].[\/]

Listing 3.4: Lexical part of C# grammar in SDF, part 3: comments

In this part of the grammar, we can find five different ways to get from type to
type-name, which is very ambiguous and unnecessary for parsing. However, for some-
one who would like to run type checks later with the working grammar, this information is
useful and should be kept (perhaps by tweaking definitions of those types if the grammar-
ware cannot deal with ambiguities). For someone who needs the C# grammar for other
purposes, this is irrelevant and should be removed. This is how the same grammar piece
looks in the refactored C# grammar (in LLL):

type
: non-array-type rank-specifier*
;

non-array-type
: qualified-identifier
| built-in-type
;

built-in-type
: integral-type
| built-in-class-type
| "bool"
| "decimal"
| "float"
| "double"
;

built-in-class-type
: "object"
| "string"
;

This instance actually covers more than the previous one.
qualified-identifier is a dot-separated list of names of namespaces like
System.Windows.Forms.Button which replaces type-name. There is place for
other solutions: for example, we could both keep type information and remove ambigui-
ties by introducing additional nonterminal symbols in all places where type-name was
used.
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3.2.6 Step 6: Removing idiosyncrasies from the grammar

As we explained in section 2.3, a “yaccified” grammar uses recursive definitions to in-
troduce naturally iterative language constructs. Since nowadays it is maintained that
declarativity and readability of a grammar deteriorates if parsing techniques influence the
grammar engineering process [27], we should try to spot such idiosyncratic constructions
and replace them by more general ones. The grammars found in the C# specifications
[114, 115, 184, 225] use explicit left recursion, two examples follow:

argument-list:
argument
argument-list "," argument

statement-list:
statement
statement-list statement

SDF notation has postfix repetition metasymbols “?” and “+”, as well as confix no-
tation { · · · } for terminal-separated lists. These concepts are abstract enough to be easily
mapped to any technology-specific variation, be it repetition, left or right recursion. After
refactoring the same productions will look like this (in LLL):

argument-list:
{argument ","}+;

statement-list:
statement*;

While the result is independent of parsing technology, it is not independent of the
grammarware toolkit one is using: namely, the support for comma-separated lists must be
present, otherwise it is not possible to perform the first of the last two refactorings.

A similar issue is what we call layering [166], where a hierarchy of definitions is
introduced, each on referring to the next one and recursively to itself. This approach is
one of the popular solutions to introducing operator priorities, but it comes with a dis-
advantage of having heavily cluttered and unreadable parse trees. In order to understand
the issue completely, let us consider one example in detail; here is how expressions are
defined in the C# specification [115, pages 454–456] (productions re-ordered for reader’s
convenience):

expression:
conditional-expression
assignment

conditional-expression:
null-coalescing-expression
null-coalescing-expression ? expression : expression

null-coalescing-expression:
conditional-or-expression
conditional-or-expression ?? null-coalescing-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression
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Figure 3.1: A number parsed as an expression.
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inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ˆ and-expression

and-expression:
equality-expression
and-expression & equality-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

unary-expression:
primary-expression
+ unary-expression
- unary-expression
! unary-expression
˜ unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

pre-increment-expression:
++ unary-expression

pre-decrement-expression:
-- unary-expression

cast-expression:
( type ) unary-expression

primary-expression:
array-creation-expression
primary-no-array-creation-expression
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module UnaryExpressionPriorities
exports
context-free priorities
Primary-expression → Unary-expression >
{non-assoc:
Expression-unary-operator Unary-expression → Unary-expression
”(” Type ”)” Unary-expression → Unary-expression}

module ExpressionPriorities
exports
context-free priorities
Unary-expression → Expression >
{left: Expression ”*” Expression → Expression
Expression ”/” Expression → Expression
Expression ”%” Expression → Expression} >
{left: Expression Plus Expression → Expression
Expression Minus Expression → Expression} >
Expression Expression-shift-operator Expression → Expression >
{Expression Expression-relational-operator Expression → Expression
Expression ”is” Built-in-type → Expression} >
Expression Expression-equality-operator Expression → Expression >
Expression Ampersand Expression → Expression >
Expression ”ˆ” Expression → Expression >
Expression Bar Expression → Expression >
Expression ”&&” Expression → Expression >
Expression ”||” Expression → Expression >
Expression ”?” Expression ”:” Expression → Expression

Listing 3.5: The priorities for the C# grammar externally specified by SDF

primary-no-array-creation-expression evaluates then to literal
and similarly simple things, as well as to postfix expressions (post-increment, member
access, object creation). Almost 20 steps separate a literal from an expression with a lone
literal in it, as shown in Figure 3.1 for C# 1.0 (without null-coalescing-expression). A
part of a parse tree corresponding to the parse path from 2 to expression is cut from a
graph automatically generated by the ASF+SDF Meta-Environment: every box on it cor-
responds to a grammar production in SDF, and the right hand side always matches with
the left hand side of the next rule (in the box immediately above current).

As it has been shown, this approach of introducing expressions leads to very cluttered
parse trees even for the simplest expressions, because the parser has to find its way through
various kinds of expressions. This hinders human understanding and decreases produc-
tivity when working with parse trees (looking for ambiguities or otherwise). SDF [86],
as many other notations used for parser generation, has other mechanisms for dealing
with this problem: for example, introducing priorities and specifying associativity. These
methods are much easier to understand for a human reader, as they make a grammar
smaller and are fully supported by parsing technology.

Here is how the refactored piece of the same functionality looks:
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expression:
expression "?" expression ":" expression
expression "||" expression
expression "&&" expression
expression bar expression
expression "ˆ" expression
expression ampersand expression
expression expression-equality-operator expression
expression expression-relational-operator expression
expression "is" built-in-type
expression expression-shift-operator expression
expression plus expression
expression minus expression
expression "*" expression
expression "/" expression
expression "%" expression
unary-expression
unary-expression assignment-operator expression

All newly-introduced nonterminal symbols have straightforward definition as collec-
tions of terminals: e.g., expression-shift-operator is a choice between “<<”
and “>>”.

The priorities are specified on a lower level in a separate SDF file, see Listing 3.5.

3.2.7 Step 7: Resolving conflicts
A conflict is a situation when two grammar knowledge pieces differ when they are sup-
posed to agree. This concept will be elaborated and broadened into the notion of struc-
tural difference in section 4.7 in the scope of grammar convergence. For now we limit
ourselves to singular mismatches between identical grammars.

One example of a conflict will be shown here. §22.1 Delegate declarations on page
297 (lines 15–16 in Microsoft version [184]) says (in this case new line does not mean
choice):

delegate-declaration:
attributes? delegate-modifiers? "delegate"

return-type identifier
"(" formal-parameter-list? ")" ";"

However, Appendix A.2.11 Delegates on page 357 (lines 34–35), which actually con-
tains the formal grammar, looks like this:

delegate-declaration:
attributes? delegate-modifiers? "delegate"

type identifier
"(" formal-parameter-list? ")" ";"

The difference is that type is a real type, while return-type is either a type or
"void". After encountering this inconsistency, other sources were examined and it was
found out that the Microsoft compiler does allow delegates to be void; and even source
code examples from the specification show void delegates [114, 184, 225]. So it was
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decided that the formal grammar in the appendix is wrong and has to be corrected towards
§22.12.

We will return to the issue of resolving grammar conflicts and surfacing the relations
between different grammars with introduction of the method of grammar convergence in
chapter 4.

3.2.8 Step 8: Improving the grammar
Let us look at these definitions from the C# grammar:

method-body:
block
;

accessor-body:
block
;

operator-body:
block
;

constructor-body:
block
;

static-constructor-body:
block
;

destructor-body:
block
;

We can see strong similarities there. One can assume these clones were needed for
explaining semantics and for potential growth of the grammar. However, semantics can
handle terms like “body of a method”, and not all grammar users aim at grammar exten-
sions distinguishing between constructor and destructor bodies. There are no other bodies
in the grammar, so one can certainly simplify the matter by introducing a sort body and
using it everywhere throughout the grammar. This will not just shrink future parse trees,
but will also improve human intelligibility of the grammar.

3.2.9 Step 9: Generating the parser
Around 1500 lines of FST code (217 transformation rules) plus 274 lines of pure SDF
with lexical definitions and priorities were needed to eliminate all irregularities, introduce
absent definitions, disambiguate equivocal formulæ (by reformulating them), de-yaccify
and de-layer expressions and beautify the grammar. The C# grammar was cut down from
281 nonterminals and 710 BNF formulæ to about 172 sorts and 466 LLL rules. Not only
it got smaller, but also significantly gained in readability without losing in declarative
power.

2After discovering this bug and reporting it on a conference [257] it has been fixed by Microsoft
and in the new version of C# language specification §22.1 and A.2.11 give identical definitions of
delegate-declaration [115].
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An SGLR [26, 169, 213, 238] parser was generated by the ASF+SDF Meta-
Environment [22, 23, 140]. The grammar was not thoroughly tested, only around
100000 lines of C# code were successfully parsed with it. This level 3 gram-
mar was made publicly available at http://www.cs.vu.nl/grammarware/
browsable/CSharp [241].

3.3 Proposed solution generalisation and evaluation

The stepwise plan for semi-automated grammar recovery presented below is a refine-
ment of prior work [163, 164, 219] with additional experience gained from the C# case
study [257]. The grammar recovery method described in this section consists of ten steps.
It takes the raw grammar presented in a language definition as an input, and its outcome
is production of grammarware. Most of the steps are semi-automated, which means there
can be a significant improvement by using the right technology, but it still must be op-
erated by a language engineer. The evaluation of the method is located at the end of the
section.

Obtaining the standard

The starting point for the whole recovery process is getting the relevant standard. It
is important to decide which particular dialect of the language is needed. On a the-
oretical level, we can operate with a notion of a language in general (e.g., COBOL),
but in practice, source code is intended for a certain compiler, which set of rules
can differ from the books and standards. For example, by “COBOL” one can mean
any vendor specific dialect (like AcuCobol [1], DEC COBOL [46], IBM OS/VS
COBOL, IBM VS COBOL II [164], IBM SAA COBOL, COBOL/370, Micro Fo-
cus COBOL [182], Object COBOL [183], Microsoft COBOL, NetCOBOL [72],
RM/COBOL, Compaq COBOL [37], Unisys COBOL or COBOL.NET), or any
standardised COBOL (like ANSI COBOL: COBOL’68, COBOL’74, COBOL’85;
X/Open COBOL or ISO COBOL [113]), or any version thereof.

Usually some kind of documentation on a chosen dialect is available. It can take
the form of a programmer’s manual, a language reference, a compiler’s help file,
an on-line tutorial, a list of differences with another standard, etc. Almost any
documentation can be used on the next step for extraction. The completeness of
information contained in the chosen specification will influence the simplicity of
the extractor.

Extracting the grammar

As a result of this step one would probably like to have a grammar inside one’s
tooling. The process of translation from the EBNF dialect of the language specifi-
cation to the EBNF dialect of the tool involves mapping that can be fully automated
despite some non-trivialities. For example, when going from a YACC [128] gram-
mar to an SDF [86] grammar, one should turn the rules around (a: b c becomes
b c→ a) and drop all semantic actions, error handling, etc.

http://www.cs.vu.nl/grammarware/browsable/CSharp
http://www.cs.vu.nl/grammarware/browsable/CSharp
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It is not necessary to use grammarware for lightweight translations. For exam-
ple, “opt” marks can be replaced with “?” with a simple regular expression or
a text processor facility. On the other hand, going from non-ASCII notation, or
an ASCII representation of a visual form, to pure ASCII can require considerable
manual labour or a creative approach like in [28] where a special extractor was de-
veloped to recover the grammar of IBM VS COBOL II. Another example is the
ISO COBOL [113] grammar that exists in an Adobe FrameMaker form, which is a
proprietary format and cannot be easily parsed; however, one can export it as a MIF
document, which specification is available.

For our detailed analysis on various metasyntaxes found in different language doc-
uments, the reader is referred to section 6.3.

Fixing misprints

Obvious kinds of misprints include misspelled nonterminal symbol names, mis-
spelled keywords (terminals), duplicate definitions, forgotten definitions which can
be found in the standard but not gathered in the appendix with a grammar, or vice
versa. Once spotted, all these kinds of problems are easy to fix. The very presence
of such errors indicates that the grammar is hand-made; it was composed without
the use of appropriate tools which can check the consistency of the content.

In section 5.4 we will see markup problems such as misplaced HTML tags, mis-
leading indentation, mismatched parentheses, metasymbols marked up as terminals,
terminals marked up as nonterminals and vice versa, nonterminal names being split
or combined the wrong way, etc. Most of them can be considered “misprints” in
a broad sense. In the JLS case study these misprints were fixed by a sophisticated
automated extractor.

Completing a formal part

There are particular things that are easily described and understood when explained
in human language, but which pose difficulties when being formalised. For exam-
ple, one can state in a standard that statements are separated by semicolons, but
forget to include the corresponding BNF formulae. Problems like these can usually
be automatically detected from errors and warnings of the grammarware used, but
tend to require human attention for fixing.

A classic example of such problems is Python [215]: its manual only notes that
“indentation is Python’s way of grouping statements”, but it does not provide any
means to deal with this issue in a grammar. Actually, it would seem rather unjus-
tified to solve indentation problems within a grammar, and most existing Python
parsers use a special preprocessor that inserts tokens which mark changes in inden-
tation; any program preprocessed in such a way can be parsed using conventional
indentation insensitive algorithms afterwards.

Modern programming languages are very liberal with comments, which may occur
almost everywhere and sometimes even be nested. Obviously, a parser has to deal
with these. However, specifying rules for comments informally is very easy while
integrating them into the formal grammar may prove to be quite tricky. As a result,
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the rules for comments are often omitted from the language documents. To be more
precise, they can be explained only in an informal descriptive manner and never
show up in the grammar itself. This can lead not only to the need of re-expressing it
formally, but also to a possibility of introducing mistakes by erroneously interpret-
ing the text.

In many cases another disjunction mechanism is used: “one of the following”
(
∨

k xk in mathematics) instead of “x or y” expected by BNF (x1 ∨x2 ∨ · · · ). They
are equivalent in the case of limited number of alternatives, modulo the concrete
syntax (infix notation vs. prefix notation).

Other standards can also be referenced, and it is done sometimes in textual form
without any verification or formalisation attempts. For example, most books on
C++ programming language tell us that it is an extension for C programming lan-
guage, yet the work of standardisation subcommittees for C [104] and C++ [108]
is separated for years, and there were no known attempts recently to validate that
statement. In general, most references to other standards should be rewritten for-
mally either to use those standards directly or to incorporate their needed content,
or removed at all.

It is easy to check if all the nonterminals have been defined in the grammar. We
construct a directed graph, where each nonterminal symbol is a node. An edge
goes from one node to another if the corresponding target nonterminal is used in
the definition of the corresponding starting nonterminal. If the resulting graph is
connected—that is, all the nodes are reachable from the top node—then there are
no missing rules. Any node with no incoming edges means a nonterminal that was
never used in any other definitions. These unexpected top nodes notify us about
missing definitions.

Relaxation

One of the most difficult things in composing a formal grammar is knowing where
to stop. Usually pulling too much semantic issues into the grammar makes it unnec-
essarily overcomplicated. However, small bits of semantics always find their place
in a grammar. Some people might want to use them; others do not need them. In
general, it is natural that the grammar given in a text documenting a language is not
the grammar one would like when parsing.

Other grammar parts that will not be necessary for the tool under development may
also be removed at this step. In order to make the parser more tolerant and cover a
range of language dialects, one can decide to remove significant and considerably
big parts of the baseline grammar.

At this step the grammar should be operational, it should be possible to parse source
code with it. This step is semi-automatic in the sense that it requires a language
engineer to choose and execute the transformations. The next steps help to improve
the grammar and to locate any problems it might still have.

Removing idiosyncrasies
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Grammar class and parsing technology limitations like preference or ban on right
or left recursion should not play a role in grammar comprehension, evolution and
maintenance [27]. Finding out the use patterns that are peculiar to the notation or
the tool used by the language document creators, and refactoring them out happens
on this step.

Resolving conflicts
Even before starting the grammar recovery process, one should decide on priorities
of the sources. For example, if the formal grammar states something, while the
complementary text says something else, what should be taken as a “correct” vari-
ant? Should it be concluded that the text is written by someone who misunderstood
the grammar, or should it be assumed that the grammar’s composer misinterpreted
the text? In fact, it is not uncommon to have more than one “standard” of the
same status, C# 1.0 had three of them: [114, 184, 225]. There is often at least one
compiler, which represents the “real” language as it is used by programmers (“na-
tives” of the language). In the worst case one would have diverse compilers, their
manuals, a whole bookshelf of reference books and several standards. Apparently,
one should prioritise and decide which of the grammar knowledge sources takes
precedence in case of inconsistencies.

Improving the grammar
After all the steps described above one will have a perfectly working grammar. It
can still have details that ask for removal or refactoring, like the ones described
in subsection 3.2.8 for C#. However, the grammar is already functional at this
point, and further modifications will be improvements, as opposed to corrections
or removing idiosyncrasy. Modularisation, beautification, renovation and similar
activities can be performed after this step. Rules of grammarware engineering do
exist and do indeed make life easier [141, 154]. Since some of them are questions
of taste, this issue will not be pursued here.

Re-establishing links with the specification text
It is important for the whole process of standardisation to keep track of the relation
between the grammar being transformed and other parts of the language definition:
explanatory text, code examples, visualisations, outside and inside references, etc.
In order to do so consistently, it is important to re-establish all the links that were
in the original standard, but now with a corrected grammar. If it is not done at
this point, later the relations will tend to fade and become less transparent, which
can yield two entities—a specification and a grammar—that need to be maintained
separately.

This process cannot be fully automated due to important decisions that have to be
made by a grammar engineer, but it can certainly be semi-automated, when actions
are triggered by a human expert and performed by a tool.

Generating grammarware
Having all these steps carried out, one can generate a parser and use it for transfor-
mations. Different parsing techniques (see section 2.8) can be used at this stage [2],
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and even “yaccification”-like activities may be performed in order to optimise the
grammar with a particular parser generator in mind. The presence of a general
base-line grammar has its advantages here as well: switching to a specific tech-
nology is easier than refactoring something that was already optimised for another
technology. Hence, no vendor lock-in for one parsing technology.

Browsable hyperlinked versions of a grammar [241] can also be automatically gen-
erated. The simplest facilities are already included in tools like GDK [149], but it
is possible to generate the manual or specification in the way we will be ready to
discuss in chapter 6.

3.4 Conclusion
This research experiment shows that grammar recovery techniques are needed with new
languages like C# as sharp as with the old ones like COBOL or PL/I. The quality of
both the language documentation as such and the grammar available as a part of it, was
not found satisfactory. However, grammars taken directly from language documentation
composed with “grammar hacking” can be re-engineered into a correct grammar and a
working parser. This process can be partially automated. Conversely, language specifica-
tion in the form of a manual or an hyperlinked on-line documentation can be generated
from a grammar. The issue is pursued further in chapter 6, where a prototype is also
developed.

As compared to [164] as one of the predecessors of this experiment, neither the C#
case study nor our general plan involve test-driven correction. Instead we strive for an ap-
proach similar to differential testing [178] rather than conventional one: the approach will
be much better demonstrated and explained in the next chapter when we will transform
several grammars simultaneously. Also, we encountered less connectivity problems and
more disambiguation and priority-related problems. To summarise, this case study can be
considered an application of the same methodology to another language specification in
order to prove that the original proposal was not specific to Cobol or to older program-
ming languages, and to find its weak spots to encourage the next steps of research (see
subsection 3.4.2).

3.4.1 Discussion on the method automation

Step 1 (obtaining the standard) cannot be automated, it must be accomplished manu-
ally, usually by finding the right document and preparing the grammar-related part of its
content for extraction. The particular metasyntax utilised by the standard must also be ob-
tained, usually informally defined on defined in itself. The language document may also
be found to contain unparsable fragments: e.g., switching between EBNF and English.

Step 2 (extracting the grammar) difficulty depends on a difference between the gram-
mar definition formalisms encountered in the standard and used by the tooling. There
are no known metrics for measuring that distance. If the standard found on the previous
step contained a formal grammar, step 2 can be automated. Otherwise, step 2 is not re-
ally about extracting the grammar anymore, but rather about engineering it. Successful
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outcome of this step is a lexically correct grammar. The automation of this step is repeat-
able for newer versions of the same base-line specification, but not generalisable due to
diversity of notations for syntactic definitions.

Steps 3 (fixing misprints) and 4 (completing a formal part) cannot be automated, but
having good tools helps to spot the problems faster. The corresponding section explained
some of the checks that can help, like constructing a connected graph of nonterminal
symbols. In general, the activities that are performed during step 4 are similar to the last
stages of grammar engineering. The result of step 4 is a syntactically correct grammar
that is accepted by the chosen tooling—not necessary executable.

Step 5 (relaxation) is semi-automated: the grammarware technology gives a language
engineer the tools to do the relaxation, but does not show immediately which parts of a
grammar can be cut out. The relaxation step is optional, it is not uncommon to want to
keep the whole grammar as it was found in the standard. If the step is skipped, it may lead
to ambiguities and conflicts later on.

Steps 6 (de-yaccification) and 8 (grammar improvement) are semi-automated as well.
It is advised to add a test set as early as step 6, even if it was impossible to reach at step
4. Consistently running increasingly thorough tests after every enhancement justifies the
refactorings and assures they did not damage the grammar. Step 8 is optional, and its
objectives may vary depending on the language engineer’s point of view on what is and
what is not a good grammar.

Step 7 (resolving conflicts between a grammar and a text) is purely manual, since its
nature lies in spotting differences between a grammar at hand and the original specifica-
tion or its alternatives. It takes place only when such differences are occasionally found
out, or as a part of disambiguation process.

Step 9 (re-establishing links with the text of a spec) is important in the scope of lan-
guage specification life cycle. If the grammar is only recovered to run one-time checks or
to enable code migration—in other words, if its value as an IT asset is low or declining,
this step is not worth the trouble. However, for an actual specification it can enable all
kinds of positive issues discussed in chapter 6.

Step 10 (grammarware generation) is automated. Various grammarware factories,
compiler compilers, formatters and generators can create tools out of a working grammar.
Developing a new tool either based on a grammar or for generation itself, is much easier,
faster and more efficient with a correct grammar at hand than with a language manual.

3.4.2 Research objectives revisited

We have referred to this case study as an “experiment” for a reason. At the beginning
of this project we did not know how much effort would it take to recover an operational
grammar from the ECMA C# specification. At the end, we did not only get the grammar,
but also realised a couple of important points that became the foundation for the next
research steps.

Grammar extraction was observed to be very sensible to the notation used in the
language documentation. Thus, it should be automated in the most generalised form
possible. Even if it is impossible to implement a unified grammar extractor, as proven
by demonstration of grammar definition formalisms differences in section 6.3, we can
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still design it carefully each time to cover the widest range of input grammar artefacts. To
avoid manual steps like copy-pasting completely, we need to consider the lexical details
of the language documents and other sources of grammar knowledge, as will be done in
section 5.4.

Grammar transformations are needed to complete the process of grammar recovery
after the grammar has been extracted. The facilities provided by the existing framework
we used (GDK and the Meta-Environment) are not as fine-grained as we would wish and
not nearly as accurate. GDK basically allows us to redefine grammar productions rather
than transform them. As a result, for the next case studies and research, we relied on
more advanced publications on grammar transformation suites such as [154] and gradually
developed our own grammar transformation language called XBGF, as seen in section 4.8,
section 5.6 and ultimately in chapter 7.

Grammar comparison is required in order to test what kind of differences two gram-
mars possess. For instance, in this experiment we did not have any automated tools to
validate the statement that ISO/IEC 23270:2003 C# Specification [114] defines exactly
the same language as ECMA-334 Standard [225], as they claim. Other reasons for having
two or more grammars can be language evolution or vendor-specific dialects (section 2.4),
conflicting documentation (subsection 3.2.7), tool-specificity in “the grammar net” [164]
or just independent design and development of idiosyncratic grammars (section 4.1). By
answering this research question thoroughly, we arrived at the notion of grammar con-
vergence which will be presented in detail in the next chapter.

Language documentation was shown to be imperfect, it contained mistypings, incon-
sistencies, undefined nonterminals, incorrect productions. If we aim at using its contents
literally, we also need to account for that, and to research the possibilities to improve the
situation. Since we wanted to analyse a range of language documents in order to under-
stand better the process of recovering grammars from them and automating that process,
we also reverse engineered the general structure those language documents had in com-
mon. The resulting model and other conclusions drawn from that effort will be presented
in section 6.4 and adjacent sections.



Chapter 4

Language convergence

Grammar convergence is a lightweight verification method for establishing and main-
taining the correspondence between grammar knowledge ingrained into different kinds
of software artefacts. The central idea of grammar convergence is to extract grammar
knowledge, and to use programmable grammar transformations [42, 154] as means to
constructively prove the convergence of different sources to a shared limit. The transfor-
mations model refactoring and more liberal editing operations. For instance, when doing
grammar convergence for different parser descriptions, then one would need to neutralise
the specifics of any given parsing technology as well as accidental differences between
parser descriptions. The method of grammar convergence entails the following core in-
gredients:

1. All kinds of software artefacts vastly differ in terms of the notation, idiosyncrasies
and capabilities used internally to represent (E)BNF-like grammar knowledge. A
unified grammar format is needed to cover the various use cases. We define such a
format: BGF—BNF-like Grammar Format.

2. For any kind of software artefact of interest, there should be a corresponding gram-
mar extractor which can strip off the grammar knowledge from a given artefact.
Extraction has already been discussed in the previous chapter.

3. If there are two or more grammars which are intended to “agree upon each other”, a
grammar comparer can check for trivial syntactical equivalence and report differ-
ences in a way to provide helpful data for the manual (or possibly automated) proof
of correspondence.

4. When grammars from different sources differ (more or less profoundly), then pro-
grammable grammar transformations have to constructively establish the degree of
correspondence.

Ingredients 1.-4. are enough to constructively prove that grammars extracted from dif-
ferent sources converge. Note that the use of the grammar knowledge within the software
artefact is not checked in any way: for some kinds of software artefacts, one can elaborate

57
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grammar convergence to operate at the “instance level” (e.g., parse trees). This sophisti-
cation is beyond the scope of this thesis.

4.1 Motivation
Here are few use cases for grammar convergence:

� There is a handcrafted object model (say, Java classes) for a specific domain, be
it financial exchange, while there is also an XML schema [75, 208] that is meant
to standardise that domain. It is valuable to establish (the degree of) agreement
between the object model and the schema.

� Given is a compiler for a mainstream and nontrivial programming language such as
gcc for C++. Given is also a reverse or re- engineering tool for the same language
based on a different parsing infrastructure. How can we establish that both front
ends indeed agree on (the grammar of) the language at hand?

� Given is a language documentation that contains a declarative, perhaps simplified
grammar of a language, say Java. This grammar is not really meant to be exe-
cutable. Given is also a reference parser for the language; its grammar appeals
to the specifics of a particular parsing technology. How can we establish that the
documentation (such as [77]) is in sync with the reference implementation?

� A developer of an XML-data binding technology wants to design test cases for a
mapping from XML schemas to object models [161]. The mapping may also pro-
vide customisation capabilities to users. How could the generated object models be
usefully compared with the original XML schemas so that the mapping is validated?

4.2 Contributions
� This is the first relatively general attempt to verify the correspondence between

scattered grammar knowledge. The particular strength of grammar convergence is
that it relates ingrained grammar knowledge in diverse forms of software artefacts;
it complements the use of generative (or “model-driven”) approaches, when they
are not used, have not been used, or cannot (yet) be used.

� Grammar convergence delivers conceptually simple grammar transformations to
software artefacts other than just (E)BNFs: XML schemas, object models, and alge-
braic signatures. The similarity of these kinds of artefacts belongs to computer sci-
ence trivia, but grammar convergence truly remains in the simple grammars space
due to an effective notion of grammar extraction (“abstraction”).

Parts of this chapter were published in condensed form as An Introduction to Gram-
mar Convergence [166] and Recovering Grammar Relationships for the Java Language
Specification [167, 168]. The former is an introductory paper presented at the 7th Inter-
national Conference on Integrated Formal Methods. The version included in the thesis
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antlr dcg

topdown

sdf txl

xframeworks

ecore ecore2

model

xsdxsd2ecore om jaxb

xjc

java

abstractconcrete

limit

Figure 4.1: The overall convergence graph for the Factorial Language. The grey ar-
rows show grammar relations that are expressed in LCF but not performed directly by the
convergence infrastructure (the reason is that, for example, generating Ecore from XML
Schema cannot be done from command line and must be performed via Eclipse IDE).

is substantially enhanced with respect to the original paper, and also includes full dia-
grams and listings presented in a unified notation. The notion of phases of convergence
(section 4.7) has emerged later during the work on [167] for the 9th IEEE International
Working Conference on Source Code Analysis and Manipulation where it received the
Best Paper Award. A significantly extended version is being printed in the special issue
of Software Quality Journal [168]. An implementation of grammar convergence is pub-
licly available through the Software Language Processing Suite [263]. The idea of using
programmable grammar transformations to converge grammars has emerged in collab-
oration with Prof. Dr. Ralf Lämmel (Software Languages Team, Universität Koblenz),
as was the subsequent development of the prototype. All three papers mentioned above
[166, 167, 168] are co-authored with him.

4.3 The domain

As a running example for convergence a trivial programming language FL is used. FL
stands for “Factorial Language”, it is available from the SLPS repository [263]. Six dif-
ferent grammars are extracted from various implementations of FL, and successfully con-
verged. Following is an illustrative program in the FL language. It defines two functions:
one for multiplication, another for the factorial function, the latter in terms of the former:

mult n m = if (n == 0) then 0 else (m + (mult (n − 1) m))
fac n = if (n == 0) then 1 else (mult n ( fac (n − 1)))
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Figure 4.2: The detailed convergence graph for the Factorial Language. The numbers in
each bubble are the number of nominal differences plus the number of structural differ-
ences. Edges that correspond to automated actions are bolder, with the generator’s name
in italics. The target model has been split in two in order to apply the metrics (otherwise
it would be impossible to make a branch choice for synchronisation).
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4.3.1 Sources of convergence
Figure 4.1 shows the sketch of a convergence tree for some of the existing FL implemen-
tations. The leaves of the tree (at the top of the figure) denote different sources for FL.
We use the term source here to mean “software artefact containing grammar knowledge”.
Here is short description of the sources for FL:

antlr This is a parser description in the input language language of ANTLR [202]. Se-
mantic actions (in Java) are intertwined with EBNF-like productions.

dcg This is a logic program written in the style of definite clause grammars; see List-
ing 4.2.

sdf This is a concrete syntax definition in the notation of SDF (Syntax Definition Formal-
ism [86, 239]). It is parser description based on the SGLR implementation for SDF
(Scannerless Generalised LR Parsing); see Listing 4.1.

txl This is another concrete syntax definition in the notation of TXL (Turing eXtender
Language) transformational framework [39, 42, 43]. Unlike SDF, this framework
uses a combination of pattern matching and term rewriting.

ecore This is an Ecore model [197], created manually in Eclipse [59] and represented in
XMI; see Listing 4.3.

ecore2 This alternative Ecore model was automatically generated by Eclipse from the
XML Schema and extracted from XMI [196].

xsd This is an XML schema [75, 208] for the abstract syntax of FL. In fact, this is the
schema that served as the input for generating the object model of the jaxb source
and the Ecore model of the ecore2 source.

om This is a hand-crafted object model (Java classes) for the abstract syntax of FL. It is
used by a Java-based implementation of an FL interpreter.

jaxb This is also an object model, but it was generated by the XML-data binding tech-
nology JAXB [126] from an XML schema for FL.

The sources are part of FL language processors, e.g., interpreters and optimisers.

4.3.2 Targets of convergence
Consider again Figure 4.1. The inner nodes and the root denote targets of the convergence
process. These are grammars that are derived by transformation with the sole purpose of
establishing grammar equality. There are the following targets:

topdown The sources antlr and dcg both involve top-down parsing. Their correspon-
dence can be established by a few simple refactoring steps.

concrete This target converges all concrete syntax definitions. A noteworthy difference
is that sdf uses one expression nonterminal, whereas topdown uses two “layers”.
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Function+ → Program

Name Name+ ”=” Expr Newline+ → Function
Expr Ops Expr → Expr {left,prefer,cons(binary)}
Name Expr+ → Expr {avoid,cons(apply)}
”if” Expr ”then” Expr ”else” Expr → Expr {cons(ifThenElse)}
”(” Expr ”)” → Expr {bracket}
Name → Expr {cons(argument)}
Int → Expr {cons(literal)}
”−” → Ops {cons(minus)}
”+” → Ops {cons(plus)}
”==” → Ops {cons(equal)}

Listing 4.1: SDF grammar for FL. Only (context-free) SDF productions are shown. SDF pro-
ductions provide an alternative for the nonterminal on the right-hand side of the arrow. Productions
can be annotated in certain ways between the braces, e.g., with constructor names (such as cons),
or directions for disambiguation (such as prefer or avoid).

program(Fs) →+(function,Fs ).
function (N,Ns,E)) → name(N), +(name,Ns), @(”=”), expr(E), +(newline ).

expr(E) → lassoc(ops,atom,binary ,E).
expr(apply(N,Es)) → name(N), +(atom,Es).
expr( ifThenElse (E1,E2,E3)) →

reserved (”if” ), expr(E1), reserved (”then”), expr(E2), reserved (”else” ), expr(E3).

atom( literal ( I )) → int( I ).
atom(argument(N)) → name(N).
atom(E) →@(”(”), expr(E), @(”)”).

ops(equal) →@(”==”).
ops(plus ) →@(”+”).
ops(minus) →@(”−”).

Listing 4.2: Definite Clause Grammar for FL. The clauses construct a term representation;
see the arguments of the various predicates. The DCG leverages higher-order predicates for EBNF-
like expressiveness and left-associative tree construction (i.e., “+” and “lassoc”). The priorities on
expression forms are expressed by means of a layered definition; i.e., “expr” vs. “atom”.

java The sources om and jaxb are both object models whose correspondence can be es-
tablished by refactoring.

abstract Eventually, the two object models and the XML schema (from which one of
the object models was generated) can be converged to an abstract syntax definition.
There are differences between object models and XSD because these are fundamen-
tally different type systems [161].

limit All FL grammars are converged to one final target, which can be seen as the least
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Listing 4.3: Ecore model for FL. It is particularly interesting to look at how binary expressions
are represented here. In the world of EMF/MOF/UML modelling it is possible to leave the binary
expression itself (BinaryExp) an abstract class and inherit its properties such as left and right with
the subclasses PlusExp, MinusExp and EqualExp. The extractor takes good care of abstract classes,
but the resulting grammar structure is still significantly different from the use of terminal symbols
in concrete syntax-oriented grammars and also from the use of labels and selectors in other abstract
syntax-oriented sources.

upper bound of all instances of ingrained grammar knowledge. This step involves
the removal of terminals from concrete, and the removal of selectors from abstract.

4.3.3 BGF — BNF-like Grammar Format
In principle, we could base our work upon existing syntax definition formalisms (e.g.,
SDF [86, 239]) or metamodelling facilities (e.g., MOF [197] or EMF [59]). In contrast,
we derive the grammar format BGF in a way that it is limited to the representation of
grammar knowledge that we consider relevant and manageable across different kinds of
software artefacts. Despite this rationale, there is still a trade-off to be made between
simplicity of format and precision of extraction. At this point, we lean towards simplicity.
The use of a new format also allows us to define grammar convergence without interfering
with any existing operational semantics. For convenience, we can still represent BGF in
other notations (using a generative approach as in [149]).

We start with the most trivial aspects for BGF:

� Terminals and nonterminals.

� Regular expression-like composition and grouping:

– sequential composition (also called “sequence”).

– alternative composition (also called “choice”).

– true — also known as epsilon (ε).

– fail — also known as “empty language”.
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– ?, +, ? — usual EBNF [252].

� A production is a pair of “defined nonterminal” and “defining expression”.

� A grammar is a collection of productions.

� A grammar may also designate start symbols.

At this point, we have reached “representation capability” for textbook-style BNF and
EBNF (when restricted to context-free syntax). Only few more concepts are needed to
represent essential extras of XML schemata, object models, and algebraic signatures:

Production labels Concrete manifestations are names of subclasses, term constructors of
an abstract syntax associated with a concrete one, or derived types or substitution-
group members in an XML schema. Extraction should not abstract away such im-
portant nominal grammar knowledge. As a bonus, labels are convenient in address-
ing productions in programmable grammar transformations.

Expression selectors Object models use flat record-like grammar structure with selectors
at the top level. However, local element declarations of XML Schema as well as
component selectors of richer algebraic structuring formats (such as Haskell) dictate
that selectors must be admitted more liberally.

Simple types In a context-free grammar, the terminals and the “morpheme classes” are
the leaves of (context-free) grammatical structure. In an XML schema, an object
model, or an applied functional language with algebraic data types, “simple” types
are used at the leaves. Even in a parser description, morpheme classes may be
associated with simple types (such as string and int).

Universal type There are situations when no precise grammatical structure can be ex-
tracted, but some record of the relevant component should be preserved in the
extraction results. Examples include wildcards of XML Schema, or dynamics in
functional languages, as well as “object” as the base type in OO languages.

Namespaces Software artefacts subject to extraction may use a namespace mechanism,
or a module system: object models of Java are organised in packages; Haskell
types are organised in a hierarchical module systems; XML schemata are organised
in XML namespaces. Namespaces may need to be preserved in extracts.

Listing 4.4 defines the grammar of BGF in BGF. Based on an self-application of gram-
mar convergence, starting from an XML schema of BGF, subject to recorded refactoring
transformations, this self-representation has been computed. For more detailed presen-
tation and explanation as well as for converging pretty-printed concrete syntax with the
abstract data model please refer to section 7.4.



4.4 Grammar extraction 65

grammar:
root::nonterminal? production?

production:
label::label? nonterminal::nonterminal expression

expression:
epsilon::ε
empty::ε
value::value
any::ε
terminal::terminal
nonterminal::nonterminal
selectable::(selector::selector expression)

sequence::(expression+)
marked::expression

choice::(expression+)
optional::expression
plus::expression
star::expression

value:
int::ε
string::ε

label:
STR

nonterminal:
STR

selector:
STR

terminal:
STR

Listing 4.4: BGF — BNF-like Grammar Format (The shown extent does not cover names-
paces, and its simple type system is limited to integers and strings.)

4.4 Grammar extraction

4.4.1 Abstraction by extraction
The purposely restricted expressiveness of BGF implies an abstraction along grammar
extraction. In addition, an extractor may purposely perform abstraction. (For instance, an
extractor may merge namespaces of the source.) Arguably, abstraction simplifies proofs
of grammar convergence. Here are examples of “implied” abstraction grouped by kinds
of grammarware:

(E)BNF none.

Parser descriptions

� Semantic actions.

� Lexical syntax descriptions.
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� Technology-specific idioms (e.g., precedence declarations).

Object models

� Constructors, static methods, initialisers

� Specific types of collection classes

� Classes vs. interfaces dichotomy

� Fields vs. methods dichotomy

Algebraic data types

� Nominal types vs. aliases (e.g., Haskell, SML, etc.)

� New types vs. constructor types (e.g., Haskell)

� Higher-order and quantified types (represented universally)

XML schemata

� Elements vs. attributes

� Elements vs. named complex types vs. groups

� Simple type system of XML Schema

4.4.2 Grammar extractors
An extractor is simply a software component that processes a software artefact and pro-
duces a (BGF) grammar. In the simplest case, extraction boils down to a straightforward
mapping defined by a single pass over the input. Extractors are typically implemented
within the computational framework of the kind of source, or in its affinity:

Kind of artefact Computational framework
DCG Prolog
SDF ASF+SDF [22] or Stratego [240]
TXL TXL [39] and XSLT [137]
ANTLR ANTLR [202]
Ecore (XMI) XSLT [137]
Java Java compile- or run-time reflection
Haskell One of several metaprogramming techniques for Haskell

On the output side, an extractor typically leverages the XML format for BGF.
Figures 4.5–4.12 contrast the extraction results obtained from different FL parsers

and an XML schema for FL. The differences between the grammars can be summarised
as follows:

� Only the SDF+DCG+ANTLR extracts contain terminals.

� The DCG+ANTLR extracts contain expressions layers expr and atom.

� The SDF+XSD extracts contain a single expression layer.
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program:

function+

function:

ID ID+ "=" expr NEWLINE+

expr:
binary
apply
ifThenElse

binary:
atom (ops atom)?

apply:

ID atom+

ifThenElse:
"if" expr "then" expr "else" expr

atom:
ID
INT
"(" expr ")"

ops:
"=="

"+"
"-"

Listing 4.5: BGF extracted from an ANTLR front end for FL

program:

function+

function:

name name+ "=" expr newline+

[binary] expr:
atom (ops atom)?

[apply] expr:

name atom+

[ifThenElse] expr:
"if" expr "then" expr "else" expr

[literal] atom:
int

[argument] atom:
name

atom:
"(" expr ")"

[equal] ops:
"=="

[plus] ops:

"+"
[minus] ops:

"-"

Listing 4.6: BGF extracted from the DCG for FL as of Listing 4.2.
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Program:

Function+

Function:

Name Name+ "=" Expr Newline+

[binary] Expr:
Expr Ops Expr

[apply] Expr:

Name Expr+

[ifThenElse] Expr:
"if" Expr "then" Expr "else" Expr

Expr:
"(" Expr ")"

[argument] Expr:
Name

[literal] Expr:
Int

[minus] Ops:
"-"

[plus] Ops:

"+"
[equal] Ops:

"=="

Listing 4.7: BGF extracted from the SDF for FL as of Listing 4.1.

� Only the XSD extract contains selectors.

� Only the XSD extract use choices.

� The XSD extract only uses definitions of a single production.

� There is also semantic variation on using production labels.

� More trivially, the grammars disagree on names, upper and lower case.

4.5 Grammar comparison
The grammar comparator is used to discover grammar differences, and thereby, to help
with drafting transformations in a stepwise manner. We distinguish nominal vs. structural
grammar differences. We face a nominal difference when a nonterminal is defined or
referenced in one of the grammars but not in the other. We face a structural difference
when the definitions of a shared nonterminal differ for two given grammars. Some of the
nominal differences will be eliminated by a simple renaming, while others will disappear
gradually when dealing with structural differences that involve folding/unfolding.

In order to give better results, we assume that grammar comparison operates on a
slightly normalized grammar format. The assumed, straightforward normalisation rules
are simple. If (x, y) represents sequential composition of symbols x and y, (x; y) repre-
sents a choice with x and y as alternatives and fail represents the “empty language”, then
the following formulæ are used for normalising grammars within our framework:
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read2 [78, §8.1]

ClassDeclaration:
ClassModifiers? "class" Identifier Super? Interfaces?

ClassBody

read3 [79, §8.1, §8.9]

ClassDeclaration:
NormalClassDeclaration
EnumDeclaration

NormalClassDeclaration:
ClassModifiers? "class" Identifier TypeParameters? Super?

Interfaces? ClassBody
EnumDeclaration:

ClassModifiers? "enum" Identifier Interfaces? EnumBody

Figure 4.3: Two similar grammar excerpts from different versions of the
JLS. The second excerpt involves two more nonterminals than the first excerpt:
NormalClassDeclaration, which looks similar to the nonterminal from the first
grammar, and EnumDeclaration, which is completely new. Hence, we speak of two
nominal differences (two nonterminals in read3 that do not match read2), and of two
structural differences (two unmatched branches in ClassDeclaration).
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Program:

function::Function+

Function:

name::STR argument::Argument+ definition::Exp
Argument:

name::STR
Exp:

LiteralExp | ArgumentExp | IfThenElseExp | ApplyExp | BinaryExp
LiteralExp:

value::INT
ArgumentExp:

argument::Argument
IfThenElseExp:

if::Exp then::Exp else::Exp
ApplyExp:

function::Function argument::Exp+

BinaryExp:
PlusExp | MinusExp | EqualExp

PlusExp:
left::Exp right::Exp

MinusExp:
left::Exp right::Exp

EqualExp:
left::Exp right::Exp

Listing 4.8: BGF extracted from an Ecore model for FL as of Listing 4.3

Apply:

name::STR arg::Expr+

Argument:
name::STR

Binary:
ops::Ops left::Expr right::Expr

Expr:
Apply | Argument | Binary | IfThenElse | Literal

Function:

name::STR arg::STR+ rhs::Expr
IfThenElse:

ifExpr::Expr thenExpr::Expr elseExpr::Expr
Literal:

info::INT
Ops:

Equal::ε
Plus::ε
Minus::ε

ProgramType:

function::Function+

Listing 4.9: BGF extracted from an Ecore model generated from an XML schema for FL
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Program:

function::Function+

Fragment:
Expr

Function:

name::STR arg::STR+ rhs::Expr
Expr:

Literal | Argument | Binary | IfThenElse | Apply
Literal:

info::INT
Argument:

name::STR
Binary:

ops::Ops left::Expr right::Expr
Ops:

Equal::ε
Plus::ε
Minus::ε

IfThenElse:
ifExpr::Expr thenExpr::Expr elseExpr::Expr

Apply:

name::STR arg::Expr+

Listing 4.10: BGF extracted from an XML schema for FL

Apply:
name::STR args::(ANY?)

Argument:
name::STR

Binary:
ops::Ops left::Expr right::Expr

Expr:
Apply | Argument | Binary | IfThenElse | Literal

Function:
name::STR args::(ANY?) rhs::Expr

IfThenElse:
ifExpr::Expr thenExpr::Expr elseExpr::Expr

Literal:
info::INT

Ops:
Equal::ε
Plus::ε
Minus::ε

Program:
functions::(ANY?)

Visitor:
EMPTY

Listing 4.11: BGF extracted from a manually created Java object model
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Apply:
Name::STR Arg::(ANY?)

Argument:
Name::STR

Binary:
Ops::Ops Left::Expr Right::Expr

Expr:
Apply
Argument
Binary
IfThenElse
Literal

Function:
Name::STR Arg::(ANY?) Rhs::Expr

IfThenElse:
IfExpr::Expr ThenExpr::Expr ElseExpr::Expr

Literal:
Info::INT

ObjectFactory:
ε

Ops:
EQUAL::ε
PLUS::ε
MINUS::ε

package-info:
EMPTY

Program:
Function::(ANY?)

Listing 4.12: BGF extracted from a Java object model generated by JAXB [126].

(, )⇒ ε (; )⇒ fail

(. . . , (x, . . . , z), . . .)⇒ (. . . , x, . . . , z, . . .) (x, )⇒ x

(. . . , x, ε, z, . . .)⇒ (. . . , x, z, . . .) (x; )⇒ x

(. . . ; (x; . . . ; z); . . .)⇒ (. . . ;x; . . . ; z; . . .) ε+ ⇒ ε

(. . . ;x; fail; z; . . .)⇒ (. . . ;x; z; . . .) ε? ⇒ ε

(. . . ;x; . . . ;x; z; . . .)⇒ (. . . ;x; . . . ; z; . . .) ε?⇒ ε

Let us borrow a simple example from the case study that will be presented in complete
detail in the next chapter. Without paying attention to the specific grammar notation and
transformation operators, we will observe a typical scenario of using a grammar com-
parator. Consider two grammar excerpts from the grammars of JLS2 and JLS3 (read2
and read3 from now on) in Figure 4.3. Conceptually, the grammars are different in the
following manner. The read3 grammar covers additional syntax for enumeration dec-
larations; it also uses an auxiliary nonterminal NormalClassDeclaration for the
class-declaration syntax that is declared directly by ClassDeclaration in the read2
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grammar. The comparator reports four differences that are directly related to these obser-
vations:

� Nominal differences:

– read2: nonterminal NormalClassDeclaration missing.

– read2: nonterminal EnumDeclaration missing.

� Structural differences:

– Nonterminal ClassDeclaration: no matching alternatives
(counts as 2 because the definitions have a maximum of 2 alternatives).

Arguably, these differences should help the grammar engineer who will typically try
to find definitions for missing nonterminals by extracting their inlined counterparts. The
counterpart for NormalClassDeclaration is relatively obvious because of the com-
bination of a nonterminal that is entirely missing on one side while it occurs in a structural
different and unmatched alternative on the other side.

4.6 Grammar transformation

Since the goal of grammar convergence is to relate all sources to each other, the relation-
ships between grammars will be represented as grammar transformations. We say that
grammars g1 and g2 are f -equal, if f(g1) = g2 (where “=” refers to structural equality
on grammars, and f denotes the meaning of a grammar transformation). When f is a
refactoring (i.e., a semantics-preserving transformation), then f -equality coincides with
grammar equivalence. If f is a semantics-increasing (-decreasing) transformation, then
we have shown an inclusion ordering for the languages generated by the two grammars.

We use the terms “semantics-preserving”, “-increasing” and “-decreasing” in the for-
mal sense of the language generated by a grammar. Clearly, the composition of (suffi-
ciently expressive) increasing and decreasing operators allows us to relate arbitrary gram-
mars, in principle. Hence, more restrictions are needed for accumulating reasonable gram-
mar relationships, as we will discuss below. We also mention that there is a rare need for
operators that are neither semantics-increasing nor -decreasing. In this case, we speak
of a semantics-revising operator. Consider, for example, an unconstrained replace oper-
ator for expressions in grammar productions that may be needed if we face conflicting
definitions of a nonterminal in two given grammars.

The baseline scenario for grammar transformation in the context is convergence is
as follows. Given are two grammars: g1 and g2. The goal is to find f such that g1
and g2 are f -equal. In this case, one has to gradually aggregate f by addressing the
various differences reported by the comparator. In our current implementation of grammar
comparison, we do not make any effort to propose any transformation operators to the
user, but this is clearly desirable and possible.

In JLS, given the differences reported by the comparator and presented in the previous
section, the grammar engineer authors an transformation to add an extra chain production
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Using a grammar transformation operator to introduce a chain production

chain(
ClassDeclaration:

NormalClassDeclaration );

read2’ (Intermediate grammar fragment)

ClassDeclaration:
NormalClassDeclaration

NormalClassDeclaration:
ClassModifiers? "class" Identifier Super? Interfaces?

ClassBody

Using grammar transformation operators to add enumeration declarations

introduce( ... );
addV(
ClassDeclaration:

EnumDeclaration );

read2’’ (Intermediate grammar fragment)

ClassDeclaration:
NormalClassDeclaration
EnumDeclaration

NormalClassDeclaration:
ClassModifiers? "class" Identifier Super? Interfaces?

ClassBody
EnumDeclaration:

...

Using a grammar transformation operator to insert a nillable symbol

appear(
NormalClassDeclaration:

ClassModifiers? "class" Identifier 〈TypeParameters?〉 Super?
Interfaces? ClassBody );

Figure 4.4: Transforming the grammar and proving (chain ◦ introduce ◦ addV ◦
appear)-equality.



4.6 Grammar transformation 75

for NormalClassDeclaration. This transformation and a few subsequent ones as
well as all intermediate results are listed in Figure 4.4.

The idea is now that such compare/transformation steps are repeated. Hence, we
compare the intermediate result, as obtained above, with the grammar read3. It is clear
that the nominal difference for NormalClassDeclaration has been eliminated. The
comparator reports the three following differences:

� Nominal difference:

– read2’: nonterminal EnumDeclaration missing.

� Structural difference: nonterminal NormalClassDeclaration

– read2’:
ClassModifiers? "class" Identifier Super? Interfaces? ClassBody

– read3:
ClassModifiers? "class" Identifier TypeParameters? Super? Interfaces?
ClassBody

� Structural difference: nonterminal ClassDeclaration

– Unmatched alternatives of read2’: none

– Unmatched alternatives of read3: EnumDeclaration

We see that enumerations are missing entirely from read2’, and hence a def-
inition has to be introduced, and a corresponding alternative has to be added to
ClassDeclaration. Once we are done, the result is again compared to read3:

� Structural difference: nonterminal NormalClassDeclaration

– read2’’:
ClassModifiers? "class" Identifier Super? Interfaces? ClassBody

– read3:
ClassModifiers? "class" Identifier TypeParameters? Super? Interfaces?
ClassBody

Again, this difference is suggestive. Obviously, the definition of
NormalClassDeclaration according to read2” does not cover the full gen-
erality of the construct, as it occurs in read3. The structural position for the type
parameters of a class has to be added. (This has to do with Java generics which were
added in the 3rd edition of the JLS.) There is a designated transformation operator that
makes new components appear (such as type parameters) in existing productions; the
newly inserted part is marked on Figure 4.4 with angle brackets. This is a downward-
compatible change since type parameters are optional. Once these small transformations
have been completed, all the discussed differences are resolved, and the comparator
attests structural equality.
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Figure 4.5: An activity diagram for the informal workflow of grammar convergence.

4.7 Convergence process
As we were discussing grammar comparison and transformation, we already alluded to
a basic compare/transform cycle—this cycle is indeed the spline of the convergence pro-
cess. However, it provides insufficient structure to a complex convergence situation. As
a remedy, we identify phases for the convergence process in order to impose more struc-
ture and discipline onto it. These phases assume asymmetric, binary convergence trees:
we favour one of the inputs for target such that all nominal and structural differences are
resolved by changing one of the two grammars rather than the other one. An exception
is needed if the favoured grammar is found to be incorrect or structurally unfavorable.
There are five consecutive convergence phases: the initial extraction phase involves a
mapping from an external grammar format and is therefore implemented as a standalone
tool in our infrastructure; the other four convergence phases are directly concerned with
transformation.

In a tiny project such as FL convergence the usage of this particular strategy does
not pay back since the whole transformation chain can fit on one page after being pretty-
printed, and it is possible to use a straightforward way presented on Figure 4.5. In chap-
ter 5 and in [167, 168] we consider a much larger case study (more than 30000 lines of
XML code of 1600+ transformations) that would not be technically feasible at all without
any firm strategy.

Extraction: A starting point for grammar extraction is always a set of real grammar arte-
facts. A mapping is required for each kind of artefact so that grammar knowledge
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can be extracted and represented in a uniform grammar format. (In in the case of our
infrastructure, we use BGF—a BNF-like Grammar Format.) Each extractor may
implement particular design decisions in terms of any normalization or abstraction
to be performed along with extraction. Once extraction is completed, a (possibly
incorrect or not fully interconnected) grammar is ready for transformation.

Convergence preparation: This convergence phase involves correcting immediately ob-
vious or a priori known errors in the given sources. These corrections are repre-
sented as grammar transformations so that they can be easily revisited or re-applied
in the case when the extractor is modified or the source changes.

Nominal matching: We perform asymmetric compare/transform steps. That is, the non-
favored grammar is compared with the (prepared) favored grammar, which is the
baseline for the (intermediate) target of convergence. The objective of this con-
vergence phase is to align the syntactic categories of the grammars in terms of
their nonterminals. The nominal differences, as identified by comparison, guide the
grammar engineer in drafting transformations for renaming as well as extraction
and inlining such that the transformations immediately reduce the number of nom-
inal differences. It is important to notice that we restrict ourselves to operators for
renaming, inlining, and extraction. These operators convey our intuition of (initial)
nominal alignment. We make these assumptions:

� When a nonterminal occurs in both grammars, then it models the same syn-
tactic category (conceptually). If the assumption does not hold, then this will
become evident later through considerable structural differences, which will
trigger a renaming to resolve the name clash. Such corrective renaming may
be pushed back to the phase of convergence preparation.

� Any renaming for nonterminals serves the purpose of giving the same name to
the same syntactic category (in an conceptual sense). If a grammar engineer
makes a mistake, then this will become evident later, again, through consider-
able structural differences. In this case, we assume that the grammar engineer
returns to the name matching phase to revise the incorrect match.

Structural matching: We continue with asymmetric compare/transform steps. This con-
vergence phase dominates the transformation effort; it aligns the definitions of the
nonterminals in a structural sense. The structural differences, as identified by com-
parison, guide the grammar engineer in drafting transformations for refactoring
such that they immediately reduce the number of structural differences. As we
continue to limit ourselves to refactoring, the order of the individual transforma-
tions does not matter due to its commutativity. The grammar engineer can simply
pick any applicable refactoring operator, but the firm requirement is that the number
of structural and nominal differences declines, which is automatically verified by
our infrastructure.

Resolution: This convergence phase consists of three kinds of steps, as discussed in
more detail in §5.6: extension, relaxation and correction. In the case of semantics-
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increasing operators, it is up to the grammar engineer to perform the classifica-
tion. Semantics-decreasing operators serve correction on the grounds of a conven-
tion. That is, we assume a directed process of convergence where the grammars
of extended (relaxed) languages are derived from the grammars of “sublanguages”.
However, if the grammars violate such an intended sublanguage relationship, then
correction must be expressed through semantics-decreasing operators.

The correctness of the process relies on one assumption regarding the limited use
of non-semantics-preserving operators. In particular, non-semantics-preserving operators
should only be used, if the given grammars are not equivalent. Making equivalent gram-
mars non-equivalent is clearly not desirable. Currently, we cannot verify this assumption,
and in fact, it is generally impossible because of undecidability of grammar equivalence.
However, a heuristic approach may be feasible, and provides an interesting subject for
future work. Even when the given grammars are non-equivalent, we still need to limit
the use of non-semantics-preserving operators for correctness’ sake. That is, we should
disallow zigzag transformations such that semantics-increasing and -decreasing transfor-
mations partially cancel each other.

We use the number of nominal and structural differences as means to track progress
of grammar convergence. Each unmatched nonterminal symbol of either grammar counts
as a nominal difference. For every nominally matched nonterminal, we add the maximum
number of unmatched alternatives (of either grammar), if any, to the number of structural
differences.

The main guiding principle for grammar convergence is to consistently reduce the
number of grammar differences throughout the two matching convergence phases as well
as the final resolution phase. Figure 5.2 will illustrate this principle in the next chapter for
one edge in the convergence graph of the JLS case study. The figure also visualizes that
nominal differences tend to be resolved earlier than structural differences.

In order to employ a differential approach [178] to benchmarking, we need to estab-
lish the notion of a synchronisation point. Suppose we have a target with two branches, A
and B. For the branch A, the synchronisation point will be a grammar in the path B that is
a direct result of nominal matching (if we put it earlier on path B, there will be irrelevant
nominal mismatches; if we put it later, first structural matches will become unnoticeable).
All the metrics are performed by comparing every grammar on the path A with this syn-
chronisation point. Every step, be it a single transformation or an atomic transformation
sequence, must not increase the number of mismatches between the “current” grammar
and its synchronisation point.

Our transformation infrastructure is aware of the different phases of convergence, and
it checks the incremental reduction of differences at runtime. As a concession to a simple
design of the operator suite for grammar transformations, restructuring steps may also
slightly increase structural differences as long as they are explicitly grouped in “transac-
tions” whose completion achieves reduction.
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4.8 Programmable grammar transformations
In the more preferable case, two different grammars can be refactored to become syntacti-
cally identical. We use the term grammar refactoring in the sense of semantics-preserving
transformations, this meaning being well-spread and widely used in program refactor-
ing [70, 138, 200]. We assume an intuitive understanding of the notion of grammar se-
mantics until later in this section. In the less preferable case, non-semantics-preserving
transformations are due, in which case weaker properties should limit the impact.

4.8.1 Transformation properties

We may refer to the semantics of a grammar as the language (set of strings) generated
by the grammar, as it is common for formal languages—for context-free grammars, in
particular. With the string-oriented semantics in mind, few transformations are semantics-
preserving. Examples include renaming of nonterminals, and fold/unfold manipulations.
To give an example where different semantics are needed consider the scenario of aligning
a concrete and an abstract syntax.

When necessary, we may apply the algebraic interpretation of a grammar, where gram-
mar productions constitute an algebraic signature subject to a term-algebraic model. In
this case, the terminal occurrences in any given production do no longer carry semantic
meaning; they are part of the function symbol. (Hence, abstract and concrete syntaxes can
be aligned now.) Some transformations that were effortlessly semantics-preserving with
respect to the string-oriented semantics, require designated bijective mappings with re-
spect to the term-oriented semantics, e.g., fold/unfold manipulations, but generally, the
term-oriented semantics admits a larger class of semantics-preserving transformations
than the string-oriented one.

Transformations that are not semantics-preserving may still be “reasonable” if they
model data refinement [87, 190]. We say that a data type (domain) A can be refined to
a data type (domain) B, denoted by the inequality A ≤ B, if there is an injective, total
function to : A → B (the representation function), and a surjective, possibly partial
function from : B → A (the abstraction function) such that from.to = idA, where idA

is the identity function on A. A simple way to think of data refinement in our context
is that a transformation increases or decreases the number of “representational options”,
e.g., by making a certain syntactic structure optional or mandatory. Here we assume the
term-oriented semantics with its term-algebraically defined domains.

Some grammar differences may require more arbitrary replacements. In this case, one
would want to be sure that a) indeed no more preserving transformation is possible, and
b) the scope of replacement is as small as possible. To this end, we have developed an
effective strategy, which however is beyond the scope of the present paper.

4.8.2 Grammar refactoring

Let us demonstrate a number of refactoring operators. In our running example, there
are two sources that are very close to each other: antlr and dcg; see Listing 4.6. Both
sources serve top-down parsing. The remaining differences are neutralized by the follow-
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ing refactorings to be applied to the ANTLR grammar; we show the applications of the
transformation operators combined with an explanatory comment:

renameN(NEWLINE, newline);
renameN(ID, name);
renameN(INT, int);

After aligning the nonterminals by introducing lower case and renaming ID to name,
we can start refactorings, moving from one top-choice production to multiple productions
for expr, atom and ops, inlining unneeded productions and giving labels to those produc-
tions that lack them in the ANTLR source.

vertical( in expr );
unchain(
expr:

apply
);
unchain(
expr:

binary
);
unchain(
expr:

ifThenElse
);
vertical( in atom );

designate(
[literal] atom:

int
);
designate(
[argument] atom:

name
);
vertical( in ops );
designate(
[equal] ops:

"=="
);
designate(
[plus] ops:

"+"
);
designate(
[minus] ops:

"-"
);

Figure 4.6 briefly describes a small suite of refactoring operators. All operators except
permute are semantics-preserving with respect to string-oriented semantics. Without ex-
ception, the operators are semantics-preserving with respect to term-oriented semantics.
For the statistics of their use we refer to Table 4.2, for detailed descriptions—to chapter 7.
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renameN(N1, N2) renames all occurrences of the nonterminal N1 to N2, provided N2 does
not occur in G. There are also operators renameL and renameS for renaming labels and
selectors. In renameS(OL, S1, S2), OL is an optional label; if present, S1 is renamed
only in the scope of the identified production, or globally otherwise. See section 7.14.

permute(P ) replaces a production say P ′ by P , where P and P ′ must agree on their defined
nonterminal and (optional) label while their defining expressions must be permutations of
each other (with regard to sequential composition). See subsection 7.10.3. Here is an
example:

� A production: [binary] expr: expr ops expr
� A permutation: [binary] expr: ops expr expr

verticalN(N) converts the choice-based definition of N to multiple productions. Each alterna-
tive of the choice becomes another production. An outermost selector, if present, is reused
as a production label (but must not yet be in use in G). The variation verticalP(P ) limits
the conversion to a production P . There is the opposite operator horizontal. See subsec-
tion 7.7.9.

unchain(P ) replaces a chain production P and the production P ′ that defines the nonterminal
of its defining expression by a production that inlines P ′ in P . See subsection 7.6.7. Here
is an example:

� The chain production: expr: literal
� The referenced definition: literal: int
� The result of unchaining: expr: int

There is also the opposite operator chain.

designate(P ) replaces an unlabeled production say P ′ by its labeled variant P . See subsec-
tion 7.12.1. There is also the opposite operator unlabel.

lassoc(P ) replaces list-based recursion by binary recursion. (The ‘l’ in lassoc is for left asso-
ciation hinting at the expected effect at the instance level. There is also an operator rassoc
hence.) Here, P describes binary recursion. Their must be a corresponding production in
G that uses list-based recursion. See subsection 7.7.12. Here is an example:

� Binary recursion: [binary] expr: expr ops expr
� List-based recursion: [binary] expr: expr (ops expr)?

Figure 4.6: Operators for grammar refactoring (G refers to the input grammar.)

4.8.3 Grammar editing
Grammars may also differ in ways that cannot be neutralised by strict refactoring. We use
the term grammar editing for these remaining transformation scenarios. Let us consider
an example. The antlr and dcg sources of FL use two expression layers (expr and atom),
whereas the sdf source only uses one expression layer (and deals with priorities by extra
annotations). The following transformation uses an editing operator unite to merge the
two layers (i.e., nonterminals) in one:

unite(atom, expr);
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project(P ) replaces a production say P ′ by P , where P and P ′ must agree on their defined
nonterminal and (optional) label, and the defining expression of P must be a sub-sequence
of the one of P ′ (with regard to sequential composition). See subsection 7.11.5.

abridge(P ) removes a reflexive chain production P . See subsection 7.6.5.

unite(N1, N2) recursively merges the definitions of N1 and N2 into one by replacing all defining
and using occurrences of N1 by N2. See subsection 7.8.5.

define(Ps) adds the productions Ps as a definition, assuming that all productions agree on a de-
fined nonterminal that is used but not yet defined in G. We take the view that an undefined
nonterminal is implicitly defined to be equal to the universal type. Hence, the define opera-
tor essentially ‘narrows’ a definition in a semantic sense. There is also the opposite operator
undefine for discarding the explicit definition of a nonterminal. See subsection 7.11.1.

Figure 4.7: Operators for grammar editing (G refers to the input grammar.)

Consider another example. The grammars in Listings 4.5–4.12 differ with regard to the
grammatical details regarding FL’s literals and function or argument names. The sources
which define the abstract syntax (such as xsd or ecore) use precise (simple) types int and
string, whereas the grammars defining the concrete syntax (such as antlr or dcg) leave the
corresponding nonterminals undefined because the extraction only returned immediate
context-free structure in those cases. The following transformations resolve the undefined
nonterminals in the dcg grammar in accordance to the xsd source:

define(
name:

STR
);
define(
int:

INT
);
inline(name);
inline(int);

Consider a final example. The convergence of concrete and abstract syntax definitions
requires a transformation that removes all details that are specific to concrete syntax def-
initions. That is, we strip off all terminals (handled by an automated transformation gen-
erator, see section 4.9), project away the reference to newline, remove the bracketing
production and permute the ingredients of binary expressions to resemble prefix instead
of infix notation. Thus:
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Number of lines 194 26 36 147 547 105 175 1230
Number of transformations 9 2 8 14 28 14 16 91
◦ semantics-preserving 3 — 8 10 27 14 15 77
◦ semantics-increasing or -decreasing 6 2 — 2 — — 1 11
◦ semantics-revising — — — 3 — — — 3

Number of steps 2 1 3 4 5 3 4 22

Table 4.1: Effort metrics and categorisation of the convergence transformations for FL.

abstractize(
function:

STR STR+ 〈"="〉 expr newline+

);
project(
function:

STR STR+ expr 〈(newline+)〉
);
abridge(
expr:

expr
);
permute(
[binary] expr:

ops expr expr
);

Figure 4.7 briefly describes a small suite of editing operators. For the statistics of their
use we refer to Table 4.2, for detailed descriptions of all editing operators—to chapter 7.
All but one of the operators model data refinement in one direction or the other, i.e., from
input (I) to output (O), or vice versa:

� abridge: O ≤ I
� unite: I ≤ O
� define: O ≤ I
� undefine: I ≤ O

The operator project does not model data refinement; rather it models “data disposal”.
Its I-to-O mapping for project is total, surjective, non-injective; its O-to-I mapping is not
generally defined.

4.9 Transformation generators
Grammar convergence research has started with an objective to use programmable
grammar transformations to surface the relationships between grammars extracted from
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◦ rename — — 5 — 13 3 5 26
◦ inline — — — 2 4 — — 6
◦ extract — — — — 1 — — 1
◦ abridge — — — 1 — — — 1
◦ unchain — — — 5 — 3 — 8
◦ massage 3 — — — 3 — — 6
◦ factor — — — — 1 — — 1
◦ eliminate — — 3 — 1 — — 4
◦ vertical — — — 2 — 3 2 7
◦ lassoc — 1 — — — — — 1
◦ widen — — — — — — 1 1
◦ unite — 1 — — — — — 1
◦ narrow 6 — — — — — — 6
◦ permute — — — 1 — — — 1
◦ define — — — 2 — — — 2
◦ project — — — 1 — — — 1
◦ replace — — — — 1 — — 1
◦ designate — — — — — 5 8 13
◦ deanonymize — — — — 2 — — 2
◦ anonymize — — — — 2 — — 2

Table 4.2: XBGF operators usage for FL convergence.

Number of
Productions

Number of
Nonterminals

Number of
Tops

Number of
Bottoms

antlr 8 8 1 3
dcg 11 5 1 3
sdf 11 4 1 3
txl 4 4 1 3
ecore 12 12 1 0
ecore2 9 9 1 0
xsd 10 10 2 0
om 10 10 3 0
jaxb 11 11 4 0

Table 4.3: Metrics for the FL grammars.
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Number of
Productions

Number of
Nonterminals

Number of
Tops

Number of
Bottoms

topdown 11 5 1 3
xframeworks 11 4 1 3
concrete 11 4 1 3
model 9 9 1 0
java 9 9 2 0
abstract 9 9 1 0
limit 10 4 1 0

Table 4.4: Metrics for the transformed grammars.

sources of different nature. Hence, we mostly aimed to provide a comprehensive trans-
formation suite, a convergence strategy and an infrastructure support. However, at some
point we found it easier to generate the scripts to resolve specific mismatches rather than
to program them manually. A full-scale research on this topic remains future work, yet
below we present the results obtained so far and the considerations that can serve as foun-
dation for the next research steps.

Consider an example of converging concrete and abstract syntax definitions. This
situation requires a transformation that removes all details that are specific to concrete
syntax definitions, i.e., first and foremost strips all the terminals away from the grammar.
Given the grammar, it is always possible to generate a sequence of transformations that
will remove all the terminal symbols. It will take every production in the grammar, search
for the terminals in it and if found, produce a corresponding call to abstractize. For
instance, given the production:

[ifThenElse] expr:
"if" expr "then" expr "else" expr

the following transformation will be generated:

abstractize(
[ifThenElse] expr:

〈"if"〉 expr 〈"then"〉 expr 〈"else"〉 expr
);

Other generators we used in the FL case study were meant for removing all selectors
from the grammar (works quite similar to removing terminals), for disciplined renaming
(e.g., aligning all names to be lower-case) and for automated setting of the root nontermi-
nals by evaluating them to be equal to top nonterminals of the grammar.

Eliminating all unused nonterminals can also be a valuable generator in some cases.
For us it was not particularly practical since we wanted to look into each nominal differ-
ence (which unused terminal is a subtype of) in order to better align the grammars.

More aggressive transformation generator example can be the one that inlines or un-
chains all nonterminals that are used only once in the grammar. This can become a pow-
erful tool when converging two slightly different grammars and thus can be considered a
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form of aggressive normalisation. We did not work out such an application scenario for
grammar convergence so far.

Deyaccification [217], which has already been discussed in section 2.8 and [143] and
will be talked again in chapter 5 and subsection 7.7.4, can also be performed in an auto-
mated fashion. In general, all grammar transformations that have a precondition enabling
their execution, can be generated—we only need to try to apply them everywhere and treat
failed preconditions as identical transformations.

On various occasions we also talk about “horizontal” and “vertical” productions
(called “flat” and “non-flat” correspondingly in [165]), where being vertical means having
separate productions for one nonterminal and being horizontal means having one produc-
tion with a top choice. There are also singleton productions that are neither horizontal
nor vertical, and productions that can be made horizontal by distribution. According to
this classification and to the need of grammar engineers, it is possible to define a range of
generators of different aggressiveness levels that would search for horizontal productions
and apply vertical to them; or search for vertical productions and apply horizontal to
them; or search for potential horizontal productions and apply distribute and vertical to
them; etc.

It is important to note here that even though complete investigation of the possible
generators and their implementation remain future work, this alone will not be enough
to replace human expertise. Semi-automation will only be shifted from “choose which
transformation to apply” to “choose which generator to apply”. A strongly validated
strategy for automating the choice is needed, which is not easy to develop, even if possible.

4.10 Language Convergence Infrastructure
Language Convergence Infrastructure, or LCI, is the name of a tool that handles most of
the functionalities needed to support grammar convergence. It was not called “Grammar
Convergence Infrastructure” because there are some coupled transformation facilities im-
plemented in it, and we intend to stress and enhance them in the future research projects.
The necessary information about the concrete convergence scenario is provided to the LCI
in a form of a configurational DSL. The DSL was named LCF for LCF Configuration For-
mat, it is described below in detail, also annotated with remarks about LCI behaviour. The
technology that helped generate the content of this section will be presented in chapter 6.

4.10.1 Main configuration elements

All DSL elements such as sources, targets and tools, are presented in a completely volatile
order.

Each configurational entity is either defining a shortcut, specifying a tool or a genera-
tor, or defining a source, a target or a test set.

4.10.1.1 Syntax
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configuration:

definition+

definition:
shortcut
generator
tool
source
target
testset

4.10.2 Shortcuts

A shortcut in LCF is just a simple macro. If binds a longer definition to a concise name.
For example, a path with long directory names that is used multiple times in the LCF
document is a good shortcut.

4.10.2.1 Syntax

shortcut:
name::STR expansion::xstring

4.10.3 Generators

A method for automated generation of XBGF scripts. The command is an executable that
takes two more arguments: the input BGF and the output XBGF.

4.10.3.1 Syntax

generator:
name::STR command::xstring

4.10.4 Sources

A source in LCF is the starting point for the grammar convergence. A source must have
a name by which it will be referenced later. A source must have a defined extractor
that provides LCI with a BGF. A source may have a parser and an evaluator defined as
commands — if they are present, they will be tested.
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4.10.4.1 Syntax

source:
name::STR derived? grammar tree? testing?

grammar:
extraction::xstring parsing::xstring? evaluation::xstring?

tree:
extraction::xstring evaluation::xstring?

testing:

set::xstring+

derived:
from::STR using::STR

4.10.5 Targets

A target in LCF is the convergence point. A target must have a name by which it is
referenced and displayed on a diagram. A target can have any number of branches. Each
branch defines an input that can be either source name or a target name. Each branch also
references a sequence of actions that are performed on that source or target to reach this
target. Once all branches are completed, the grammar comparator is run to make sure
all results converge. If there is one branch, no comparison takes place. If there are three
or more branches, comparing occurs pairwise. Within one branch actions are sorted by
convergence phase (see above), all of which are optional: preparation, nominal matching,
structural matching and resolution.

4.10.5.1 Syntax

target:

name::STR branch+

resolution:
extension::phase
relaxation::phase
correction::phase
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branch:
input::STR preparation::phase? nominal-matching::phase?

structural-matching::phase? resolution?

During convergence process, LCI regularly compares the result of each transforma-
tion step (XBGF file) of each branch to the reference points of adjacent branches. Two
diagrams are drawn as a result, one contains only sources and targets with the edges sig-
nifying which target is based upon which targets or sources; and one is a very detailed
overview of all the files that have been executed and all the numbers of nominal and
structural differences.

In the special measurement mode all the transformational scripts are sliced in atomic
steps before convergence. In this case, every step is followed by grammar comparison.
The convergence process is stopped prematurely if the number of differences suddenly
goes up. Running LCI in this mode can take considerable time (for six JLS grammars it
is about an hour).

4.10.6 Phases

4.10.6.1 Syntax

phase:

(perform::STR | automated)+

automated:
method::STR result::STR

The interface to generators is universal. We used it only with casexbgf, striptxbgf and
stripsxbgf, but it is possible to define any number of generators outside LCI and connect
them here accordingly.

4.10.7 Test sets

A test set in LCF is a set of code samples in the given language. When testing, all .src
files are parsed and all .run files are evaluated in the context of their .src to yield .val

4.10.7.1 Syntax

testset:
name::STR command::xstring
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4.10.8 Tools

A tool in LCF is an external script. At this point there are three tools which output is
needed by LCI:

validation: The validator makes sure that the BGF grammars are valid against their
schema. This includes extracted BGF files as well as all derived ones. If the validator is
not defined, LCI works fine without it.

comparison: The diff tool takes two parameters and returns zero if both BGF files are
deemed equal. If the diff tool is not defined, LCI can only work with one-branch targets.

transformation: The XBGF engine (or any other grammar transformation engine,
actually) that takes one BGF and one XBGF, transforms the former according to the latter
and produces one BGF as its result. Since this is the core of grammar convergence, LCI
does not work unless transformation tool is defined.

4.10.8.1 Syntax

tool:
name::toolType grammar::xstring tree::xstring?

[validation] toolType:
ε

[comparison] toolType:
ε

[transformation] toolType:
ε

4.10.9 xstring

A universal type used throughout the LCF: a mix of strings and references to shortcuts.

4.10.9.1 Syntax

xstring:
(expand::STR | STR)?
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4.11 Related work

4.11.1 Interoperability

The consistent use of structural and nominal types (to be compared here with grammar
knowledge) is typically supported by programming-language type systems, exchange for-
mats, and interface definition languages (IDLs). IDLs are specifically used in distributed
programming [61]. Exchange formats (e.g., based on XML Schema [75, 208]) are widely
used for any sort of data- and communication-intensive programming. A domain with
classic grammar-like exchange formats is reverse engineering [127, 151]; here, bridging
between different formats has been of continued interest. In the broad context of inter-
operability, grammar convergence provides verification power for the particular situation
where diverse grammars, grammar-like types, interface definitions, or exchange formats
are ingrained in different software artefacts. By going through an extraction step, we
do not need to insist on the consistent use of a common type system, IDL, or exchange
format. By the anticipation of refactoring and more liberal transformations, we allow for
flexible correspondence relationships.

4.11.2 Testing grammarware

The I/O behaviour of grammarware (e.g., the acceptor behaviour of a front end) can be
tested by “sampling”—subject to test-data generation and test suites [155, 162, 174, 222].
Such approaches are specifically useful for differential testing of grammarware. Gram-
mar convergence is complementary in that it provides a static verification of the corre-
spondence between different software artefacts based on access to the internal structure
of the artefacts. It can also be applied to specify the degree of deviation of grammars from
each other.

4.11.3 Generators and synchronisers

If two artefacts are meant to use the same grammar (type, etc.) modulo its realisation in the
software artefact, then, arguably one grammar (or software artefact) should be generated
from the other, as in the case of XML-object mapping [161, 179, 244]. The strong ver-
sion of this expectation is to even require bidirectional synchronisation between scattered
grammar knowledge, akin to bidirectional model/model or model/code synchronisation in
model-driven engineering [226]. As should be clear from the list of use cases in the in-
troduction, grammar convergence provides verification support in cases where generators
or bidirectional synchronisers are not, have not been, or cannot (yet) be used for what-
ever technical or project-specific reason. For instance, the derivation of a useful parser
description for any possible parsing technology from a technology-independent baseline
grammar (say, found in a language standard) requires a genuine effort; it is not a man-
ageable scenario for a generator, i.e., a “parser-generator input generator” (except for the
simplest cases [149]). As another example, consider the problem of different versions of
a highly idiosyncratic parser description [203]. Bidirectional synchronisation is beyond
current limits, whereas grammar convergence clearly applies.
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4.11.4 Grammar recovery
Our work is heavily influenced by the idea of grammar recovery [21, 58, 132, 158, 164,
219], especially those forms that begin with the extraction of grammar knowledge from
an artefact like a standard (containing syntax) or an implementation (based on an idiosyn-
cratic parsing technology). Just like grammar convergence, grammar recovery involves
(manual or automated) grammar transformations, which we discuss below. While gram-
mar recovery has focused on (mostly concrete) syntax definitions, grammar convergence
applies to a very broad interpretation of grammars (XML schemas, object models, etc.).
Grammar recovery is a reverse-engineering method focused at a path from an original arte-
fact to a declarative grammar. In contrast, grammar convergence is a verification method
that establishes and maintains grammatical correspondence constraints on software.

4.11.5 Grammar transformation
(Automated) grammar transformation has seen a surge of interest over the last decade,
but the concept is much older because parsing technologies tend to require internal trans-
formations, cf. the classic example of left-recursion removal [2, 172, 189]. There are
several modern use cases for grammar transformations that support automated software
engineering and grammar-based programming in one way or another: grammar recov-
ery (see above), derivation of an abstract from a concrete syntax [249], problem-specific
customisation of grammars [43], mediation between different grammar classes [207]. Ul-
timately, we speak of grammar programming or programmable grammar transformations
[42]. Grammar convergence relies on an advanced operator suite for grammar transfor-
mation that is carefully designed around the expressiveness of a unified grammar format.
(Consider, for example, the operators vertical or designate that we have encountered.)
The precise definition of that suite is beyond the scope of this introductory text.

4.11.6 Grammar convergence
Finally, we mention a few instances of grammar engineering techniques that can be seen
as specific forms of grammar convergence. In [21], the compatibility of (different im-
plementations of) precedence rules in grammars is checked. Our (current) grammar con-
vergence approach does not fully address such scenarios that involve specifics of pars-
ing techniques, but in return, it is more generic (with regard to the notion of grammar),
and programmable (with regard to deltas between grammars). In [136], the correspon-
dence between a concrete and abstract syntax definition is addressed by permitting incom-
plete specifications for both syntaxes, as long as they complement each other consistently.
Grammar convergence, provides a general tool for “programming” such relationships and
verifying them. In [203], the problem of proliferation of grammar-based artefacts (in
fact, parser descriptions with semantic actions) due to grammar evolution or the need for
different grammar use cases is addressed. Based on ideas of version control, a parser
description always remains associated with its “prototype”, so that extensions of the pro-
totype can be signaled to derivatives. Grammar convergence also covers this scenario,
except that it would be unable to detect modifications that are abstracted away during
grammar extraction.
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4.12 Concluding remarks
If unit testing is the simple, pragmatic, and effective method to generally validate the I/O
behaviour of software modules, then grammar convergence is the simple, pragmatic, and
effective method to keep scattered grammar knowledge in sync. In addition, the method
can be used to capture the intended or the accidental differences between instances of
scattered grammar knowledge. Further, grammar convergence also applies at the instance
level (populated by XML trees, derivation trees, parse trees, etc.). That is, it can compare
and converge “data” from different software artefacts. (See our implementation for the
latter aspect that is not discussed in the present text.)

Here are some topics for ongoing and future work on grammar convergence:

� We have established the effectiveness of grammar convergence even for huge gram-
mars (chapter 5 will present the report on a major case study), but arguably a semi-
automatic approach to the inference and accumulation of grammar transformation
would improve productivity.

� We have a good pragmatic understanding of the grammar transformations that are
needed in practice, but more work is needed to deliver the ultimate (relatively com-
plete, orthogonal, semantically well-defined) operator suite. The current state of the
operator suite will be presented in chapter 7.

� BGF’s provisions for coverage of XML schemata, object models and other non-
standard grammars call for more research on the effectiveness of the approach for
scenarios that would not count as grammar-centric (or schema-centric). This also
necessitates a deeper comparison with existing metamodelling facilities.
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Chapter 5

Case study on recovery and
convergence

In this chapter a completed effort is described to recover the relationships between all the
grammars that occur in the different versions of the Java Language Specification (JLS).
The relationships are represented as grammar transformations that capture all accidental
or intended differences between the JLS grammars. This process is mechanised and it
is driven by simple measures of nominal or structural differences between any pair of
grammars involved. Our work suggests a form of consistency management for the JLS in
particular, and language specifications in general.

Grammar extraction is performed in an automated fashion with one general extractor
being able to pick up any HTML document with pieces of EBNF-like productions scat-
tered inside it, collect them all, parse them, convert to the BGF grammar and produce it
to be used later in the convergence process. The extractor is not trivial in a sense that it
applies certain recovery rules during the extraction process to fix the majority of errors
that are found in language documentation due to its hand-made nature. The rules are
empirically derived, subsequently generalised and presented in this chapter.

Six extracted grammars are then transformed to reach certain convergence points. Due
to the delicate and complicated matter of this case study no generators were used in this
chapter. Thus, all transformation steps were programmed by a human grammarware ex-
pert. Examples of them are provided on later pages, together with basic metrics and
benchmarks that were utilised to guide the process of convergence.

5.1 Java is not syntax-safe—apparently1

Many software languages (and programming languages in particular) are described simul-
taneously by multiple grammars that reside in different software artefacts. For instance,
one grammar may reside in a language specification; another grammar may be encoded
in a parser specification. Many software languages are also subject to evolution, which

1The title is a pun and an homage on a series of papers [53], [193],...
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impl1 read1

jls1

impl2

read12

read2

jls2

impl3 read3

jls3

read123jls12

jls123

impl1 JLS1, §19
read1 JLS1, §§4.1–15.27
impl2 JLS2, §18
read2 JLS2, §§4.1–15.28
impl3 JLS3, §18
read3 JLS3, §§4.1–15.28

Figure 5.1: Binary convergence tree for the JLS grammars. The nodes in the figure
are grammars where the leaves correspond to the original JLS grammars and the other
nodes are derived. The directed edges denote grammar transformation chains. We use a
(cascaded) binary tree here, i.e., each forking node is derived from two grammars. The
implX leaves are “implementable” grammars, the readX ones are “readable”.

means that artefacts with embedded grammars may also occur in different versions. This
diversity of grammars for any single software language represents a fundamental con-
sistency challenge. Grammars (and hence grammar-dependent artefacts) may actually
disagree on the software language in question in a hard-to-spot manner. The intended,
evolution-related differences between two grammars may be obfuscated by other more
accidental or superficial differences between the grammars.

In the previous chapter we have addressed the fundamental problem of grammar di-
versity by a contribution to the method of grammar convergence [166]; this method com-
bines grammar extraction (to obtain raw grammars from artefacts and represent them uni-
formly), grammar comparison (to determine nominal and structural differences between
grammars), and grammar transformation (to represent the relationships between the gram-
mars at hand by transformations that make them structurally equal.

In this chapter we report on a major case study for grammar convergence, and we refine
the method to provide better scalability and reproducibility. The case study concerns the 3
different versions of the Java Language Specification (JLS; [77, 78, 79]) where each of the
3 versions contains 2 grammars—one grammar is optimised for readability (see read1–
read3 in Figure 5.1), and another one is intended to serve as a basis for implementation
(see impl1–impl3 in Figure 5.1).

Here we note that the JLS is critical to the Java platform—it is a foundation for com-
pilers, code generators, pretty-printers, IDEs, code analysis and transformation tools and
other grammarware for the Java language. One would expect that the different grammars
per version are essentially equivalent in terms of the generated language. (As a conces-
sion to practicality, i.e., implementability in particular, one grammar may be more liberal
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than the other.) One would also expect that the grammars for the different versions en-
gage in an inclusion ordering (again, in terms of the generated languages) because of the
backwards-compatible evolution of the Java language.

Those expected relationships of (liberal) equivalence and inclusion ordering are sig-
nificantly violated by the JLS grammars, as our case study shows.

The motivation of our work and its significance is not limited to the mere discovery
of bugs in the Java standard. In fact, some of these bugs are known by now—based on in-
formal grammar inspection or other brute-force methods. There are various accounts that
have identified or fixed bugs in the JLS grammars or, in fact, in grammars that were de-
rived from the JLS in some manner. We refer to the work of Richard Bosworth as a partic-
ularly operational account: http://www.cmis.brighton.ac.uk/staff/rnb/
bosware/javaSyntax/syntaxV2.html. It is a clear list of bugs which is also en-
dorsed by SUN: http://bugs.sun.com/bugdatabase/view_bug.do?bug_
id=6442525. We refer to this list as “known bugs” in our process.

The significance is amplified by two additional arguments. First, we provide a simple
and mechanised process that is guaranteed to reveal accidental or intended differences
between grammars. Second, we are able to represent the differences in a precise, opera-
tional and accessible manner—by means of grammar transformations. In different terms,
we are essentially able to prove (or disprove) the equivalence for two grammars, and we
can afford different grammars and different versions because we can effectively relate
them.

The complete JLS effort including all the involved sources, transformations, re-
sults, and tools is publicly available through http://slps.sf.net/ [263]; see
topics/convergence/java in particular.

However, it is instructive to wonder why the importance of JLS combined with the
scrutiny that went into its preparation still let inconsistencies go unnoticed. We call
two challenges to account. First, we note that language equivalence and inclusion is not
amenable to any straightforward check; in fact, it is undecidable for context-free gram-
mars. Second, grammar design and evolution is a manual process in practice: grammar
engineers design and evolve grammars, as they see fit. They may use simple tools to
check the grammar for basic well-formedness or grammar-class compliance. They may
also test a parser derived from the grammar. However, such measures cannot guarantee the
expected properties for (relaxed) language equivalence and inclusion; oversights happen
all too easily (as our case study shows). Our (refined) method of grammar convergence
addresses both challenges.

5.2 Contributions

� We have recovered nontrivial relationships between sized grammars. (That is,
we show that the grammars are equivalent modulo well-defined transformations.)
Compared to related work on agile parsing [43] and grammar recovery [58, 132,
164], two grammars are given a priori as opposed to the derivation of a new gram-
mar from a baseline say by customisation, correction, completion, or restructuring.

http://www.cmis.brighton.ac.uk/staff/rnb/bosware/javaSyntax/syntaxV2.html
http://www.cmis.brighton.ac.uk/staff/rnb/bosware/javaSyntax/syntaxV2.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6442525
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6442525
http://slps.sf.net/
http://slps.svn.sourceforge.net/viewvc/slps/topics/convergence/java/
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� We have implemented a mechanised and measurable and reproducible process for
grammar convergence. Compared to our initial work [166], the process consists of
well-defined phases and progress can be effectively tracked in terms of nominal and
structural differences between the grammars at hand.

� We have worked out a comprehensive operator suite for grammar transformation
that substantially extends our previous work on the subject.

A condensed version of this case study description was published as Recovering
Grammar Relationships for the Java Language Specification [167] in the proceedings
of the 9th IEEE International Working Conference on Source Code Analysis and Ma-
nipulation. The paper received the Best Paper Award. A significantly extended version
is being printed in the special issue of Software Quality Journal [168]. This chapter is a
further extension of both papers. We included important information on the extractor (sec-
tion 5.4) and displayed detailed tables such as Table 5.4 and Table 5.6. The tables contain
important information about the extraction process and the recovered relationship; it was
mentioned in the paper but not included there due to space constraints. An application of
our grammar convergence method to various versions of the Java Language Specification
is publicly available through the Software Language Processing Suite [263], including all
Java grammars being displayed as a part of SLPS Grammar Zoo [260]. As stated above,
Prof. Dr. Ralf Lämmel (Software Languages Team, Universität Koblenz) was a co-author
of [167, 168].

5.3 The JLS corpus

We recall that each version of the JLS provides a grammar that is optimised for readability
(read1–read3 in Figure 5.1), and another one that is intended to serve as a basis for imple-
mentation (impl1–impl3 in Figure 5.1). We also refer to these grammars as being “more
readable” or “more implementable”. These notions are not strongly defined, but one can
think, for example, of left factoring as being used in the more implementable grammars
(but not in the more readable grammars).

In the following sections we gather basic knowledge about the grammars.

5.3.1 JLS1

According to [77, §19], the impl1 grammar “has been mechanically checked to insure
that it is LALR(1)”. The read1 grammar is also referred to as “syntactic grammar” and
its relationship to read1 is briefly described as follows [77, §2.3]: “A LALR(1) version
of the syntactic grammar is presented in Chapter 19. The grammar in the body of this
specification is very similar to the LALR(1) grammar but more readable.” Presumably,
the grammars are supposed to generate (essentially) the same language in a formal sense.
While the two grammars read1 and impl1 are said to be similar, a more precise relationship
is not in sight though.
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Grammar class Iteration style
impl1 LALR(1) left-recursive
read1 none left-recursive
impl2 unclear EBNF
read2 none left-recursive
impl3 “nearly” LL(k) EBNF
read3 none left-recursive

Table 5.1: Basic properties of the JLS grammars.

5.3.2 JLS2

According to [78, “Preface to the Second Edition”], “[...] the language has grown [...]
This second edition [...] integrates all the changes made to the Java programming lan-
guage since [...] the first edition in 1996. The bulk of these changes [...] revolve around
the addition of nested type declarations.” The 2nd version does not explicitly relate its
grammars to those of the 1st version. Upon cursory examination we came to conclude that
read1 and read2 are similar (modulo the extensions to be expected), whereas surprisingly,
impl1 and impl2 appeared as different developments. Also, the LALR(1) claim for impl1
is not matched for impl2, but instead the following, less precise statement is made [78,
§18]: “The grammar presented piecemeal in the preceding chapters is much better for
exposition, but it is not ideally suited as a basis for a parser. The grammar presented in
this chapter is the basis for the reference implementation.”

5.3.3 JLS3

JLS3 extends JLS2 in numerous ways [79, Preface]: “Generics, annotations, asserts,
autoboxing and unboxing, enum types, foreach loops, variable arity methods and static
imports have all been added to the language recently.” Again, the 3rd version does not
explicitly relate its grammars to those of the 2nd version. Upon cursory examination
we came to conclude that read2 and read3 are similar, just as much as impl2 and impl3
(modulo the extensions to be expected). No definitive grammar-class claim is made, but
an approximation thereof [79, §18] that suggests that impl3 has definitely departed from
LALR(1), i.e., impl3 is said to be “not an LL(1) grammar, though in many cases it min-
imises the necessary look ahead.”

5.3.4 Grammar data

In addition to grammar class claims for the JLS grammars we have also recorded iter-
ation styles during cursory examination; see Table 5.1. This data already clarifies that
we need to bridge the gap between different iteration styles (which is relatively simple)
but also different grammar classes (which is more involved)—if we want to recover the
relationships between the different grammars by effective transformations.
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Number of
Productions

Number of
Nonterminals

Number of
Tops

Number of
Bottoms

impl1 282 135 1 7
read1 315 148 1 9
impl2 185 80 6 11
read2 346 151 1 11
impl3 245 114 2 12
read3 435 197 3 14

Table 5.2: Basic metrics of the JLS grammars.

Table 5.2 measures simple grammar metrics for the various JLS grammars. A top
nonterminal is a nonterminal that is defined but never used; a bottom nonterminal is a
nonterminal that is used but never defined; we adopt these terms from [164, 219]. We have
eventually understood that the major differences between the numbers of productions and
nonterminals for the two grammars of any given version is mainly implied by the different
grammar classes and iteration styles. The decrease of numbers for the step from impl1
to impl2 is explainable with the fact that an LALR(1) grammar was replaced by a new
development (which does not aim at LALR(1)). Otherwise, the obvious trend is that the
numbers of productions and nonterminals go up with the version number.

The difference in numbers of top-nonterminals is definitely a problem indicator. There
should be only one top-nonterminal: the actual start symbol of the Java grammar. The
difference in numbers of bottom-nonterminals could be reasonable because a bottom non-
terminal may be a lexeme class—those classes are somewhat of a grammar-design issue.
However, a review of the nonterminal symbols rapidly reveals that some of them corre-
spond to (undefined) categories of compound syntactic structures.

Now the plan for Java grammar convergence should be obvious from Figure 5.1 and
the observations made so far. The 2 grammars of each JLS version are “converged” to
account for the differences between the “more readable” and the “more implementable”
grammar (see jls1, jls2, and jls3). All three versions are “converged” in a cascade to
account for inter-version differences such as extensions in particular (see jls12 and jls123).

Since we observed that the three “more readable” grammars are similar, it makes
sense to attempt a redundant path, i.e., to converge read1 . . . read3 without any influence
from impl1 . . . impl3. Hence, there is another cascade with targets read12 and read123.
We mention that, in the derivation of the targets jls1, jls2 and jls3, we lean towards the
“more implementable” grammar because it is typically more permissive, and easier to
reach transformationally than the other way around.

5.4 Automated grammar extraction
A JLS document is basically a structured text document with embedded grammar sections.
In fact, the more readable grammar is developed throughout the document where the more
implementable grammar is given, en bloc, in a late section—a de-facto appendix.
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Production:
Nonterminal ":" [ "one" "of" ] CR Line { Line } CR

Line:
Indent Symbols CR

Symbols:
Symbol { Symbol }

Symbol:
Nonterminal
Terminal
"(" Symbols "|" Symbols { "|" Symbols } ")"
"[" Symbols "]"
"{" Symbols "}"

CR:
... carriage return ...

Indent:
... indentation ...

Listing 5.1: Relevant grammar expressiveness given in a self-descriptive manner; for
clarity, terminals are enclosed in double quotes as opposed to the use of markup; the
markup-based form of optionals is also neglected.

The JLS is available electronically in HTML and PDF format. Neither of these for-
mats was designed with convenient access to the grammars in mind. We have opted for
the HTML format here. The grammar format slightly varies across the different JLS
grammars and versions; we had to collect formatting rules from different documents and
sections—in particular from [77, 78, 79, §2.4] and [78, 79, §18].

In order to deal with irregularities of the input format, such as liberal use of markup
tags, misleading indentation, duplicate definitions as well as numerous smaller issues, we
needed to design and implement a non-classic parser to extract and analyze the grammar
segments of the documents and to perform a recovery. About 700 fixes were performed
that way, as can be seen from Table 5.4. The insides of the extraction parser are explained
below in detail.

5.4.1 Assumed grammar format
Grammar fragments are hosted by <pre>...</pre> blocks in the JLS documents.
According to [77, 78, 79, §2.4]: terminal symbols are shown in fixed font (as
in <code>class</code>); nonterminal symbols are shown in italic type (as in
<i>Expression</i>); a subscripted suffix “opt” indicates an optional symbol (as in
Expression<sub>opt</sub>); alternatives start in a new line and they are indented;
“one of” marks a top-level choice with atomic branches. (We have also observed that
nonterminals are expected to be alphanumeric and start in upper case.) Further notation
and expressiveness is described in [78, 79, §18]: [x] denotes zero or one occurrences of
x; {x} denotes zero or more occurrences of x; x1| · · · |xn forms a choice over the xi. The
JLS documents consistently suffice with “?” lists (zero or more occurrences); there are no
uses of “+” lists. Refer to Listing 5.1 for a summary.

We should also mention line continuation; it allows to spread one alternative over
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several lines [79, §2.4]: “A very long right-hand side may be continued on a second line
by substantially indenting this second line”.

Example 5.1 A grammar fragment as of [78, §4.2]:

<i>NumericType:
IntegralType
FloatingPointType

IntegralType: one of</i>
<code>byte short int long char

</code>

It should be parsed as:

NumericType:
IntegralType
FloatingPointType

IntegralType:
"byte"
"short"
"int"
"long"
"char"

The fragment illustrates two different kinds of “choices”, i.e., multiplicity of vertical
alternatives, and “one of” choices. (The third form, which is based on “|”, is not il-
lustrated.) The fragment also clarifies that markup tags are used rather liberally. The
“nonterminal” tag (i.e., <i>...</i>) spans more than one production. The terminal tag
(i.e., <code>...</code>) spans several terminals and the closing tags ends up on a new
line.

Example 5.2 The only place where the subscript “opt” is capitalised [79, §4.5.1]:

Wildcard:
? WildcardBounds<sub>Opt</sub>

5.4.2 Phase 1 — Preprocessing
The tiny Example 5.1 is a good indication of the many irregularities that are found in the
HTML representation. We need a non-classic grammar parser to deal with these irregu-
larities. Our extractor therefore works in several phases. The first phase, which we call a
preprocessing phase, has the following I/O behaviour:

� Input: the <pre>...</pre> blocks.

� Output: a dictionary

– Keys: Left-hand side nonterminals
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italic fixed default
Alphanumeric nonterminal (2341) terminal (173) assumed terminal (194)
| metasymbol (2) terminal (2) assumed metasymbol (29)
{,},[,],(,) metasymbol (708) terminal (174) assumed terminal (200)
otherwise terminal (198) terminal (165) terminal (205)

Table 5.3: Decision table of the extractor’s scanner. Classes of strings are rows, scanner
states are columns.

– Values: Arrays of top-level alternatives

The phase is subject to the following requirements:

Tag elimination The input notation interleaves tags with proper grammar structure. In
order to prepare for classic parsing, we need to eliminate the tags in the process of
constructing properly typed lexemes for terminals and nonterminals.

Indentation elimination The input notation relies on indentation to express top-level
choices and line continuation. The output format stores top-level choices in arrays,
and fuses multi-line alternatives.

Robustness The inner structure of top-level alternatives is parsed simply as a sequence of
tokens in the interest of robustness so that recovery rules can be applied separately,
before, finally the precise grammar structure is parsed.

The preprocessor relies on a stateful scanner (to meet “tag elimination”) and a robust
parser (to meet “robustness”). The parser recognises sequences of productions, each one
essentially consisting of a sequence of alternatives; it parses alternatives as sequences of
tokens terminated by CR. The scanner uses three states:

italic upon opening <i> tag (or <em>)
fixed upon opening <code> tag
default when no tag is open

That is, we treat each tag as a special token that changes the global state of the scanner,
which in turn can be observed when creating morphemes for terminals and nonterminals.
We also deal with violations of XML and HTML well-formedness in this manner. The
decision table of the scanner is presented in Table ?? along with the number of times each
decision is taken for all JLS documents.

Most of these decisions are inevitable, even though some of them pinpoint markup
errors. An example of an “error-free” decision is to map an alphanumeric string in italic
mode to a nonterminal. An example of an “error-recovering” decision is to map a non-
alphanumeric token (that does not match any metasymbol) to a terminal—even when it is
tagged with <i>...</i>. Several decisions in the “default” column involve an element
of choice (as indicated by “?”). The shown decisions give the best results, that is, they
require the least subsequent transformations of the extracted grammar. For instance, it
turned out that bars without markup were supposed to be BNF bars, but other metasymbols
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were better mapped to terminals, whenever markup was missing. Also, alphanumeric
strings without markup turned out to be mostly terminals, and hence that preference was
implemented as a decision by the scanner.

5.4.3 Phase 2 — Error recovery
We face a few syntax errors with regard to the syntax of the grammar notation. We also
face a number of “obvious” semantic errors in the sense of the language generated by the
grammar. We call them obvious errors because they can be spotted by simple, generic
grammar analyses that involve only very little Java knowledge, if any. We have opted for
an error-recovery approach that relies on a uniform, rule-based mechanism that performs
transformations on each sequence of tokens that corresponds to an alternative. The rules
are applied until they are no longer applicable. We describe the rules informally; they are
implemented in Python by regular expression matching.

Rule 5.1 (Match up parentheses) When there is a group (a bar-based choice) that
misses an opening or closing parenthesis, such as in “(a|b”, then a nearby terminal
”(” or ”)” (if available) is to be converted to the parenthesis, as in Example 5.3. If there
is still a closing parenthesis that cannot be matched, then it is dropped, as in Example
5.4. We have not seen the case of an opening parenthesis to remain unmatched, but for
the sake of completeness implemented the symmetric part of the rule nevertheless.

Example 5.3 A grammar production from [79, §18.1]: the closing bracket and the clos-
ing parenthesis need to be converted to metasymbols to match the opening ones:

TypeArgument:
Type
"?" [ ( "extends" | "super" ")" "Type" "]"

Example 5.4 A grammar production from [78, §18.1] and [79, §18.1]: non-matching
square bracket needs to be removed:

Expression:
Expression1 [ AssignmentOperator Expression1 ] ]

Rule 5.2 (Metasymbol to terminal) (a) When “|” was scanned as a BNF metasymbol,
but it is not used in the context of a group, then it is converted to a terminal, as in Example
5.5.

(b) When “[” and “]” occur next to each other as BNF symbols, then they are con-
verted to terminals, as in Example 5.6.

(c) When “{” and “}” occur next to each other as BNF symbols, then they are con-
verted to terminals. (Not encountered so far, implemented for the sake of consistency).

(d) When an alternative makes use of the metasymbols for grouping, but there is no
occurrence of the metasymbol “|”, then the parentheses are converted to terminals, as in
Example 5.7.
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Example 5.5 A grammar production from [78, §15.22]: there is no group, so the bar
here is not a metasymbol, but a terminal:

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

Example 5.6 A grammar production from [78, §8.3]: there is nothing to be made op-
tional, so the square brackets here are not metasymbols, but terminals:

VariableDeclaratorId:
Identifier
VariableDeclaratorId [ ]

Example 5.7 A grammar production from [78, §14.19] and [79, §18.1]: there is no
choice inside the group so the parentheses here are not metasymbols, but terminals:

CatchClause:
"catch" ( FormalParameter ) Block

Rule 5.3 (Compose sibling symbols) When two alphanumeric nonterminal or terminal
tokens are next to each other where one of the symbols is of length 1, then they are com-
posed as one symbol, as in Example 5.8 and Example 5.9.

Example 5.8 Multiple terminals to compose [77, §19.11]:

<code>continu</code><i>e

Example 5.9 Multiple nonterminals to compose [77, §14.9]:

S<i>witchBlockStatementGroups</i>

Rule 5.4 (Decompose compound terminals) When a terminal consists of an alphanu-
meric prefix, followed by “.”, possibly followed by a postfix, then the terminal is taken
apart into several ones, as in Example 5.10.

Example 5.10 Consider this phrase [78, §15.9]:

Primary.new Identifier ( ArgumentListopt ) ClassBodyopt

The decomposition results in the following:

Primary . new Identifier ( ArgumentListopt ) ClassBodyopt

Rule 5.5 (Nonterminal to terminal) Lower-case nonterminals that are not defined by
the grammar (i.e., that do not occur as a key in the dictionary coming out of phase 1), and
are in lower case, are converted to terminals, as in Example 5.11.
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Example 5.11 A grammar production from [78, §14.11]: default needs to be con-
verted to a terminal:

SwitchLabel:
</em>case<em> ConstantExpression :
default :

The same error is present in the later version of the specification [79, §14.11]:

SwitchLabel:</em>
case <em>ConstantExpression </em>:
case <em>EnumConstantName </em>:<em>
default :

Note that in JLS3 the same production was changed (another alternative was added),
and somewhere on the way a problem with “:” was fixed, but not the one with
“default”.

Rule 5.6 (Terminal to nonterminal) Alphanumeric terminals that start in upper case,
and are defined by the grammar (when considered as nonterminals) are converted, as in
Example 5.12.

Example 5.12 A grammar production from [78, §7.5]:

<em>ImportDeclaration</em>:
SingleTypeImportDeclaration
TypeImportOnDemandDeclaration

The decisive definitions are found in [78, §7.5.1] and [78, §7.5.2]:

SingleTypeImportDeclaration:
"import" TypeName ";"

TypeImportOnDemandDeclaration:
"import" PackageOrTypeName "." "?" ";"

Rule 5.7 (Recover optionality) When a nonterminal’s name ends on “opt”, as in
“fooopt”, and the grammar defines a nonterminal “foo”, then the nonterminal “fooopt”
is replaced by [foo]. (Hence, markup for subscript “opt” was missing.)

Example 5.13 Consider again the result of Example 5.10:

Primary . new Identifier ( ArgumentListopt ) ClassBodyopt

After recovery it will be parsed as:

ClassInstanceCreationExpression:
Primary "." "new" Identifier "(" ArgumentList? ")" ClassBody?

These are all the rules that have stabilised over the project’s duration. Several other
rules where investigated but eventually abandoned because the corresponding issues could
be efficiently addressed by grammar transformations. We used experimental rules to test
for the recurrence of any issue we had spotted. We quantify the use of the rules shortly.
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impl1 impl2 impl3 read1 read2 read3 Total
Arbitrary lexical decisions 2 109 60 1 90 161 423
Well-formedness violations 5 0 7 4 11 4 31
Indentation violations 1 2 7 1 4 8 23
Recovery rules 3 12 18 2 59 47 141
◦Match parentheses 0 3 6 0 0 0 9
◦Metasymbol to terminal 0 1 7 0 27 7 42
◦Merge adjacent symbols 1 0 0 1 1 0 3
◦ Split compound symbol 0 1 1 0 3 8 13
◦ Nonterminal to terminal 0 7 3 0 8 11 29
◦ Terminal to nonterminal 1 0 1 1 17 13 33
◦ Recover optionality 1 0 0 0 3 8 12

Purge duplicate definitions 0 0 0 16 17 18 51
Total 11 123 92 24 181 238 669

Table 5.4: Irregularities resolved by grammar extraction.

5.4.4 Phase 3 — Removal of doubles
The JLS documents (deliberately) repeat grammar parts. Hence, we have added a trivial
phase for removal of double alternatives. That is, when a given right-hand side nontermi-
nal is encountered several times in a source, then phase 1 accumulates all the alternatives
via one entry of the dictionary, and phase 3 compares alternatives (i.e., sequences of to-
kens) to remove any doubles.

Example 5.14 Recall the following definition from Example 5.6 [78, §8.3]:

VariableDeclaratorId:
Identifier
VariableDeclaratorId [ ]

The same definition appears elsewhere in the document, even though the markup is
different, but these differences are already neutralised during phase 1 [78, §14.4]:

<em>VariableDeclaratorId:
Identifier
VariableDeclaratorId</em> [ ]

Phase 3 preserves 2 alternatives out of 4. As an aside, this particular example also
required the application of Rule 5.2.b because [ ] must be converted to terminals.

5.4.5 Phase 4 — Precise parsing
Finally, the dictionary structure of phase 1, after the recovery of phase 2, and double
removal of phase 3, is trivially parsed according to the (E)BNF for the grammar notation;
see Listing 5.1. In fact, our implementation dumps the extracted grammar immediately in
an XML-based grammar interchange format so that generic grammar tools for comparison
and transformation can take over [166].
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5.4.6 Extraction data
Table 5.4 summarises the frequency of using recovery rules, handling “unusual” contin-
uation lines (initially, our guess was that “substantially indenting” means more spaces or
tabs than the previous line, but it turned out there are cases when continuation lines were
not indented at all), and removal of doubles. The extractor has fixed 669 problems that
otherwise would have prevented straightforward parsing to succeed with extraction, or
implied loss of information, or triggered substantial grammar transformations.

5.5 The convergence graph
As it has ben explained in the previous chapter, the central idea of grammar conver-
gence [166] is to extract grammars from diverse software artifacts, and to discover and
represent the relationships between the grammars by chains of transformation steps that
make the grammars structurally equal. We have defined the core ingredients of the method
and now apply it to the JLS.

Grammar convergence always starts from the grammars that were extracted from the
given software artifacts, to which we refer as source grammars or sources subsequently.
In the present JLS study, we face 6 sources; we use read1–read3 to refer to the “more
readable” grammars, and impl1–impl3 to refer to the “more implementable” grammars. It
is reasonable to relate grammars through an additional grammar of which we think as the
common denominator of the original grammars. We refer to such additional grammars
as targets. The “distance” between source and target grammars may differ. In fact, it is
not unusual, that one source—modulo minor transformations only—serves as common
denominator.

The idea of the common denominator can be generalized such that we actually devise
a tree of grammars with transformations as the edges. (We use arrows to express the
direction of the transformation, and hence the trees appear inverted, when compared to
common sense of drawing trees.) That is, the root of the tree (a target) is the common
denominator of all grammars, but there may be additional intermediate targets that already
serve as common denominators for some of the grammars. The source grammars are the
leaves of such a tree.

Figure 5.1 showed the “convergence tree” for the present JLS case study. The original
grammars from the JLS documents are located at the top. The tree states that the two
grammars per JLS version are “converged to” a common denominator (see the nodes
jls1–3 in the figure), and all three versions are further “converged” to account for inter-
version differences—the extensions to the Java language in particular (see the nodes jls12
and jls123 as well as read12 and read123 in the figure). For the JLS we use a binary
tree, which means that we always limit the focus to two grammars, and hence a cascade
is needed, if more than two grammars need to be converged.

When deriving jls1–3, we favor the “more implementable” grammar as the target of
convergence, i.e., as the common denominator—except that some corrections may need to
be applied, or some minimum restructuring is applied for the sake a more favorable gram-
mar structure. This preference reflects the general rule that an implementation-oriented ar-
tifact should be derived from a design-oriented artifact—rather than the other way around.
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Incidentally, this direction is also easier to handle by the available transformation opera-
tors.

When relating the different JLS versions, we adopt the redundant approach to relate
the common denominators jls1–3 in one cascade (see the nodes jls12 and jls123), but also
the readable grammars read1–3 in another cascade (see the nodes read12 and read123)
as a sort of sanity check. It turns out that read1–3 are structurally quite similar, and
accordingly, the additional cascade requires little effort.

5.6 Grammar transformation
In this section, we illustrate intended and accidental differences between the JLS gram-
mars in more detail and show the grammar transformations that neutralise those differ-
ences. At the same time, we provide an overview of the major operators that are needed
for the transformation of concrete syntax definitions in the context of grammar conver-
gence. We distinguish semantics-preserving/-increasing/-decreasing and -editing opera-
tors [166] where semantics always refers to the language generated by the grammar (when
considered as a set of strings).

5.6.1 Semantics-preserving operators
There are operators to fold and unfold nonterminal definitions, to extract and inline spe-
cific nonterminals, to factor and distribute grammar expressions, to massage grammar
expressions according to algebraic laws, and to alter iteration style (recursion vs. “?”).
We also say that all these operators serve grammar refactoring.

Several transformation operators serve disciplined “replacement”, i.e., they are in-
voked by the form o(x, x′) where o is the operator in question, x is the grammar expres-
sion to be located in the input, and x′ is the corresponding replacement. For instance, the
factor operator is applied to an expression and a factored variation; the massage operator
is applied to an expression and an algebraically equivalent variation based on a fixed set
of laws.

Example 5.15 (factor and massage transformations)

factor(
(Block | ("static" Block)),
(ε | "static") Block);

massage(
(ε | "static"),
"static"?);

In read2, there are distinct alternatives for blocks vs. static blocks. In contrast, in impl2, these
forms appear in a factored manner. Hence, the factor operator is used to factor out the shared
reference to block. Then, the massage operator changes the style of expressing optionality of the
keyword “static”.

Other grammar transformation operators apply a fixed operation to a specific non-
terminal, and hence, they can be invoked by the form o(n) where o is the operator in
question, and n is the nonterminal to be affected. For instance, inlining a nonterminal
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can be requested in this manner. Also, the conversion from a recursive definition-based
style of iteration to the use of the regular operators “?” and “+” can be requested in this
manner. We call the latter step “deyaccification” [132, 154].

Like the previous transformation sample, the next one is taken from a refactoring
script that aligns read2 and impl2. The JLS case study involves many hundreds of such
small refactoring steps; see section 5.8.

Example 5.16 (deyaccify and inline transformations)

deyaccify(ClassBodyDeclarations);
inline(ClassBodyDeclarations);
massage(
ClassBodyDeclaration+?,
ClassBodyDeclaration?);

In read2, recursion-based style of iteration is used. For instance, there is a recursively defined
nonterminal ClassBodyDeclarations for lists of ClassBodyDeclaration. In contrast, in impl2, the
list form “?” is used. Deyaccification replaces the recursive definition of ClassBodyDeclarations
by ClassBodyDeclaration+. The nonterminal ClassBodyDeclarations is no longer needed, and
hence inlined. The list of declarations was optional, and hence “+” and “?” can be simplified to
“?”.

5.6.2 Semantics-in/decreasing operators

There are operators to widen and narrow occurrence constraints (e.g., to change “+” to
“?” and vice versa), to add and remove alternatives (say, productions), and to replace a
nonterminal occurrence by one of its productions and vice versa (to which we refer as
downgrading and upgrading). One can also want optional symbols (i.e., those with “?”
or “?”) to appear or disappear.

Example 5.17 (Widening an occurrence constraint)

widen(
"static",
"static"?,
in ClassBodyDeclaration);

This transformation is part of a script that captures the delta between JLS1 and JLS2. The
particular widening step enables instance initialisers in class bodies (where only static initialisers
were admitted before).

The example also demonstrates that transformation operators may carry an extra argu-
ment to describe the scope of replacement. By default, the scope is universal: all match-
ing expressions in the input grammar would be affected. Selective scopes are nonterminal
definitions (specified by a nonterminal—as in the example) or productions (specified by a
production label).
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Example 5.18 (Adding an alternative)

addV(
ConstantModifier:

Annotation
);

This transformation is part of a script that captures the delta between JLS2 and JLS3. In JLS2,
a constant modifier can be "public" or "static" or "final". JLS3 offers the additional
option Annotation.

When we seek relationships between grammars of different versions, then semantics-
increasing/-decreasing transformations are clearly to be expected. As a matter of disci-
pline, we prefer to describe the delta by a semantic-increasing transformation to map a
version to its successor version (as opposed to the inverse direction). We speak of gram-
mar extension in this case.

However, increase (or decrease) may also be needed when two grammars are essen-
tially equivalent—except that one is more liberal than the other, merely as a concession
to practicality of say parser development. We speak of grammar relaxation in this case.
In the JLS case, the different purposes of the grammars (to be more or less readable or
implementable respectively.) imply the need for relaxation. Similar issues arise with
relationships between abstract and concrete syntaxes [166].

Finally, two grammars may differ (with regard to the generated language) in a manner
that is purely accidental (read as “incorrect”). We speak of (transformations for) grammar
correction in this case. Corrections may be expressed in terms of semantics-increasing/-
decreasing operators. (Otherwise we have to use less disciplined operators; see below.)



112 Case study on recovery and convergence

Example 5.19 (Grammar relaxation) The BGF snippets in this example are deliber-
ately pretty-printed as horizontal productions for the sake of readability. In reality the
extractor produces only vertical ones as usual.

impl2

Modifier:
"public" | "protected" | "private" | "static" | "abstract"

| "final" | "native" | "synchronized" | "transient"
| "volatile" | "strictfp"

read2

ClassModifier:
"public" | "protected" | "private" | "abstract" | "static"

| "final" | "strictfp"
ConstantModifier:

"public" | "static" | "final"
ConstructorModifier:

"public" | "protected" | "private"
InterfaceModifier:

"public" | "protected" | "private" | "abstract" | "static"
| "strictfp"

AbstractMethodModifier:
"public" | "abstract"

MethodModifier:
"public" | "protected" | "private" | "abstract" | "static"

| "final" | "synchronized" | "native" | "strictfp"
FieldModifier:

"public" | "protected" | "private" | "static" | "final" |
"transient" | "volatile"

In impl2, there is only one category of (arbitrary) modifiers. In contrast, in read2, there are
various precise categories of modifiers for classes, fields, interfaces and methods. Accordingly,
the impl2 grammar is more permissive as far as modifiers are concerned. We omit the neutralising
transformation.

We suggest that a language specification should explicitly call out relaxations so that
they are not confused with corrections. Neither relaxation and corrections must be con-
fused with extension (in the sense of evolution).

5.6.3 Semantics-revising operators

There are operators to undefine a nonterminal (i.e., to abandon its definition), to replace
a grammar expression in an unconstrained manner, to inject new components into a pro-
duction and to project away existing components. The operators inject and project can
be invoked by a form such that a grammar expression with markers (as in a 〈b〉c) is
passed as a parameter. These markers highlight the components to be added or removed,
respectively., and thereby state the intention of the operator application more explicitly.
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Example 5.20 (Correcting statement syntax in impl2)

inject(
Statement:

"break" Identifier? 〈";"〉
);

The production for the break statement lacks the semicolon which is injected accordingly (left
unnoticed in Bosworth’s bug list, but obvious when converging with read2).

Example 5.21 (Correcting expression syntax)
Incorrect expression syntax in impl2 and impl3

Expression2:
Expression3 Expression2Rest?

Expression2Rest:
(Infixop Expression3)?

Expression2Rest:
Expression3 "instanceof" Type

Language-revising transformation

project(
Expression2Rest:

〈Expression3〉 "instanceof" Type
);

Corrected expression syntax

Expression2:
Expression3 Expression2Rest?

Expression2Rest:
(Infixop Expression3)?

Expression2Rest:
"instanceof" Type

The impl2 and impl3 grammars define the Java expression syntax by means of layers, i.e., there are
several nonterminals Expression1, Expression2, ... for the different priorities. We are concerned
with one layer here. The second rule for Expression2Rest contains an offending occurrence of
Expression3 which needs to be projected away. This issue was revealed by comparison with the
read2 and read3 grammars (subject to prior refactoring), but also found in the “known bugs”.

The two examples above are concerned with incorrect syntax of the kind that the
intended language is not captured proper. There are also situations where incorrect syntax
merely arises from representation anomalies of the HTML input used for extraction.
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Example 5.22 (Extraction: post-processing for impl3)

replace(
BlockStatements?,
"{" BlockStatements "}");

The source format defines curly brackets to express iteration. However, in the example at hand
they were meant as terminals, and were not recognised due to missing markup. The incorrect list
construct is replaced accordingly.

Example 5.23 (Initial correction for impl2)

replace(
Expr,
Expression);

A misnamed nonterminal is found when examining the list of bottom nonterminals before the
convergence process starts.

5.6.4 Grammar refactoring
When grammars are not structurally equivalent, the generated languages of course may
still be. The property of generating the same language is not generally decidable for
context-free grammars, but we can use refactoring transformations, which are semantics-
preserving by definition, to constructively prove equivalence. The bulk of work in gram-
mar convergence amounts to grammar refactoring, indeed. Here are example scenarios
for refactoring:

� Fold/unfold manipulation: a proof of structural equality may involve the expansion
of a nonterminal’s definition (unfold) or vice versa (fold). It may also involve the
extraction or inlining. Extraction basically introduces a new nonterminal to cap-
ture an existing structure, and then uses the new nonterminal immediately in a fold
step [154].

� De-/yaccification: grammars may differ with regard to style of iteration. Deyaccifi-
cation transforms YACC-style of recursion to EBNF-style lists [154]. There is also
the opposite direction.

� Factoring/distribution: one grammar may apply left factoring to facilitate parsing
with limited look-ahead; another grammar may avoid any such consideration of
implementation aspects.

All of these and other scenarios are relevant for the JLS.

Example 5.24 Let us encounter refactoring in Example 5.19. We start with the
“semantics-increasing” part that “unites” all the nonterminals for specific kinds of mod-
ifiers as well as the nonterminals for iterations thereof. By normalisation, all the resulting
identical copies of the productions disappear. It remains to construct EBNF-style iteration
from the left-recursive style of recursion. There is a corresponding deyaccify refactoring
to this end. We also need to rename the nonterminals for modifiers and sequences thereof
to Modifier and ModifiersOpt. Renaming is a form of refactoring, too.
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jls1 jls12 jls123 jls2 jls3 read12 read123 Total
◦ rename 9 4 2 9 10 — 2 36
◦ reroot 2 — — 2 2 2 1 9
◦ unfold 1 10 8 11 13 2 3 48
◦ fold 4 11 4 11 13 2 5 50
◦ inline 3 67 8 71 100 — 1 250
◦ extract — 17 5 18 30 — 5 75
◦ chain 1 — 2 — — 1 4 8
◦ massage 2 13 — 15 32 5 3 70
◦ distribute 3 4 2 3 6 — — 18
◦ factor 1 7 3 5 24 3 1 44
◦ deyaccify 2 20 — 25 33 4 3 87
◦ yaccify — — — — 1 — 1 2
◦ eliminate 1 8 1 14 22 — — 46
◦ introduce — 1 30 4 13 3 34 85
◦ import — — 2 — — — 1 3
◦ vertical 5 7 7 8 22 5 8 62
◦ horizontal 4 19 5 17 31 4 4 84
◦ add 1 14 13 7 20 28 20 103
◦ appear — 8 11 8 25 2 17 71
◦ widen 1 3 — 1 8 1 3 17
◦ upgrade — 8 — 14 20 2 2 46
◦ unite 18 2 — 18 21 5 4 68
◦ remove — 10 1 11 18 — 1 41
◦ disappear — 7 4 11 11 — — 33
◦ narrow — — 1 — 4 — — 5
◦ downgrade — 2 — 8 3 — — 13
◦ define — 6 — 4 9 1 6 26
◦ undefine — 11 — 13 3 — — 27
◦ redefine — 3 — 8 7 6 2 26
◦ inject — — — 2 4 — 1 7
◦ project — 1 — 1 2 — — 4
◦ replace 3 1 2 3 6 1 1 17
◦ unlabel — — — — — — 2 2

Table 5.6: XBGF operators usage for JLS convergence.
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5.7 Grammar convergence phases

5.7.1 Preparation phase: semantic error recovery

The extractor recovered from all syntax errors and simple, recurring semantic errors.
There are a few more semantic errors that are essentially implied by notational irregu-
larities of the HTML documents. Every such irregularity is fixed by a designated trans-
formation in a way that was explained in Example 5.22.

Interestingly enough, the original Java Language Specification [77] turned out to be
marked up the most accurately — not only it had the least amount of errors (recall Ta-
ble 5.4), but also all of those problems have been solved by applying all the rule set from
the previous section. Manually programmed transformations were required for read2,
read3 and impl3.

5.7.2 Preparation phase: fixing known bugs

Richard Bosworth’s Java specification bug report (http://bugs.sun.com/
bugdatabase/view_bug.do?bug_id=6442525) contains 18 issues that are im-
mediately applicable to impl3 and sometimes even to earlier versions of the standard.
Example 5.25 demonstrates the way each of those issues was mapped to its XBGF repre-
sentation. Among the previously presented examples Example 5.21 also belonged to this
category.

Example 5.25 Consider the following item from Richard Bosworth’s list:

18.1 does not permit the obsolescent array syntax in a method declaration of
an annotation type:

AnnotationMethodRest:
() {[]} [DefaultValue]

where {[]} means 0 or more []’s. [DefaultValue] means 0 or 1 DefaultValue.

After examining [79, §18.1], we find the production:

AnnotationMethodRest:
"(" ")" DefaultValue?

In order to introduce the square brackets are required, we need a following transfor-
mation:

appear(
AnnotationMethodRest:

"(" ")" 〈("[" "]")?〉 DefaultValue?
);

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6442525
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6442525
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5.7.3 Preparation phase: initial correction

Example 5.23 presented a good situation when initial correction—i.e., the one that hap-
pens before any grammar comparison—is possible. Lacking definitions, mistyped non-
terminal names, superfluous definitions and similar problems can be spotted upon cursory
examination of the grammar by a language engineer or after running some easily set up
analyses like listing top and bottom nonterminals. As we predicted in [143], there were
cases of nonterminals with “intuitive” names with lacking definitions (e.g., ForInitOpt
and ForUpdateOpt in impl2).

Example 5.23 presents and explains another initial correction scenario.

Example 5.26 By examining the list of bottom nonterminals in read2, it was discovered
that ClassName was left undefined. Since impl2 never uses any nonterminal symbol
that has the same name or could have been aligned with ClassName, we search for the
same nonterminal in different versions of the Java Language Specification—it helped in
other cases, but this time it is in vain. Then we open §6.5 of [78] to see similar definitions
of PackageName, TypeName, ExpressionName, etc. All of them are in fact the
same QualifiedIdentifier that we remember from C# grammar in chapter 3, but
introduced in a left recursive way:

PackageName:
Identifier
PackageName . Identifier

TypeName:
Identifier
PackageOrTypeName . Identifier

ExpressionName:
Identifier
AmbiguousName . Identifier

MethodName:
Identifier
AmbiguousName . Identifier

PackageOrTypeName:
Identifier
PackageOrTypeName . Identifier

AmbiguousName:
Identifier
AmbiguousName . Identifier

We use define transformation to introduce a similar definition for ClassName to
both read2 and read3 that happens to have the same problem:

define(
ClassName:

Identifier
AmbiguousName "." Identifier

);

If we were going beyond grammar convergence, one of the first steps in grammar
beautification would be removal of all the above mentioned nonterminals in favour of
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QualifiedIdentifier as it was done for C#.

5.7.4 Nominal matching phase
After all the preparatory actions are completed, one can start renaming and (un)folding to
align syntactic categories of the converging grammars. Example 5.27 shows how it can
be done.

Example 5.27 We recall from Example 5.19 that modifiers are defined universally in im-
plX part and separately for each case in readX. In terms of XBGF this will be achieved
by a series of unite transformations. However, they all need a base nonterminal to
unite to since there is no Modifier in readX grammars at all. We decide to use
ClassModifier for that role:

renameN(ClassModifier, Modifier);
renameN(ClassModifiers, Modifiers);

5.7.5 Structural matching phase
There are far too many refactorings to show them all here and even an endeavour to clas-
sify them into a reasonable number of groups seems unfeasible. Example 5.15 and Ex-
ample 5.16 were already presented in the section above, let them serve the demonstration
role. Example 5.28 continues Example 5.27 with all refactorings that can help conver-
gence. Structural matching always continues until it is not possible anymore to bring the
grammars together with semantic-preserving transformations.

Example 5.28 Renaming alone is not enough to prepare us for uniting the nonterminals,
we still need to deyaccify and inline them.

deyaccify(Modifiers);
deyaccify(AbstractMethodModifiers);
deyaccify(InterfaceModifiers);
deyaccify(MethodModifiers);
deyaccify(FieldModifiers);
deyaccify(ConstructorModifiers);
deyaccify(ConstantModifiers);
inline(Modifiers);
inline(AbstractMethodModifiers);
inline(InterfaceModifiers);
inline(MethodModifiers);
inline(FieldModifiers);
inline(ConstructorModifiers);
inline(ConstantModifiers);

5.7.6 Resolution phase: extension
When an unresolved difference can be explained by language evolution, it is the simplest
case for resolution phase actions. Example 5.17 and Example 5.18 were discussed above
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and give a good impression of what to expect from grammar-lengthening steps. Note that
there is no reduction phase anywhere in the Java case study nor in the general convergence
recipe in section 4.7—it would have been easier to converge grammars by stripping non-
matching parts away, but the result with such strategy would be much less meaningful.

5.7.7 Resolution phase: relaxation

Usually the grammar meant for implementation is somewhat more permissive than the
one optimised for readability, as shown in Example 5.19. Example 5.29 finishes the work
of Example 5.28 and all preceding transformation steps.

Example 5.29 Finally the nonterminals are united. Note that we still need to run two
refactoring transformations after the generality issue is resolved:

unite(InterfaceModifier, Modifier);
unite(MethodModifier, Modifier);
unite(FieldModifier, Modifier);
unite(ConstructorModifier, Modifier);
unite(AbstractMethodModifier, Modifier);
unite(ConstantModifier, Modifier);
massage(
Modifier+?,
Modifier?);

extract(
ModifiersOpt:

Modifier?

);

5.7.8 Resolution phase: correction

Everything that is still unresolved and cannot be explained by language evolution nor
permissiveness considerations, is a difference that was not meant to be—i.e., its removal
is actually a correction of a newly found bug. Example 5.20 was already shown above as
a bug-fixing scenario, see also Example 5.30 for a less obvious one.

Example 5.30 read3 contained the following production [79, §10.6]:

ArrayInitializer:
"{" VariableInitializers? ","? "}"

impl3 contained a different one [79, §18] that after post-extraction correction looks
as follows:

ArrayInitializer:
"{" (VariableInitializer ("," VariableInitializer)? ","?)? "}"

After unfolding VariableInitializers, the former production is almost iden-
tical to the latter. However, the difference with the comma being inside the parenthesis or
outside them, cannot be resolved with refactoring (easy to see with a counter-example: a
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Figure 5.2: Difference reduction for read2 towards the convergence target jls2 in the
convergence tree of Figure 5.1.

string “"{" "," "}"” is a valid expression that can be derived from the first definition
but not from the second one). The following transformations resolve the issue:

disappear(
ArrayInitializer:

"{" (VariableInitializer ("," VariableInitializer)?)? 〈","?〉 "}"
);
appear(
ArrayInitializer:

"{" (VariableInitializer ("," VariableInitializer)? 〈","?〉)? "}"
);

5.8 Measuring grammars and transformations
As we recall from section 4.7, the guiding principle for grammar convergence is to consis-
tently reduce the number of grammar differences throughout the two matching phases as
well as the final resolution phase. Figure 5.2 illustrates this principle for one specific JLS
grammar and the related convergence. The figure also visualises that nominal differences
tend to be resolved earlier than structural differences.

Table 5.7 shows the same, simple metrics for the derived grammars as we origi-
nally presented for the leaves of the convergence tree; see Table 5.2. Top- and bottom-
nonterminals are consolidated now. In the case of the “common denominators” jls1–3,
the numbers of nonterminals and productions reflect that these grammars were derived to
be similar to impl1–3. Similar correlations hold for the “inter-version” grammars in the
rest of the table.
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Number of
Productions

Number of
Nonterminals

Number of
Tops

Number of
Bottoms

jls1 278 132 1 7
jls2 178 75 1 7
jls3 236 109 1 7
jls12 178 75 1 7
jls123 236 109 1 7
read12 345 152 1 7
read123 438 201 1 7

Table 5.7: Simple metrics for the derived JLS grammars.

Table 5.5 measures the extraction effort and the involved grammar transformations.
This information was obtained in an automated manner but it relies on some amount of
semantic annotation of the transformations for the classifications and phases.

The number of transformations directly refers to the number of applications of trans-
formation operators. Table 5.6 shows that 33 different operators are used in the JLS case;
most of them were introduced in section 5.6. About three quarters of the transforma-
tions are semantics-preserving. The remaining quarter is mainly dedicated to semantics-
increasing or -decreasing transformations with only 2% of semantics-revising transforma-
tions.

Let us make a few observations. For instance, one can observe that relaxation trans-
formations indeed occur when a more readable and a more implementable grammar are
converged. Further, one can observe that the overall transformation effort is particularly
high for jls12—which signifies the fact mentioned above that impl1 and impl2 appear to
be different developments. Finally, we have made an effort to incorporate SUN’s bug list
into the picture (see subsection 5.7.2). We note that some of the known bugs equally occur
in both the more readable and the more implementable grammar, in which case we cannot
even discover them by grammar convergence.

5.9 Related work
We organise the related work discussion in the following manner:

� grammar recovery (including grammar inference);

� programmable grammar transformations;

� other grammar engineering work;

� coupled transformations of grammar- or schema- or metamodel-like artefacts and
grammar- or schema- or metamodel-dependent artefacts;

� comparison (including matching) of schemas or metamodels.
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5.9.1 Grammar recovery
The main objective of the JLS study is to discover grammar relationships, but an “im-
portant byproduct” of the study is a consolidated Java grammar. Hence, this particular
instance of grammar convergence (perhaps more than grammar convergence in general)
relates strongly to other efforts on grammar recovery. This topic has seen substantial inter-
est over the last 10 years because of the need for grammars in various software engineering
scenarios. We categorise this work in the following.

5.9.1.1 Recovery option 1: Parser-based testing and improvement cycle

A by now classical approach to grammar recovery is to start from some sort of docu-
mentation that contains a raw grammar, which can be extracted, and then to improve the
raw grammar through parser-based testing until all sources of interest can be parsed (such
as test programs, or entire software projects) [6, 132, 163, 164, 219]. The actual im-
provement steps may be carried out manually [6, 132, 219] or by means of programmable
grammar transformations [163, 164], as discussed in more detail in subsection 5.9.2.

The JLS study, in particular, and the basic paradigm of grammar convergence, in
general, do not involve parser-based testing. Instead, the similarity between 2+ given
grammars is used as the criterion for possibly improving correctness. Of course, it would
be a viable scenario to actually try deriving a useful parser description from the converged
Java grammar, and if additional problems were found, then the parser-based testing and
improvement cycle of grammar recovery may be applied.

5.9.1.2 Recovery option 2: Grammar recovery from ASTs

Generally, raw grammars (as discussed above) may also be extracted from compilers.
This is relatively straightforward, if the compiler uses a parser description to implement
the parser. [58, 150] present another option, which relies on access to the parse trees
or ASTs of a compiler. A grammar can be extracted from the ASTs for given sample
programs. This approach is specifically meant to help with the recovery of language
dialects for which precise grammars are often missing. In order to derive the grammar for
the concrete syntax, one must discover the mapping between AST schema and concrete
syntax. To this end, the approach also involves some verification infrastructure. If we
assume that a baseline grammar is available (as opposed to a grammar for the specific
dialect at hand), then grammar convergence may also be useful in providing the mapping
between AST schema and concrete syntax.

5.9.1.3 Recovery option 3: Grammar inference

Different authors have approached grammar recovery for software languages through
grammar inference techniques [54, 55, 56, 57, 181, 205, 206, 233]. Inference relies on
language samples, typically on both positive and negative examples. Different inference
scenarios have been addressed. [181, 233] infer more or less complete grammars, which
is a very difficult problem. The approach applies to small languages, e.g., small domain-
specific languages. [205, 206] begin from a baseline grammar, and infer modifications
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to the grammar so that all sources of interest can be parsed. This search-based inference
approach addresses the dialect problem in software engineering, where a grammar for the
language of interest may be available, but not for the specific dialect at hand. Both of the
approaches use genetic algorithms. [54, 55, 56, 57] use some mix of advanced parsing
and inference techniques instead.

Just as in the case of Option 1, the approach uses parser-based testing as the correct-
ness criterion, whereas grammar convergence leverages the similarity between 2+ given
grammars as the criterion for possibly improving correctness. It is quite conceivable and
interesting to combine grammar inference and grammar convergence. For instance, gram-
mar inference techniques could be used to inform a semi-automatic grammar transfor-
mation approach. Also, it is interesting to understand whether transformation operators
for convergence can usefully represent the modifications of the inference approach of
[205, 206].

5.9.1.4 Recovery option 4: Special-purpose grammars

Rather than trying to recover the (full) grammar for a given language, one may also limit
the recovery effort to specific samples, and more potently, to the specific purpose of the
grammar. For instance, when the grammar is needed for a simple fact extractor, then
there is no need to parse the full language, or to be fully aware of the dialect at hand.
[186, 187] suggests so-called island grammars to only define as much syntactical struc-
ture as needed for the purpose and to liberally consume all other structure essentially as
a token stream. [227] also pursues this approach specifically in the context of multilin-
gual parsing. [192] also pursues a variant of special-purpose grammars, where sample
programs are essentially modelled, and a grammar is computed from the samples. A dis-
ciplined and productivity-tuned, iterative approach is used to rapidly parse all the samples
of interest. The approach also produces the right metamodel (object model) to represent
parse trees tailored to the specific purpose at hand.

5.9.2 Programmable grammar transformations
Grammar convergence, and some forms of grammar recovery, but also some other soft-
ware engineering problems rely on grammar transformations. In fact, we would like to
limit the focus here to programmable grammar transformations as opposed to more hid-
den transformations as they may be performed implicitly by some software tools (such as
a parser generator that removes left recursion, for example).

Cordy, Dean and collaborators have invented the notion of agile parsing [38, 41, 43]
and the paradigm of grammar programming [42] in this context. Both concepts rely on
language embedding of a grammar formalism into a programming language (TXL, in this
case). Agile parsing basically suggests the customization of a baseline grammar for a
specific use case (such as components for reverse engineering or re-engineering). The
simpler programmable grammar transformations, which are sufficient for some scenarios,
are redefine (to redefine a nonterminal), and define with the ability to extend the previous
definition.

In [42], a range of additional grammar programming techniques are discussed, where
some of these techniques may be naturally modelled as grammar transformations (or more
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generally, as program transformations). These are the techniques: rule abstraction (so that
grammar rules may be parametrised), grammar specialization (so that the semantics of
specific uses cases can be incorporated into the grammar), grammar categorization (so that
the resulting parser can effectively deal with context-free ambiguities), union grammars
(so that one can have multiple grammars in the same namespace, perhaps even with a
non-empty intersection), and markup (i.e., the use of markup syntax in combination with
regular textual syntax).

In this thesis, we have been interested in operator suites for (programmable) grammar
transformations, continuing the tradition of [154, 158, 165, 167]. The idea is to basically
view the possible evolution of a grammar (along recovery or convergence) as a disciplined
editing process such that each editing step is described in terms of an appropriate transfor-
mation operator. The use of an operator immediately documents a certain intention, and is
subject to precondition checking—just like in other domains of program transformation.
[249] has also suggested a small set of operators to specifically address the problem of
computing abstract from concrete syntax.

5.9.2.1 The Amsterdam/Koblenz school of grammar transformation

To better understand the design space of programmable grammar transformations based
on operator suites, we would like to compare several efforts; see Table 5.8 for an overview.
The figure summarises known grammar transformation operators, and compares operator
suites for grammar transformations:

VSC2 [154, 164]
The suite used for recovery of a Cobol grammar.2

FST [165]
A design experiment to define a comprehensive suite for SDF [239].3

GDK [149]
A suite that is part of a grammar-deployment infrastructure.4

GRK [158]
A suite that is part of an effort to reproduce our Cobol recovery case.5

XBGF
The suite of the present thesis; see chapter 7.6

A starred name in the figure (as in “restrict*”) means that the given operator covers the
function at hand, but it is more general.

XBGF, the transformation language of the present paper, provides clearly the most
comprehensive suite. There are a few empty cells in the XBGF column. Reasons for
non-inclusion differ; either the operator is considered too low-level for the XBGF surface

2http://homepages.cwi.nl/˜ralf/fme01
3http://www.cs.vu.nl/grammarware/fst
4http://gdk.sf.net
5http://slps.sf.net/grk
6http://slps.sf.net/xbgf

http://homepages.cwi.nl/~ralf/fme01
http://www.cs.vu.nl/grammarware/fst
http://gdk.sf.net
http://slps.sf.net/grk
http://slps.sf.net/xbgf
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VSC2 FST GDK GRK XBGF

add a definition for a bottom nonterminal

add a new definition

add a new definition & fold it

add a production to any nonterminal definition

add a production to the grammar

add alternatives to a choice

change the order in a sequence

do nothing

give a production a label

give a subexpression a selectable name

inject a nillable symbol

inject a terminal symbol

inject symbols to a sequence

inline a chain production

introduce a chain production

introduce a reflexive chain production

introduce several possibly interconnected definitions

merge two nonterminals

merge two nonterminals if their definitions are equal

merge two nonterminals, one of which is bottom

move a production across modules/sections

perform factoring transformation

perform folding transformation

perform massaging transformation

perform narrowing transformation (as in x? to x)

perform specialized automated factoring transformation

perform unfolding transformation

perform widening transformation (as in x+ to x*)

project a nillable symbol

project a terminal symbol

project symbols from a sequence

remove a definition of a possibly used nonterminal

remove a label from a production

remove a production from the grammar

remove a reflexive chain production

remove a selector in a subexpression

remove alternatives from a choice

remove any part of a grammar

remove unused definition

removes one production of a nonterminal (not the last one)

rename a label

rename a nonterminal

rename a nonterminal in a limited scope

rename a selector

replace a nonterminal with one of its definitions

replace a nonterminal with !

replace a terminal with another terminal

replace an expression by a nonterminal that can be evaluated to it

replace any expression with another expression

replace iteration with left-associative equivalent

replace iteration with recursion

replace iteration with right-associative equivalent

replace recursion with iteration

replace the current definition by a new one

separate one nonterminal into several (reverse of merge)

terminate transformation sequence

transpose a multi-production definition to the one with top-level choices

transpose top-level choices to multiple productions

unfold & eliminate

resolve resolve resolve define

introduce introduce introduce introduce

extract extract extract

include include include addV

add add add

addH

permute permute permute

id id

designate

deanonymize

appear

concretize

inject

unchain

chain

detour

import

unite

equate equate

unify unify unify unite*

move

preserve* factor

fold fold fold fold fold

preserve simplify preserve massage

restrict* restrict* restrict* narrow

distribute

unfold unfold unfold unfold unfold

generalise generalise generalize widen

restrict* restrict* restrict* disappear

abstractize

project

reject reject reject undefine

unlabel

sub sub

abridge

anonymize

removeH

reset reset

eliminate eliminate eliminate reject eliminate

exclude exclude exclude removeV

renameL

rename rename rename renameN

substitute substitute replace*

renameS

downgrade

delete delete replace*

renameT

upgrade

replace replace replace replace

lassoc

preserve* yaccify

rassoc

preserve* deyaccify

redefine redefine

separate seperate separate

fail fail write dump

horizontal

vertical

inline

Table 5.8: Systematic comparison of grammar transformation operators provided by dif-
ferent frameworks
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syntax (e.g., substitute, reset), or it is too low-level in the sense that all major application
scenarios are covered by more specialised operators (e.g., add, sub), or it is not currently
implementable (e.g., move—modules are not fully supported in our infrastructure), or it
was simply not needed and perhaps debated so far (e.g., delete, id, separate, also known
as FST’s seperate; see the table for the typo).

There is generally a tension between the number of transformation operators vs. the
achievable precision of a transformational program in terms of expressing intentions, and
thereby enabling extra sanity checks by the transformation engine. Consider, for exam-
ple, the line “add a production to the grammar”. This low-level idiom may be used to
include another production into an existing definition, or to add one or more productions
in an effort to resolve a missing definition, or to introduce a definition for a so-far fresh
nonterminal. In GRK, all these idioms are modelled by add, and hence no intentions
are documented, and no extra checks can be performed automatically. In the case of
XBGF, we have indeed tried to separate idioms aggressively. This approach also helps us
with predicting the formal properties of each application of transformation operators (i.e.,
semantics-preserving, -increasing, -decreasing, -revising), and chains thereof.

5.9.3 Grammar engineering

Let us also discuss some additional related work on grammar engineering [141] in a
broader sense. We begin with metrics which are used by various recovery approaches
and other work on grammar engineering. We want to highlight [6, 58, 135, 150, 174].
Our work leverages simple grammar metrics (numbers of bottom and top nonterminals)
and grammar-comparison metrics (numbers of nominal and structural differences) for pro-
viding guidance in a grammar convergence context.

An interesting blend of recovery and convergence (or consistency checking) is de-
scribed in [21] where precedence rules are recovered from multiple grammars and
checked for consistency. At this point, grammar convergence (in our sense) does not
cover such sophisticated convergence issues. In fact, our approach is, as yet, oblivious to
technology-specific representations of priority rules (as used in, say YACC or SDF). We
could potentially detect priority layers in plain grammars, though.

An alternative to grammar recovery is the use of a flexible parsing scheme based on
advanced error handling [12, 13, 142], subject to a baseline grammar. Because of flexible
parsing, the grammar could also be used to parse a dialect; no precise grammar is needed.
Also, code with syntax errors can be handled, which is important in some application
areas such as reverse or re-engineering of legacy code.

There are approaches to connect the technical spaces of grammarware and modelware
in a manner that can be viewed as a form of grammar convergence. That is, the parser
may be obtained from the (meta)model based on appropriate metadata and mapping rules,
using a generative approach [134, 192]. We also use the term model-driven parser de-
velopment for these approaches. The point of grammar convergence is that it provides a
very flexible means to represent relationships between grammar-like artefacts from differ-
ent technical spaces—without enforcing a particular scheme of designing grammar-based
artefacts.
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5.9.4 Schema/metamodel comparison
Grammar comparison, as it is part of grammar convergence, can be loosely compared with
schema matching in ER/relational modelling [49, 212] as well as model and metamodel
matching or comparison in model-driven engineering [62, 248, 254] (specifically in the
context of model/metamodel evolution). However, our current approach to comparison
(as of section 4.5) is relatively trivial, and does not make any contribution to this subject,
not even remotely.

A simple comparison approach was sufficient so far for two reasons:

� The metamodel of grammars is relatively simple. All of the possible grammar
knowledge sources listed in subsection 4.4.1 contain less components than a typical
ontology. Our conscious choice was to limit ourselves to the most widely used
concepts: classes like “production”, “expression”, “nonterminal” and “terminal”,
attributes like “production label” and “expression selector” and the axioms of the
formal grammar theory. This allows us to solve a relatively large set of problems
with little effort.

� The metamodel of our alignments is extremely simple. As it was explained in sec-
tion 4.5, we only require to determine nominal differences (subject to the compar-
ison of defined nonterminal names) and structural differences (subject to matching
alternatives). We do not make distinctions between matchings that represent sim-
ilarity and mappings that can be proven. At this moment we also do not support
heterogeneous alignments that can, for example, successfully and gracefully con-
verge selectors in one grammar with nonterminals in another.

Currently we have shown some results that can be obtained with these two simple
metamodels and semi-automated programmable transformations (alignments, relation-
ships). We will need a more advanced comparison machinery once we aim at the partial
inference of grammar transformations. In this case, grammar convergence should benefit
from previous work on schema matching and metamodel comparison.

5.9.5 Coupled transformations
Grammar convergence relates to mappings in data processing [160, 230], specifically to
the underlying theory of data refinement, and applications thereof [5, 40, 87, 190, 199]. In
data refinement, one also considers certain well-defined operators for transforming data
models. These operators must be defined immediately in a way that they can be also
interpreted as mappings at the data level so that instance data can be converted back and
forth between the data models that are related by the transformation.

Inspired by data refinement, all semantics-preserving and -decreasing operators for
grammar transformation can also be interpreted at the AST level, and we experiment with
such an interpretation, which opens up new applications for grammar convergence. For
instance, one could replace the parser of a given program with another parser, even when
their AST types are different. That is, the convergence transformations would be executed
at the AST-level as a kind of conversion.
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Data refinement is actually a specific and highly disciplined instance of so-called
coupled transformations, which are characterised to involve multiple kinds of software
artefacts (such as types vs. instance data vs. programs over those types) that depend
on each other in the sense that the transformation of one entity (of one kind) necessi-
tates a transformation of another entity (of another kind, potentially) [157]. For instance,
[14, 33, 85, 159, 237, 243] are concerned with coupling for data models or metamodels vs.
instance data or models; [35] are concerned with coupling for data models and programs
over these data models. Again, we expect that the extension of grammar convergence to
cover classes of coupled transformations may potently enable new application areas for
the convergence method.

5.10 Concluding remarks

We have provided the first published record of recovering and representing the relation-
ships between a priori given sized grammars that serve different audiences (language users
and implementers) and that capture different versions of the language. Recovery is based
on a systematic and mechanised process. The approach carefully distinguishes grammar
refactoring, extension, correction and relaxation. Our results indicate that consistency
among the different grammars and versions even for a language as complex as Java is
achievable.

The recovery and representation of grammar relationships is based on a systematic
and mechanized process that leverages a priori known grammar bugs, grammar metrics
(e.g., for problem indication), grammar comparison for nominal and structural differ-
ences, and most notably, grammar transformations. We carefully distinguish transforma-
tions for grammar refactoring, extension, correction and relaxation.

While the JLS situation required the recovery of grammar relationships, ultimately,
such relationships should be maintained for a given network of software artefacts with
embedded grammars. That is, the relationships should be continuously checked and pos-
sibly updated along dependent or independent evolution of the involved artefacts. For
instance, one may consider the “more readable” grammar as the primary artefact, and
generate the “more implementable” grammar in a semi-automatic, model-driven manner
[134].

The approach, as it stands, faces a productivity problem. The transformation part
of grammar convergence requires substantial effort by the grammar engineer to actually
map any given grammar difference into a (short) sequence of applications of operators
for grammar transformation. Simple productivity gains can be expected from advanced
tool support. We currently rely on basic batch execution of the transformations. Instead,
the transformations could be done interactively and incrementally with good integration
for grammar comparison, transformation and error diagnosis. Other productivity gains
are known to be achievable by means of normalisation schemes (cf., de-/yaccification in
[132, 154]).

However, ultimately, we need to provide inference of relationships (in fact, transfor-
mations). Such inference is involved because the process involves elements of choice that
we need to better understand before we expect reasonable results. For instance, when two
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syntactic categories are equivalent under fold/unfold modulations, then the grammar engi-
neer is likely to favour one of the two forms—this calls for either an interactive approach
or appropriate notions of normal forms or rule-based normalisation.

Perhaps the most exciting, remaining problem is to provide a proper formal argument
for the “minimality” of the non-semantics-preserving transformations that are involved
in a convergence. Currently, we use the pragmatic approach to first align nonterminals,
then to align alternatives (by structure) as much as possible, and finally to break out of
refactoring and allow ourselves presumably local non-semantics preserving transforma-
tions. However, there is no formal guarantee currently for not facing a false positive
(“a presumed language difference that is none”). That is, one may accidentally engage
in semantics-revising transformations even though the relevant syntactic categories are
equivalent, but nonterminal symbols or alternatives are confused by the grammar engi-
neer. Formally, the desired notion of minimality is limited by the undecidability of gram-
mar equivalence, but we are confident that a practical strategy can be devised based on
appropriate static analyses of the transformations and the involved grammars.



Chapter 6

Language documentation

Standards-making is not the deadly
dull activity that it is popularly
supposed to be.

Brian L. Meek, 1994 [180]

Language documents have been used in both case studies presented so far: chapter 3
recovered a working C# grammar from ECMA language standard, chapter 5 used Java
Language Specification as a source of grammar knowledge. However, up to this point
we considered language documentation a read-only artefact, we did not intend to create
it, change its structure or delegate any grammar changes back to it. The purpose of this
chapter is to cover these topics, motivated by conclusions drawn from software engineer-
ing theory and practice.

Upon analysing and reverse engineering a wide range of language documents from
international ISO-approved standards to vendor-specific 4GL manuals we have designed
a general schema capable of covering all features necessary for composition of such lan-
guage documents. Having combined this document schema with a formalism for syntax
definition presented in earlier chapters, we achieved a working prototype infrastructure
to extract, create and transform consistent language definitions. Furthermore, we will
discuss an organised process in which consecutive versions are obtained by employing
changes to language documentation.

The next chapter will serve as a case study for us: it is a result of applying our in-
frastructure with semi-automated programmable language transformations to XBGF, the
grammar transformation language mentioned, utilised and partially described in Chapters
4–5. XBGF is a language, and its manual was composed in a way that we propose for
all language specifications. Thus, chapter 7 and its online version [261] were fully gen-
erated from the corresponding language document; section 6.7 explains the details of this
process.

131
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6.1 Motivation

Language grammars always exist in a context, even in the purest examples of grammar
convergence from the previous chapters we had to dedicate considerable space to explain
the details of grammar extraction. In practice all mainstream languages are somehow stan-
dardised, meaning that it is possible to obtain a grammar of any significant programming
language from its documentation and use the textual annotations to resolve ambiguities
and clear misunderstandings.

Defining a programming language in a standardised specification is often considered
as a process that is executed just once. The dynamic and evolving nature of programming
languages is underestimated and overlooked. Not only software itself, but programming
languages that are used to make it, evolve over time. This process usually comes naturally
in the sense that the first version of a language does not have all the features desired by
its creator, or new features arise that seem quite appropriate to add, or better ways of
achieving the same goals are invented or developed. However, it is important for that
process to be guided and controlled in order to take full profit of it.

For certain languages this process is placed under governance of International Stan-
dardization Subcommittee for programming languages, their environments and system
software interfaces: ISO/IEC JTC1/SC22 [100]. As described in detail in section 2.11,
there are organisations like ANSI [7], ECMA [60], IEEE-SA [93], IEC [92], ITU [122],
IETF [96], OASIS [194], WSA [253], W3C [242] that occasionally assist or replace
ISO [97] in this field.

A language specification (programming language standard) is a complex docu-
ment that may consist of hundreds of pages: the latest COBOL standard, ISO/IEC
1989:2002 [113], has more than 800 pages; the latest C [119] and C# [115] standards con-
tain over 500 pages each, C++ draft is already well over 1100 pages [110]. It is important
to note here that it has not always been like that. For example, the Algol 60 standard [10]
is not much longer than 30 pages and yet it claimed to contain a complete definition of
the language. However, programming languages evolve, their specifications grow in size
and it is not possible anymore to keep them easily understood and maintainable while
keeping them also short. Complicated structure of modern language documents reflects
the complicated structure of modern programming languages. Writing and maintaining
such a document and keeping it consistent is as complex as writing and maintaining a
large software system—these processes have a lot in common.

There are tools like parsers and compilers which development is based on a language
specification. If the language specification progresses with inconsistencies that may or
may not be noticed and resolved in time, this can lead to non-conformance. If the evolu-
tion of the language specification is not fast enough, the developers or such derived tools
have to make their own decisions and resolve the conflicts as they arise—this eventually
yields a vendor-specific language dialect. As of now, it has not yet become a techno-
logical bottleneck to keep up with tool development (since making these tools is a very
time consuming process performed by every compiler vendor independently), yet there
are organisational bottlenecks that will have to be dealt with in this chapter.
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6.2 Contributions
� We have deeply analysed a big number of language documentation artefacts, in-

cluding language standards such as [30, 36, 112, 113, 114, 115, 185, 195, 225],
language specifications such as [75, 184, 208, 209], language reference manuals
such as [1, 86, 89, 98, 131, 139, 183, 215, 232], internal documents of standardi-
sation bodies such as [7, 60, 97, 121, 194, 242], as well as more general yet well-
structured software engineering books such as [73] and research attempts such as
[9, 31, 50, 51, 66, 67, 76, 112, 123, 176, 144, 201, 250, 252], reverse engineered
their intended internal structure and presented the comparison result in Table 6.1,
Table 6.2 and accompanying text.

� We have designed Language Document Format, a generalised data model suitable
for handling all features found in the analysed language documents. A transforma-
tion language capable of performing basic manipulations with language documents
was also designed and presented. We have also laid out the mapping between XML
Schema and Language Document Format.

� We have developed a prototype infrastructure for creating, maintaining and trans-
forming language documents based on the above mentioned data model and the
transformation language. An automated XSD to LDF extractor is also part of the
tool set.

� A number of case studies have been examined by re-implementing them within
the proposed infrastructure. The most remarkable ones were included in the thesis
as its parts: chapter 7 (XBGF), subsection 4.10.1 (LCF), section 6.5 (LDF) and
section 6.6 (XLDF).

The concepts of handling language documentation with technical discipline and pro-
viding proper tool support were formulated on an early stage of research as Language
Standardization Needs Grammarware [143]. The paper titled Language Convergence
Infrastructure [259] being published the post-proceedings of 3rd International Summer
School on Generative and Transformational Techniques in Software Engineering in-
cluded a more up-to-date view, with an extended abstract already published in the pre-
proceedings as [258] and reported at the aforementioned summer school. Language Doc-
umentation: Survey and Synthesis of a Unified Format [262] is accepted for publication
at the 3rd International Conference on Software Language Engineering. The complete
description of LDF and XLDF is publicly available through the Software Language Pro-
cessing Suite [263]. The conceptual prerequisites of this chapter were formulated in col-
laboration with Dr. Steven Klusener (Vrije Universiteit Amsterdam) and delivered with
his help to the ISO SC22 committee in 2005. [262] was co-authored with Prof. Dr. Ralf
Lämmel.

6.3 Grammar definition formalisms
It was noted as early as in 1958 [9] that having a metalanguage for defining the set of legal
programs is necessary. Later work [252] on streamlining this metalanguage was standard-
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ised as [112], unlike other attempts to extend BNF [31, 123, 250]. The results were widely
accepted: the ISO standard is not being used directly, but rather changed and used in a
form of various dialects. There are also later research attempts for extending BNF, such
as Augmented BNF, or ABNF [201], which allows for rule-level modularity—alternatives
can be added at separate lines without changing the original production and accurate limits
on repetition—arbitrary numbers instead of just (0,∞) and (1,∞); or Translational BNF,
or TBNF [175], which is basically EBNF enhanced with a possibility of specifying the
structure of the abstract syntax tree.

Table 6.1 shows how different symbols and used in different ways in several real
language definitions for well-known languages like C, C++, C#, Java, FORTRAN, etc.
The top part of the table has metalanguage symbols proposed by the ISO standard [112],
the bottom part is introduced here.

The table contains four different kind of arrows to show indentation. ↓ means the
next line starts at the same position the right hand side of the previous line started. In the
following example C and D, as well as E and F, are separated by ↓:

↓
A: B C

D E
F G

←↩ means the next line has less leading whitespace than the previous line, ↪→ means
it has more. For instance:

←↩ ↪→
A: B C A: B C
D D

↙ means the next line is empty and the line following the next one has no leading
whitespace.

↙
A: B C

D: E F

The rest of this section discusses the table from Table 6.1 in detail.

6.3.1 Defining and separating symbols
There were three metasymbols of this category discussed in [112]: defining-symbol that
signals the start of a new production; definition-separator-symbol that separates choices
within a production; and terminator-symbol that shows the end of a production.

From Table 6.1 we can see the most widely used character for defining-symbol is a
colon (:). Because of its de facto acceptance, it was also used in LLL [149] that was
presented in the examples of one of the previous chapters, as well as in pretty-printed
BNF representation of BGF files. BASIC standards are special here in a sense that they
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defining :≡ ::= : : : : =,> is ::= :
definition-separator or | ↓ ↓ ↓ ↓,| / or | |
start-group ( ( ( ( (
end-group ) ) ) ) )
start-option [ [ [ [
end-option ] ] ] ]
start-repeat } {
end-repeat { }
repetition *,+ * . . . . . . *,+
terminator ←↩ ←↩ ↙ ↙ ↙ ↙ ←↩ ←↩ ←↩ ←↩
start-nonterminal < <<† 〈
end-nonterminal > >>† 〉
start-terminal ’ ‘ "
end-terminal ’ ’ "
nonterminal-font a a, a a a a a a a a a a
terminal-font a a a a a a A a a a a
optionality opt opt opt ? ?
line-continuation ↓ ↓ ↪→ ↪→ ↪→, ↪→, ↓ ↪→, ↓ ↪→

←↩ ←↩ �↓�

Notes:
† Smalltalk language manual uses <<a>> notation for syntactic categories of program
grammar, <a> for syntactic categories of method grammar and simply a for lexical non-
terminals.

Table 6.1: BNF dialects. The top part of the table has metalanguage symbols proposed
by the ISO standard for EBNF [112], the bottom part is introduced by this thesis.
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use two kinds of defining-symbols: the one that is meant to introduce a new definition and
the one that adds alternatives to an existing one—a useful feature for language extensions.

Wirth’s hope for a widespread tangible terminator-symbol was not met, as seen from
the table. Most grammar engineering and transformation kits and methodologies like
GDK [149], GRK [158], YACC [128], ANTLR [202], TXL [39] do have such a symbol,
but it is rarely seen in language documents that prefer to rely on layout. Most of the time
the terminator-symbol is just a newline character or double newline.

The need for a local choice metasymbol was not anticipated in early works like [9].
It is not shown directly in the table, but the definition-separator-symbols used in early
standards are actually only meant for separating top choices, not inner choices. In mod-
ern standards this role is usually fulfilled with special indentation, while the vertical line
character (|) is used only when local choices are needed. Also its positioning matters: for
instance, Full BASIC standard [109] by ISO [100] is made almost unreadable by placing
its definition-separator-symbol, the solidus (/), at the end of the line, making it very easy
for a human reader to overlook and to misread as line continuation (compare Listing 6.1
with Listing 6.2).

Scheme programming language standard [95] by IEEE uses an approach that does not
need defining and separating symbols. It presents only one formula at a time and has a
unified notation for code examples, metaformulæ and evaluation examples. Thus, a BNF
formula is identified by the syntax keyword placed at the end of it.

Listing 6.3 demonstrates the way BGF deals with productions and choices. The XML
form shown here was derived automatically from [78, §4.2] by the extractor from chap-
ter 5, with its plain text counterpart generated by an XSLT pretty-printer.

6.3.2 Optionality metasymbols

[112] had two kinds of metasymbols for this category: start-option-symbol and end-
option-symbol, with the third one introduced in this thesis: an optionality-symbol.

An optionality-symbol is a character or a token-forming line of characters that desig-
nate one immediately preceding symbol as optional. I.e., if start-option-symbol is [ and
end-option-symbol is ], then optionality-symbol ? can be defined as follows:

6. ask-object > WINDOW boundary-variables /
VIEWPORT boundary-variables /
DEVICE WINDOW boundary-variables /
DEVICE VIEWPORT boundary-variables /
DEVICE SIZE numeric-variable comma
numeric-variable comma
string-variable /
CLIP string-variable

7. boundary-variables = numeric-variable comma
numeric-variable comma
numeric-variable comma
numeric-variable

Listing 6.1: BNF in Full BASIC standard [109, page 8].
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33 R202 program-unit is main-program
34 or external-subprogram
35 or module
36 or submodule
37 or block-data
38 R1101 main-program is [ program-stmt ]
39 [ specification-part ]
39 [ execution-part ]
39 [ internal-subprogram-part ]
39 end-program-stmt

Listing 6.2: BNF in Fortran standard [36, pages 26–27].

<bgf:production>
<nonterminal>PrimitiveType</nonterminal>
<bgf:expression>

<choice>
<bgf:expression>

<nonterminal>NumericType</nonterminal>
</bgf:expression>
<bgf:expression>

<terminal>boolean</terminal>
</bgf:expression>

</choice>
</bgf:expression>

</bgf:production>

PrimitiveType:
NumericType
"boolean"

Listing 6.3: BGF: a sample production from [78, §4.2] in XML and pretty-printed forms.
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a? ≡ [a]

In the case when a BNF dialect has optionality-symbol but lacks start-option-symbol
and end-option-symbol, a nontrivial set of symbols can only be made optional by grouping
them or extracting them into a separate nonterminal. Ergo, optionality-symbol is less
expressive.

As seen from Table 6.1, BNF dialects tend to have exclusively either optionality-
symbol or start- and end-option-symbols, but not both.

6.3.3 Iteration metasymbols
ISO EBNF [112] had all three kinds of metasymbols explained for this category: start-
repeat-symbol, end-repeat-symbol and repetition-symbol.

The most used iteration type is, of course, the reflexive transitive closure, also called
Kleene closure, that is traditionally represented by a star in the formal languages theory
and by curly brackets as start- and end-repeat-symbols.

Some of the language specifications such as Smalltalk manual [220] also use transitive
closure and designate it by a plus symbol. There is no counterpart for this in start- and
end- symbols.

Another form of notation used for repetitive constructions is an ellipsis. For instance,
in Scheme specification [95], there are two uses for it:

〈expression〉 . . . ≡ 〈expression〉+

and

〈clause1〉 〈clause2〉 . . . ≡ 〈clause〉+

In FORTRAN [36] committee draft a somewhat different usage was observed:

[digit] . . . ≡ digit∗ (6.1)

And, obviously,

digit [digit] . . . ≡ digit+

Since it is known from language theory that

∀a a?+ ≡ a?

. . . is the same as +, but in practice constructions like the left hand side of Equation 6.1
cannot be mapped directly as ?+ because that would change the structure of the parse trees
and introduce unnecessary ambiguities.

Advanced syntax definition formalisms also have lists with separators, which are iden-
tified by a type of iteration as well as by a separator between every entity in the list. For
example, in SDF [86]:

{a s}+ ≡ a (s a)? ≡ (a s)? a
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Lists with separators as a notational extension were not encountered in language man-
uals, but lists with separators as a syntactic construct are quite common for many lan-
guages. The SDF’s {a s}+ was the only binary confix metasymbol that we have seen.

6.3.4 Grouping symbols

In order to enrich the metalanguage enough to enable local choices and collective closures,
two metasymbols are used to mark the start and the end of a group. This feature does
not add anything to the expressive power of the EBNF dialect, since any group can be
extracted to serve as a separate nonterminal. However, it improves grammar readability
and does not hinder metalanguage complexity because of its simplicity.

It is worth mentioning here that the grammars of C, C++ and C# avoid grouping and
they also lack start-repeat-symbol and end-repeat-symbol, thereby enforcing a specific
grammar engineering style (the above mentioned nonterminal extraction). In chapter 5,
when grammars written in such style needed to be converged with grammars written with
the use of repeating constructs, it led to a huge number of inline commands in XBGF
scripts, as seen in Table 5.6.

6.3.5 Distinguishing terminals

Wirth [252] pointed out the necessity for quoting the terminal symbols of the language so
that their set does not pose any limitations on the character set allowed for metasymbols
and nonterminal symbol names. As we see from Table 6.1, this is rarely done in our days
by using the conventional quotation marks. However, since we are no more limited to
fixed type fonts and hand-written formulæ that can be easily misinterpreted, it is becoming
common to distinguish between terminals and nonterminals by font face. The remaining
two standards that have neither of the above are ISO BASIC [109] and IEEE Scheme [95].
The latter still has a mechanism for distinguishing nonterminals, so the only consequence
for it concerns metalanguage symbols. In Full BASIC standard, all terminals must be
typed in in upper case, while the nonterminals stay low case alpha-numeric, and that is
how the distinguishing is made.

BGF is an XML dialect, and as such, it is self-documenting: any subtree belongs to
a certain known type. Therefore, terminal symbols are also distinguished naturally: they
will be encountered within <terminal> · · · </terminal> tags and pretty-printed
with surrounding double quotes.

6.3.6 Distinguishing nonterminals

In order to simplify EBNF parsing even further, nonterminals can have a special syntactic
form too. While Algol [9] and Scheme [95] just use angle brackets, Smalltalk [220] speci-
fication takes it to a new level. ANSI Smalltalk uses italic font for non-lexical bottom sorts
(called “atoms”) that are left undefined in the abstract grammar, but must be somehow de-
fined in any concrete grammar that is based upon it. This is a unique feature—remember
that in chapter 5 we needed an analysis script to collect the bottom sorts. That standard
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also uses three different notations: the bracket-less one for lexical nonterminals; single-
bracket and double-bracket ones for context-free nonterminals of different scope.

In BGF, nonterminals are wrapped in <nonterminal> · · · </nonterminal>
tags.

6.3.7 Breaking up long lines

When the language structure is so sophisticated that one needs long EBNF formulæ, it
is possible they will not fit on one physical line. In that case, there should be means to
continue on the next line without stopping the production. Algol, Smalltalk and BASIC
use ↓ to signal line continuation. Since that was already reserved for definition-separator-
symbol in C, C++, C# and Java specifications, they increase indentation after the newline
(denoted as ↪→). Java Language Specifications [77, 78, 79] also let the indentation vanish
after the newline—this is not a documented feature, it was discovered during the conver-
gence of JLS grammars in chapter 5.

FORTRAN standard [36] defines line continuation explicitly by a halmos (�), but
in the syntax rules themselves it is used quite inconsistently and often replaced with a
newline and indentation shift (↪→).

It should be noted here that the way we group the language documents according to
their EBNF dialects, does not necessarily correspond to the trivial groups in real life (by
language family, by standardisation body, etc). For example, ↓ is a definition-separator
symbol in C specification, but a line-continuation symbol in BASIC specification, both
being ISO standards designed by adjacent ISO committees.

6.3.8 Documenting the grammar

ISO EBNF standard [112] proposed to enrich the EBNF as such with comments. This was
not adopted in any of the language specifications we have seen, since essentially the whole
language specification is a commentary on the set of grammar productions. However, this
feature is present in almost all grammar engineering and transformation frameworks that
use EBNF dialects internally as a programming language.

BGF does not have any documentation facility except the standard XML one: <!--
· · · -->.

6.3.9 Beyond BNF

As it was shown, there are huge differences even within something people call BNF or
EBNF. Also note that the examples were chosen mainly from standards from the last
decade: the divergence would have been explicable for artefacts from early 1970s when
languages were invented on a rate of one per week [246] and there was an obvious un-
necessary diversity of notations for syntactic definitions [252]. Some of the BNF dialects
have names: e.g., BNF used in Switching System Language (SSL) was referred to as
SBNF (SSL BNF) in [219], most are nameless and only exist in the scope of one lan-
guage definition.
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Figure 6.1: Railroad tracks from Micro Focus COBOL language manual [182, page 3-
87].

ISO standards like STEP [99] or EXPRESS [98] still use Wirth syntax notation
(WSN), which was a direct precursor of EBNF [252]. Most of the diversity we see now
is nothing more than a legacy. Early Basic had all lines in the source code numbered, so
the grammar rules were numbered as well, it seemed like an obviously good idea at the
time. Early Fortran had tremendously strict formatting policy, hence the indentation rules
for their BNF dialect. Java was born in mid 1990s, when the word editors, both WYSI-
WYG and otherwise, started to provide the user with lots of new functionalities, so they
used different font faces and font sizes, and later it spread to specifications of C# and ISO
C/C++.

All these notations and hundreds more are semantically equivalent to EBNF and are
either as powerful as EBNF or slightly weaker in expression power due to idiosyncratic
design choices. This allows for creation of grammar extractors that can help migrate gram-
mars specified in different formalism to one standardised EBNF like [112]. In the scope of
this thesis, a number of grammar extractors were developed and published online as a part
of Software Language Processing Suite [263], for the complete list see subsection 8.3.5.

There is a number of syntax definitions that use a visual notation: e.g., Micro Fo-
cus COBOL [183] uses so called “railroad tracks” (Figure 6.1), syntax diagrams with
terminals and nonterminals as nodes and their possible relations and combinations as ar-
rows. These variations can be considered distant dialects of BNF in theory [76], but can
prove to be very difficult to extract and transform in practice due to their graphical nature.
There are also formalisms that cannot be easily mapped onto BNF. One of them that has
a chance to enter the world of standardisation in the future is Parsing Expression Gram-
mar [69] that can be converted directly into a recursive descent parser with exponential
parsing time (unacceptable performance due to unlimited lookahead). Optimised versions
use so called packrat parsing [68, 82] that makes the performance acceptable, but there
are still different kinds of problems impeding its widespread use. Some of the obstacles,
like the ban on left recursion, are being eliminated by recent research results [172].

6.4 Unified language document data model
The last section has shown how BNF [9] and EBNF [252] dialects are used in contempo-
rary language documents. The ISO standard for EBNF [112] can become the consolida-
tion point for those language engineers who want to use one generally accepted notation
instead of including its variant description in every specification. We neither make solid
proposals for adapting or improving ISO EBNF, nor provide any migration tools to extract
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grammar knowledge in known notations. However, some of the extractors developed in
the scope of this thesis can be considered as such tools: most importantly, BNF/HTML
extractor used for Java Language Specification in section 5.4 is the closest of all. The
comprehensive list of all extractors in included in the conclusion.

ISO EBNF in its current state lacks features utilised by some language standardisers
(and those that the others can utilise), and programming languages subcommittee SC 22
does not enforce its usage within its working groups. It should also not be forgotten that
ISO EBNF is a language specification itself, and should be created as such: consistently
and with good semi-automated support.

From this point on we assume to have an EBNF-like notation to rely on when speci-
fying grammar knowledge. This notation should support basic features discussed above:
specifying nonterminal definitions, distinguishing terminal symbols, expression iteration,
etc. In the working prototype BGF (see section 7.4) was used, but there have scarcely
been any idiosyncratic steps.

6.4.1 Combining existing practices into one model
In Table 6.2 a comparison is presented of a set of language specifications. This selection
has been specifically composed of sufficiently different language documents, coming from
varying standardisation institutions and using different presentation traditions. Excerpts
from these standards cannot be presented here due to copyright limitations.

� ANSI Smalltalk [220] is an NCITS J20 draft of 1997, 300+ pages long, it describes
both the language (ANSI Smalltalk is derived from Smalltalk-80) and the Standard
Class Library.

� Two IBM manuals for fourth generation languages: JCL [91] and Informix [89]—
are perfect examples of industrial standards, they are extremely strictly structured,
contain minimum extra sections and have impressive volume: 700+ and 1000+
pages. JCL spec uses EBNF dialect and Informix spec does it with railroad track
syntax diagrams.

� MOF Core Specification [197] is a 90-pages long document describing Meta Ob-
ject Facility. It uses UML and presents the information is a significantly different
way, being oriented on diagrams, properties, operations and constraints. However,
the overall information structuring turns out to be similar to conventional (E)BNF-
based standards.

� JOVIAL, or J73 [185] is a Military Standard of 1984, which “has been reviewed
and determined to be valid” in 1994. It is approved for use by the Department of
the Air Force and is available for use by all other Departments and Agencies of the
Department of Defense of USA. The version that was examined for Table 6.2 is a
result of a second upgrade of the original language, of which we failed to acquire
the specification. It is less than 200 pages and very strictly composed: basically
every section has a syntax, semantics and constraints subsections, with rare notes
or examples. A traditional BNF is uses for syntax, plain English for semantics.
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� Design Patterns: Elements of Reusable Object-Oriented Software [73] is a well-
known book by Erich Gamma et al., which defines 23 design patterns that every
mainstream programmer is familiar with. Since design patterns can be considered a
special language, their definition can be considered a language document—and the
table only proves that, letting the 400 pages long book’s structure fit in the general
data model perfectly.

� C# standards [114, 115, 225] are known to the reader since chapter 3. The ECMA
version used for this comparison is 550 pages long and very loosely structured,
explaining a lot of issues in running text and using arbitrary subsectioning.

� The structure of XPath W3C Recommendation [15] is quite volatile, following
the tradition of all other W3C recommendations. Each section contains one or
several EBNF formulæ, the definition for a domain concept modelled by it and a
body of text organised arbitrarily in lists and subsections. Examples are preceded
by English introductory sentences like “here are some examples:”.

The table contains our best effort in extracting the structure from the language docu-
ments listed above. We reflect on the structure as such and do not make any claims about
the consistency of its usage—i.e., if there is a section called “default” somewhere in the
C# specification, we record that fact without checking that indeed all default values are
only encountered within such sections. “—” denotes the absence of the information that
was meant to be in the corresponding section—i.e., the MOF standard contains no exam-
ples, the Informix standard contains no semantical explanations. “∼” denotes the lack of
a separate structural element for the category when the information itself is still found in
running text or as a part of neighbour or parent sections—i.e., the synopsis (brief descrip-
tion of the topic) was mostly present in all specifications, but rather as a first sentence of
every section, preceding all others. For us the distinction between “—” and “∼” is impor-
tant since the decision to not make a particular information portion into a separate section
in the final document is a presentation decision, independent of the real internal structure.

The rows in the upper side of the column represent the subsections of any structured
section (see subsection 6.5.13). The value is any fixed value that can be bound to a sec-
tion but is not structured itself—for example, some sections in JCL specification about
parameters have a designated “parameter type”. The list is a simple list of items or a list
of definitions. The section is a textual block that was for some reason shaped into a sec-
tion but does not fall into any of the standard categories—for instance, §3.5 Comparison
Expressions of XPath recommendation contains sections about value comparisons, gen-
eral comparisons and node comparisons. This notion is close to the notion of a “topic” in
DITA [195]. The subtopic is a fully structured subsection that can have its own synopsis,
definition, etc.

The schema that is presented in the forthcoming sections deliberately does not impose
any specific order of the sections that have just been explained. This is done because it has
been seen in practice that the order is not the same for all existing language definitions, and
insisting on any specific one would be limiting. Instead, we allow any order in the XML
file and defer the ordering to the presentation layer (XSLT in the current infrastructure).
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6.4.2 LDF benefits
Using our infrastructure has certain benefits that were mentioned earlier in passing, but
the most important examples are collected in the following list. In parenthesis we give the
names of the affected language documentation qualities from section 2.10.

� The grammar included in the language documentation is correct notation-wise,
since it is defined with BGF. It is also correct parsing-wise, if completed with nec-
essary details like definitions of lexical categories. (Usability, integrability).

� A working parser can be generated directly from the grammar taken from the LDF
document. (Usability, learnability).

� Various checks and analyses can be performed on the grammar directly, without the
tedious and nontrivial grammar recovery step. (Integrability, searchability, main-
tainability).

� Samples included in the LDF document are marked as such, which allows for their
automated extraction and validation by parsing with the attached grammar. (Us-
ability, integrability).

� An LDF document can be pretty-printed automatically to generate a classic PDF
document at any time. Other output formats such as TEX, DocBook or HTML are
also possible. (Usability, readability).

� If anyone decides to change the resulting PDF design, layout or any other presen-
tation features, the document itself need not be touched. A separately developed
pretty-printer can take the same document and present it differently (e.g., apply
restrictions imposed by the standardisation body). (Operability, maintainability).

� Summary entities like tables of contents or collected grammar productions are
stored as placeholders and generated on the fly. There is no redundancy and no
manually performed error-prone actions involved. (Operability, browsability).

� Change documents encapsulating the delta between two consecutive versions of a
language can refer to sections and paragraphs more exactly and be treated as se-
quences of technical commands, not as verbal descriptions. (Maintainability, ex-
tensibility, learnability).

� Generic actions can be performed error-free on subsets of LDF nodes like “all for-
mulæ”, “all figures”, “all NB remarks”, etc. (Maintainability, reusability).

6.4.3 Alternative approaches
Publishing-oriented approaches operates in terms of “documents”. For them, a lan-
guage specification is a textual document like any other, it is edited by a designated per-
son who manually adds text to it, reorders sections, performs layout and formatting opera-
tions. The course of action for such an editor is described in a separated so-called “change
document”. A change document can be created before the actual change takes place or
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directly after it, and comprises a list of intended modifications. Once the editing process
reaches a certain milestone, a new “revision” is delivered and stored in the archive. Once
all the modifications approved by the language design committee are brought upon the
main document, a new “version” is delivered and officially distributed within the terms
of its license. This approach tends to utilise programs like Adobe Framemaker (ISO/IEC
JTC1/SC22/WG4 [101]), Microsoft Word (Microsoft version of C# [184]), etc. It is also
possible to use HTML (early W3C [211]) in such a way that the main document is edited
manually and the changed are discussed and/or documented elsewhere.

This approach puts a lot of stress on the person or people responsible for editing the
main document. All manual edits are error-prone and not easily tested. There is no verifi-
able link between the change documents and the main document revisions. Any structured
content that is a part of a language document must be formatted in a way dictated by the
medium: e.g., the formulæ can only use the symbols available in the font. It is also
common to have several differently organised layers in the infrastructure: e.g., the main
document is edited by one person following the instructions in the change document, but
the change documents circulate in the form of co-authored Word documents.

Structure-oriented approaches operate in documentation domain concepts such as
“chapters” and “sections”. They make use of existing editing software to support mainte-
nance activities. An example of such a documentation support system is DocBook [245].
It is a mature technology which has successful real-life uses and is well-documented. It is
rather helpful as an aid in publishing help files for computer systems: e.g., Microsoft uses
DocBook to generate help files for its Windows applications. PDF, LATEX, Framemaker
and other output formats are also possible — unlike the first type of approaches, this one
uses one central repository which is filled with well-structured data, from which other
formats can be generated on demand.

The separation between the content and its presentation can be sufficient in DocBook
and similar systems. However, their orientation on books as the main medium prevents or
hinders having documents that have several intertwined hierarchies (i.e., a syntax diagram
is a part of a grammar as well as a part of a corresponding section). The instruments for
representing language evolution steps as transformations exist (such as XSLT for Doc-
Book) but rarely used for this purpose.

Topic-oriented approaches operate in terms of “topics” that should be covered in
order for the documentation to be complete. The DocBook counterpart in this group
of approaches is DITA (Darwin Information Typing Architecture) [195] which was de-
signed specifically for authoring, producing and delivering technical information. IBM
uses DITA for their hardware documentation. PDF, HTML, Windows help files and other
output formats are possible. DocBook is a relatively modern technology (2004 versus
DocBook’s 1991), but the toolkits for it are being developed and the documentation is
being written. A more lightweight approach is wiki technology that allows for topics to
be left uncovered, showing explicitly which parts of the documentation are intended to be
written in the future.

A specification of a programming language is not naturally organised in DITA topics
and tasks. The upright investment in defining document schemata in detail before the
first positive results can be seen is also an apparent drawback. For instance, necessary
element types like grammar productions, code examples illustrating language features,
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notes concerning version differences, optional feature descriptions, possible implemen-
tation remarks, language engineering explanations — must all be defined from scratch
before DITA can be applied profitably.

LDF is the closest possible language documentation methodology one can have to
literate programming [147]. We propose to use a data model narrowly tailored to the do-
main, yet to build one base line artefact which is meant for both understanding and formal
specification. Any secondary artefacts such as grammars, test sets, web pages, language
manuals and change documents should then be generated. We also have a prototype for
XLDF, the transformation language for language documents.

6.5 LDF description
A document is essentially a sequence of several parts, such as title page, front matter,
lexical and syntax sections, placeholders for generated content and various lists.

6.5.0.1 Syntax

document:
titlePage frontMatter::anyTopSections lists? lexicalPart?

(core::structuredSection+ |

part::(core::structuredSection+)+)
backMatter::anyTopSections?
annex::structuredSection?

anyTopSections:
topSection?

lists:

frontList+

lexicalPart:

lexicalSection+

6.5.1 Title page
The “title page” can in reality be rendered as several pages, but it contains the basic
information that helps to identify this particular language definition and to distinguish
it from similar documents. In our experience, language standards are either marked as
organisation-created or person-authored ones. In the former case, the document must
contain the name of the organisation and the standard reference number within it (e.g,
ISO 10279). In the latter case, one or more authors are specified. It is also possible to
mark some sections as having been authored by a specific set of authors, but the ones
defined here are the principal authors that identify the specific standard.
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The “topic” of the language document is its pure textual title without the reference
number and status: e.g., “Programming Language REXX”, “Information technology —
Programming languages — Full BASIC”, etc. Either version or edition follows.

According to W3C Process Document [124], each viable specification goes through
the stages of Working Draft (WD), Candidate Recommendation (CR), Proposed Recom-
mendation (PR), W3C Recommendation (REC), with possible continuation to Proposed
Edited Recommendation and decline to Rescinded Recommendation. There has also been
a “Note” status in the past for internal drafts.

IEEE uses different publication types, they are: Changed Designation, Collection,
New Standard Project, Modified New Project, Modified Revision Project, Revision
Project, Adoption in Progress, Approved Publication of IEEE, International Publication,
Trial Use, Amendment, Corrigenda of Standard, Superseded, Withdrawn [94].

ISO/IEC operates with the following standard ratification stages: Approved Work Item
(AWI), Working Draft (WD), Committee Draft (CD), Committee Draft Technical Report
(CD TR), Committee Draft Technical Specification (CD TS), Committee Draft for Vote
(CDV, only for IEC), Draft International Standard (DIS), Final Committee Draft (FCD,
only for JTC1), Draft Technical Report (DTR), Draft Technical Specification (DTS), Final
Draft International Standard (FDIS), International Standard (ISO), Technical Report (ISO
TR), Technical Specification (ISO TS).

Some standardisation bodies like ANSI or ECMA do not have a long list of stages, the
standard there is just either approved or not. Of course, it still can be revised, reaffirmed,
withdrawn or be put into a category of technical reports.

We summarise these and possibly other sets of statuses by the following enumeration.
Conceptually it provides functionality for the same categories, but the concrete wording
may vary (i.e., “errata” vs “corrigenda”, “obsolete” vs “rescinded”). If necessary, the
schema can be extended with more standard publication types or even adapted to fit com-
pletely in some specific standardisation body classification.

6.5.1.1 Syntax

titlePage:

((body number::INT) | author::STR+) topic::STR (version::STR
| edition::STR) status date::STR
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status:
unknown::ε
draft::ε
candidate::ε
proposed::ε
approved::ε
revised::ε
obsolete::ε
withdrawn::ε
collection::ε
trial::ε
errata::ε
report::ε

6.5.2 Standardisation bodies

6.5.2.1 Syntax

body:
ansi::ε
ecma::ε
ieee::ε
iso::ε
iso/iet::ε
itu::ε
ietf::ε
iec::ε
oasis::ε
wsa::ε
w3c::ε

The comprehensive list of all standardisation bodies completed with descriptions of
their work is given in section 2.11.

6.5.3 Placeholders for generated content

Entities such as table of contents can be generated by the infrastructure automatically, en-
suring internal consistency and coherence. However, the language documentation creators
should be able to specify the places where such data needs to be inserted.

6.5.3.1 Syntax
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generated:
index::ε
fullgrammar::ε
listoftables::ε
listofauthors::ε
listofcontents::ε
listofreferences::ε

6.5.4 Front and back matter sections
Whatever the authors deem to be important enough to be put on one of the first pages. For
example, in C# specifications Foreword is about the differences brought to the language by
the current standard, while in the Scheme specification Foreword discusses programming
languages design and demonstrates its principles applied to the forthcoming document.

6.5.4.1 Syntax

Technically speaking, Foreword is not a part of the specification. Instead, it precedes the
specification and introduces it by putting in the proper context.

[foreword] topSection:
simpleSection

The goals of language design are sometimes encountered being explicitly stated in the
language document in one of the informative sections of the front matter part.

For example: ”C# is intended to be a simple, modern, general-purpose, object-oriented
programming language.” (from ECMA 334 3rd edition, page xvii)

[designGoals] topSection:
simpleSection

Scope section explains the context for the language document.

[scope] topSection:
simpleSection

Conformance section defines several levels of compliance by explaining what is a
conforming program and a conforming implementation with respect to this standard.

Definitions for meta-terms like ”shall” and ”should” and their relation to the compli-
ance issue explained above.

[conformance] topSection:
simpleSection

Same as conformance:
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[compliance] topSection:
simpleSection

While conformance/compliance define how external artefacts should conform to this
standard, this section defines how this standard complies with previously existing ones.

[compatibility] topSection:
simpleSection

Notation section defines grammar definition formalism used in the document: mostly
it is about the EBNF dialect.

[notation] topSection:
simpleSection

Formally lined up references to all other standards that are used or referenced to from
within the document.

[normativeReferences] topSection:
simpleSection

This section informally describes how the document is organised, divided into parts
and chapters. Sometimes it explicitly states which sections are normative and which are
informative.

[documentStructure] topSection:
simpleSection

A list of changes brought to the language by the current specification replacing the
previous one.

[whatsnew] topSection:
simpleSection

Placeholders are used to designate places where generated content should be inserted.

[placeholder] topSection:
generated

6.5.5 Simple sections

Innermost sections do not have to belong to a certain pre-defined type (like “synopsis” or
“design goals”), but they can have a title and a possible list of authors which contributed
directly to this section.
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6.5.5.1 Syntax

simpleSection:
title::STR? author::STR? content::simpleText id::STR?

6.5.6 Simple text
Simple text can include paragraphs, formulae, tables, lists, links, keywords, etc.

6.5.6.1 Syntax

simpleText:

simpleTextElement+

simpleTextElement:
empty::ε
text::mixedType
figure::simpleFigure
table::simpleTable
list::simpleList

formula::(ANY+)
sample::((ANY | STR)? src::STR)
production

6.5.7 Simple figures
A figure in LDF can include several presentation variants in different formats. Any of
them can be chosen by the rendering tool: for example, in our prototype, TEX generators
prefer PDF figures while HTML generators tend to prefer PNG ones.

6.5.7.1 Syntax

simpleFigure:
shortcaption::STR? caption::STR source::(type::figureType

(localfile::STR | url::STR))+ id::STR?

figureType:
PDF::ε
PostScript::ε
SVG::ε
PNG::ε
GIF::ε
JPEG::ε
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6.5.8 Simple tables
Tables have header rows (optional) and regular rows, with each row filled with table cells.

6.5.8.1 Syntax

simpleTable:

header::tableRow? row::tableRow+

tableRow:

cell::simpleText+

6.5.9 Simple lists
A list in LDF is nothing more sophisticated than a sequence of textual items.

6.5.9.1 Syntax

simpleList:

item::mixedType+

6.5.10 Front matter lists
6.5.10.1 Syntax

This is a list of definitions for all basic terms needed to understand the document, but
not especially introduced in it. Typical examples include explaining what is a ”program”,
what is a ”namespace”, what is a ”library”, what is ”behaviour”.

[definitions] frontList:
listOfTerms

Acronyms like IEEE, ISO or like CLI, BCL are frequently defined here in a separate
definition list.

[abbreviations] frontList:
listOfTerms

Such an informal introduction to the language is not present in all standards. However,
some specifications contain a list of language concepts with their definitions and perhaps
even some examples. The list is usually not claimed to be exhaustive.
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[languageOverview] frontList:
listOfTerms

listOfTerms:

title::STR? author::STR? term+ id::STR?

term:
name::STR definition::simpleText

6.5.11 Lexical part

Sections describing lexical structure tend to be shorter, less structured inside, and very
limited in scope: there is usually one lexical section dedicated to whitespace, one lexical
section about tokens, one about literals, one about comments, etc.

See the section on grammar notation for more details about how broad even the small-
est aspects (e.g., about line continuations) can vary.

6.5.11.1 Syntax

lexicalSection:
lineContinuations::simpleSection
whitespace::simpleSection
tokens::simpleSection
preprocessor::simpleSection
literals::simpleSection
lexical::simpleSection

6.5.12 Main sections

The main bulk of the information the language document possesses lies in its core sec-
tions: they have more structure than other sections and than their own subsections, so we
call them “structured sections”.

Beside the title, any section can include a list of authors that worked on it: this way
even if the whole document is attributed to a particular company or a standardisation body,
the main contributors can be attributed.

6.5.12.1 Syntax

structuredSection:

title::STR author::STR? structuredSectionElement+ id::STR?
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Some subsections can be generated, especially those that consist of structured content
that is possible to derive automatically from the information stored in or collected from
other sections.

[placeholder] structuredSectionElement:
generated

Normative sections are obligatory and usually contain strict content that needs to be
implemented by compiler developers or satisfied by language end users in order to comply
to this standard.

For instance, if a section with a grammar production is marked as normative, this
production must hold for the implemented language.

[normative] structuredSectionElement:
normative

Informative sections are supplementary and provide some useful information that can
be omitted or overridden if deemed appropriately.

For instance, if all sections with code samples are marked as informative, we cannot
rely on the set of examples extracted from the standard to be the test set for the language.
Apparently, we can still run some analyses on the basis of this, but it is not legitimate to
make any conclusions about standard inconsistencies based on the informative sections,
nor can they be legitimately be used to resolve inner conflicts of the documentation.

[informative] structuredSectionElement:
informative

Grammar productions can be easily extracted from the language document for the
purpose of grammar recovery, grammar adaptation, grammar convergence, etc.

[production] structuredSectionElement:
production

Even hardbound standards contain hypertext-like elements. One of them is attaching
a list of links and backlinks to every section—that way, one can easily find any related
language constructs when learning the language or debugging a particular feature.

[references] structuredSectionElement:
simpleList

Any other type of normative or informative section.

[section] structuredSectionElement:
simpleSection
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In big documents it is not uncommon to find one topic divided into several subtopics,
each one dedicated to a separate issue and each one structured in the same way its parent
section is. DSLs and 4GLs specification authors often find it easier to lay out different
clauses of one language construct in different sections. When the language has a lot of
parametrised constructs, it makes sense to dedicate a special subsection for each field.
Parameters, types, methods, operations, participants—whatever categories inspire these
subtopics, each of them is a fully structured section in itself.

[subtopic] structuredSectionElement:
structuredSection

A singled named value can be bound to a language document section: it can be a type
of a parameter that is being described here, or an alternative name, or a superclass, or
anything else that is atomic and non-structured.

[value] structuredSectionElement:
key::STR data::STR

6.5.13 Normative sections
Normative sections form the core of the language standard: for each core section they
belong to, they define the purpose of the language construct, provide a description, a
syntax definition, list use constraints and other semantic details, etc.

6.5.13.1 Syntax

A separate subsection named “purpose” is only encountered in some 4GL language man-
uals (e.g., JCL). However, it is quite common for the first paragraph of any new section of
any language document to briefly introduce the purpose of the language construct that is
about to be described.

[synopsis] normative:
simpleSection

Description is the core of the parent section, containing the main details about the
defined topic, information about its usage, motivation behind its design.

[description] normative:
simpleSection

Syntax sections consist of one or more BGF productions, possibly complemented by
textual descriptions.

[syntax] normative:
simpleSection
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This section can list requirements needed for using a specific language construct, ap-
plicability constraints and other restrictions.

[constraints] normative:
simpleSection

Related language constructs can be named and referenced here. It is not a simple list
of references, but rather a comprehensive overview on the kind of consequences other
parts of the language can bear if this one is used.

[relationship] normative:
simpleSection

A section on semantics explains in plain English, if no other specific formalism is
used, how exactly the language construct works, what happens inside the system when it
is utilised. It also describes the context in which the introduced language construct can be
encountered and in which it should or should not be used.

[semantics] normative:
simpleSection

It is quite common in the sections that describe an optional parameter to tell the reader
what will happen in the case nothing was specified. “There is no default” can be as valid
a definition as a real default value.

[default] normative:
simpleSection

6.5.14 Informative sections
Unlike normative sections that impose some conformance constraints that need to be sat-
isfied by a language processor to claim compatibility with the standard, the informative
sections are only presented to provide some additional information to the reader.

6.5.14.1 Syntax

A rationale or a note usually lists some narrow places of non-obvious usage, implemen-
tation details, incompatibility issues, coding standards, common programming practices,
etc. It is a subsection of secondary importance, contributing some information on a mi-
nor point that can still be interesting and useful for some readers. Notes usually tell the
readers how to use certain language constructs or tell compiler vendors how to implement
them.

[rationale] informative:
simpleSection
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A subsection with an example can contain a code sample as well as some accompany-
ing text.

[example] informative:
simpleSection

It is quite uncommon practice, but some standardisation bodies really put the informa-
tion about language evolution directly into each section that changed since the last public
version of the language document.

If this is done consistently and carefully, it is possible to generate the global “What’s
new” section automatically.

[update] informative:
simpleSection

6.5.15 Formulæ

Formulae can be used in language documentation in many ways. The internal representa-
tion format is MathML which is W3C Recommendation, but the external representation
can vary, in our case there are two: TEX and HTML.

6.5.15.1 Syntax

formula:

ANY+

6.5.16 Keywords, links and plain text

Keywords are usually printed in bolder font weight. They need to be marked as such
for two purposes: for presentation and for meta-information. The former goal serves as
a basis for typesetting and hyperlinking, while the latter allows for correct indexing and
searching facilities.

Inlined pieces of code are usually printed in a typewriter-like font. They are frequently
incomplete, mostly nothing more than simple literals, and can only be checked to be
correct tokens of the language in a lexical sense.

Internal links are pairs of text that will become clickable in hypertext presentation
forms or precede the reference itself when this is the only option. The reference points to
a section or a subsection of the same document that the link should refer to. If the explicit
text is omitted, its default value is the name of the section being referenced.

Any unstructured element of the language document belongs to a so called mixed
type: i.e., it is plain text with some keywords marked.



6.6 Transforming a language document 159

6.5.16.1 Syntax

keyword:
STR

code:
STR

link:
text::STR? (reference::STR | external::STR)

mixedType:
(ANY | STR)?

6.6 Transforming a language document
Unlike XBGF that has been developed in a consistent manner to cover all possible gram-
mar transformations and that has been partially published as [166, 167, 261], the language
for language document transformations, XLDF, was kept to a minimum set of commands
necessary for a demonstration of our approach. A prototype has been designed and made
publicly available at [263], but no claims have been made about the coverage of XLDF
operator suite. The prototype has been tested by doing a range of case studies for this
thesis: even this section was also generated from XLDF schema by using programmed
XLDF transformation steps.

6.6.1 evolutionSequence
Sequential composition of multiple transformations.

6.6.1.1 Syntax

evolutionSequence:
documentTransformation?

6.6.2 documentTransformation
XLDF transformation suite does not include any sophisticated grammar manipulations, in
that sense it complements XBGF rather than extends it. All grammar transformations in
XBGF that did not take place beforehand, can be executed as a part of language document
transformations.
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6.6.2.1 Syntax

documentTransformation:
addFigure
addSection
addSubsection
append
changeRole
combine
drop
extractSubsection
hyperlinkify
insert
importGrammar
importSample
place
retitle
removeSection
transformDocument
transformGrammar

6.6.3 addFigure
Adds a figure to the designated section or subsection.

6.6.3.1 Syntax

addFigure:
figure::simpleFigure to::ID

6.6.4 addSection
Completes the language document with a top-level section. The target is unspecified
because it is possible for the transformation engine to decide it automatically (i.e., lexical
sections go to the lexical part, core sections to the core, etc).

6.6.4.1 Syntax

addSection:
frontList
lexicalSection
placeholder::generated
core::structuredSection
annex::structuredSection
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6.6.5 addSubsection
Adds an inner section to the document. All front matter sections go automatically to the
front matter, otherwise a target needs to be specified.

6.6.5.1 Syntax

addSubsection:
topSection
(normative | informative) to::ID

6.6.6 append
Adds more content to the existing section or subsection.

6.6.6.1 Syntax

append:
where::STR content::simpleText

6.6.7 combine
Reorganises all the content from one section or subsection to be merged with another
section or subsection.

6.6.7.1 Syntax

combine:
section::ID with::ID

6.6.8 changeRole
Changes the role of a section (i.e., syntax section can become description). If there is no
section of the same role in scope, the original section becomes one. If there was already a
section with the same role in scope, the new section is appended to it instead.

6.6.8.1 Syntax

changeRole:
scope::STR from::sectionRole to::sectionRole
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sectionRole:
frontMatter::ε
backMatter::ε
synopsis::ε
description::ε
syntax::ε
constraints::ε
relationship::ε
semantics::ε
default::ε
rationale::ε
example::ε
update::ε
section::ε

6.6.9 drop

Excludes one top level section from the language document.

6.6.9.1 Syntax

drop:
section::ID

6.6.10 extractSubsection

Cuts out a part of an existing inner section and promotes it to a separate inner section. If
the target context is not specified, the new section becomes a subsection of the place it has
been extracted from.

6.6.10.1 Syntax

extractSubsection:
from::ID content::simpleText title::STR id::ID to::ID?

role::sectionRole?

6.6.11 hyperlinkify

Turns a document part referenced by an XPath expression into a hyperlink.
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6.6.11.1 Syntax

hyperlinkify:
goal::STR uri::STR

6.6.12 importGrammar

Includes a piece of grammar taken from an external BGF file.

6.6.12.1 Syntax

importGrammar:
target::ID file::STR

6.6.13 importSample

Includes a sample taken from an external file. It is possible to specify a pretty-printer that
will be fed that file and the output will be included.

For instance, in chapter 7 the samples were originally in XBGF, but were pretty-
printed with an external universal pretty-printer to get the nice EBNF-ish look (otherwise
the reader would be overwhelmed with XML listings). There were two different pretty-
printers: one for the TEX version inlined in the thesis, and one for browsable HTML
version available as [261].

6.6.13.1 Syntax

importSample:
target::ID file::STR prettyprinter::STR?

6.6.14 insert

This is one of the transformations that has no corresponding command in XBGF, since
grammars do not have order of elements (in fact, any concrete grammar notation does,
but it does not matter) and language documents do (and do care about it a lot). This
transformation inserts new content right before or after another piece of content that is
looked up by the XLDF engine at the run-time.
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6.6.14.1 Syntax

insert:
relative content::simpleText

relative:
before::(id::ID | simpleTextElement)
after::(id::ID | simpleTextElement)
to::ID

6.6.15 place

Makes one section to become a subsection of another section. The target section must be
of a type that supports subsections.

6.6.15.1 Syntax

place:
section::ID inside::ID

6.6.16 retitle

Changes the title of a section or a subsection. It is still possible to designate the target for
this transformation with an ID, but a more friendly and user-expected way of designating
it with its current title is also possible: that way by looking at a transformation one can
immediately tell what was the title before and what will it be (and possibly deduct the
reason for this change).

6.6.16.1 Syntax

retitle:
from::(id::ID | title::STR) to::STR

6.6.17 removeSection

Excludes one subsection from a specified section.
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6.6.17.1 Syntax

removeSection:
id::ID from::ID?

6.6.18 transformDocument
Modularisation support: we allow to put an evolution sequence in a separate file to be
called from a place in another file.

6.6.18.1 Syntax

transformDocument:
file::STR

6.6.19 transformGrammar
This is an interface between XLDF and XBGF: all the grammar productions are gathered
from the target section and its subsections, to be fed into a transformation (or a chain of
transformations). If the XBGF engine evaluates successfully, the result of that transfor-
mation is returned to the target section. It is also possible to specify a number of context
section — all productions from them will be gathered, too, but since they are not subject
to change, they will not be confused with the result.

6.6.19.1 Syntax

transformGrammar:
target::ID transformation+ context::ID?

6.7 XBGF case study
As we can recollect from the previous chapters and papers, the megamodel of the gram-
mar life cycle looks like as depicted on Figure 6.2: we extract grammar knowledge from
various types of artefacts, then we transform it according to our goals (grammar evolu-
tion, restructuring, abstraction, correction, specialisation), and finally compute the result
in a suitable form. Similarly, the language document life cycle in our infrastructure is
schematically presented on Figure 6.3. The grammar (either the extracted one or the
one obtained by transformations) is combined with additional information derived from
the existing documentation, then transformed according to our goals (language evolution,
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Figure 6.3: The life cycle of a language document in the prototype language document
infrastructure: from the structure source on the left to the extracted document gradually
transformed to its ultimate form and finally pretty-printed for presentation on the right.
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language improvement, any grammar maintenance activities, etc) and then the final form
is computed.

In the prototype of this chapter we started with an XML Schema definition. We have
the tools to map definitions of XML elements, groups and other entities to grammar pro-
ductions, for which the extractor from chapter 4 is reused. We also developed new tools
to map XSD annotations to LDF textual paragraphs. Once an LDF document is ready,
one can use XLDF commands to transform it. These commands can utilise secondary
sources of information such as test suites to fill in the gaps in the language documen-
tation. Transformations written in XLDF can take this LDF as an input and allow for
adaptation, evolution, beautification, etc, as discussed earlier. Eventually the LDF docu-
ment is considered ready for presentation, and a range of generator tools allow to make a
PDF file out of it, a TEX source or an HTML web page.

6.7.1 Extraction

For us the central part of any language document is the grammar behind it. At the point
when we started composing the XBGF manual, the grammar of XBGF has already been
specified by an XML Schema definition shared/xsd/xbgf.xdf in SLPS [263]. This
schema was not used directly in parsing by the Prolog program that handled the transfor-
mations, but validation checks were performed with it.

XSD to BGF mapping has also already been established as a part of FL case study—
see section 4.3 and Listing 4.10. We needed only to extend it to design XSD to LDF
mapping. It was decided that every XSD construct that defined a schema entity should be
mapped to a separate top-level section of a language document. Those constructs were:
XML elements, XML attributes, named content types, groups and attribute groups—each
of them was mapped to a nonterminal symbol for BGF and to a section describing this
nonterminal for LDF.

In XSD it is possible to annotate any construct with a piece of text, and that fea-
ture was extensively utilised during schema development phase to provide comments for
XBGF operators. With xsd:annotation and xsd:documentation tags we ba-
sically inserted typical language documentation information right into the schema. The
idea came naturally to map such annotations to the textual content of the corresponding
sections of the language manual.

Two front matter sections were decided to be filled differently: foreword and norma-
tive references. The top level annotations (those assigned to the whole document and not
to a specific definition) were mapped to foreword and the list of imported XML Schema
definitions became normative references. After filling out details like the document title
and author we were ready to produce a correct LDF document for any given XSD.

6.7.2 Transformation

Since the structure of the language document generated by XSD to LDF extractor was
very simple and too straightforward, we needed document transformation steps to reorder
the sections, to add lacking textual content, to connect and pretty-print samples, etc. The
transformation suite explained in section 6.6 was used for that.
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6.7.2.1 Adding sections

Grammars or schemata, even heavily annotated ones, contain only information specific to
their level of abstraction. Unlike them, language documents tend to contain meta-level in-
formation that is not usually part of a schema or a grammar, and low-level details—in our
scenario, summaries of experience gained from case studies. An example of meta-level
information can be the “design goals” section—section 7.3. It has been added explicitly
with an addSubsection call:

addSubsection(
designGoals: (author: "Vadim Zaytsev",

content: (text: ..., list: ... ) );

An example of less abstract information follows:

addSubsection(
semantics: (content: (text: "The inline transformation
is by far the most used in Java Language Specification
case study..." ) ),

to: "inline" );

6.7.2.2 Combining sections together

Composite sections like section 7.4 are not uncommon in language documentation. When
the extracted sections are either too small or too insignificant, they are combined in a way
similar to this:

addSubsection(
notation: (author: "Vadim Zaytsev",

content: (text: "BGF is a BNF-like Grammar Format..." ) );
combine(
section: "grammar",
with: "notation-section" );

combine(
section: "production",
with: "notation-section" );

combine(
section: "expression",
with: "notation-section" );

...

6.7.2.3 Beautifying the grammar

In cases when the extracted grammar is decided not to be readable enough, it can be
transformed by calling XBGF commands from XLDF:
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transformGrammar(
target: "unfold",
anonymize(
unfold: 〈nonterminal::nonterminal〉 in::scope?)

);

6.7.2.4 Reorganising the sectioning

XML Schema definition has a flat structure, yet it often defines a tree-like hierarchy. In
our case the transformation operators are grouped in several categories:

retitle(
from: (title: "folding-unfolding-transformation" ),
to: "Folding and unfolding transformations" );

place(
section: "unfold",
inside: "folding-unfolding-transformation" );

place(
section: "fold",
inside: "folding-unfolding-transformation" );

...

This cannot be executed automatically since one XSD element can belong to several
XSD groups. In this case extraction process would include running graph analysis algo-
rithms as applicability metrics, which will make the extractor’s behaviour highly sophis-
ticated. Since our main goal was to design and implement a simple prototype, we have
chosen for less automation and more control here. When reorganisation is executed by a
human expert, it is driven by domain concepts and their relations, therefore not involving
any nontrivial decision making algorithms.

6.7.2.5 Adding code samples

As the source of code samples we used a test suite that was composed
during the early development stages of XBGF and maintained ever since at
topics/transformation/xbgf/tests in SLPS. Each test case consists of the
grammar input, grammar transformation script and expected output. They are connected
to the language document in a way similar to this:
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addSubsection(
example: (id: "unfold-example",

content: (text: "Given the input:" ) ),
to: "unfold" );

importGrammar(
target: "unfold-example",
file: "../../transformation/xbgf/tests/unfold.bgf" );

append(
where: "unfold-example",
content: (text: "After using this transformation:" ) );

importSample(
target: "unfold-example",
file: "../../transformation/xbgf/tests/unfold.xbgf",
prettyprinter: "../../../shared/tools/xbgf2xbnf" );

append(
where: "unfold-example",
content: (text: "Will look like this:" ) );

importGrammar(
target: "unfold-example",
file: "../../transformation/xbgf/tests/unfold.baseline" );

More transformations can be run at this stage, we have only listed the most important
classes of language document transformations that were encountered in the case study.

6.7.3 Presentation
Once the internal structure of the language document is satisfactory, it can be rendered for
public, for third parties, for the web, etc. We have developed two mappings in particular:
TEX and HTML. The first one was used for this thesis and for separated PDFs that are
generated at topics/documents/bgf, lcf, ldf, xldf and xbgf in SLPS [263].
The second mapping helped to create an online browsable manual of XBGF [261].

Both mappings are trivial for anyone familiar with the target language, so we do not
discuss them here. Perhaps the only detail worth attention was a secondary tool called a
re-pretty-printer. As one can recall from the previous section, the language document
may have built-in code samples. These samples are stored directly in the LDF document
in a form ready to be used—i.e., they are pretty-printed. However, the link to the original
file (if any) is stored as well, which lets us write an automated grammarware tool that can
take all the samples in the given language document and re-apply another pretty-printer,
replacing its result with the rendering statically saved in the LDF document. We wanted
to retain the flexibility of having the code samples rendered and saved (because running
a pretty-printer in not expressible in XSLT), but needed different ones for two of our
presentation generators.

6.7.4 Conclusion
The XBGF chapter (chapter 7), including the notation subsection (section 7.4); the
LCF/LCI section (section 4.10); the LDF section (section 6.4); the XLDF section (sec-
tion 6.6) — they were all generated automatically from the corresponding operational
schemata, with additional text added by transformations on the fly. All the samples from

http://slps.svn.sourceforge.net/viewvc/slps/topics/documents/bgf/
http://slps.svn.sourceforge.net/viewvc/slps/topics/documents/lcf/
http://slps.svn.sourceforge.net/viewvc/slps/topics/documents/ldf/
http://slps.svn.sourceforge.net/viewvc/slps/topics/documents/xldf/
http://slps.svn.sourceforge.net/viewvc/slps/topics/documents/xbgf/
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the XBGF chapter were taken (included or pretty-printed) directly from the test suite we
used to ensure the correctness of the XBGF engine. Both the engine and the scripts are
available freely via the SVN repository of SLPS [263].

Shall our future research lead to extension of, say, XBGF, another XSD element will
be added to the schema definition in the appropriate namespace. We will then annotate it
there in a way common for XMLware. The same XLDF scripts that are used to produce
the current manual will be used for the extended manual as well.

Existing technology can be integrated with other grammar engineering activities and
generic language technology such that complete life cycle of a programming language can
covered and a language definition finally receives its place as an important and valuable
part of an IT portfolio. This generalised programming language life cycle technology can
be embedded in existing programming and development environments, integrated into
various third parties’ products.
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Chapter 7

XBGF language manual

The only thing that matters is the
change, not the end result.

Linus Torvalds, 2010,
http://bit.ly/9WXmqr

The purpose and the nature of this chapter is twofold:

� First, it serves as an application for language documentation prototype infras-
tructure described in chapter 6. This chapter, not including this inlay, is a
complete language manual, and as such it has its content fully generated in
a programmable fashion from the corresponding schema of XBGF. There
is also a hyperlinked browsable version of the same manual available as [261].
For implementation details please consult section 6.7.

� Second, it describes in much detail and many examples the transformational
language used in chapter 4 and chapter 5 and was only briefly mentioned at
section 4.8 and section 5.6. Having such a language is crucial for grammar
recovery, for grammar convergence, as well as for grammar documentation.

7.1 Foreword

This chapter describes the transformational suite for BGF. Most of the information present
here is located in the XML Schema definition of the language, part of the SLPS project.
The rest was introduced by the language documentation transformation commands in the
process of automated generation of the manual in its present form.
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7.2 Normative references
� bgf.xsd

7.3 Design goals
XBGF operator suite was developed mainly for grammar convergence activities.

� Grammar recovery. In order to recover a working grammar from a real gram-
mar artefact one needs to perform various activities such as grammar extraction,
grammar beautification, deyaccification, error fixing, etc,—all of them are present
in XBGF.

� Grammar convergence. An infrastructure for grammar convergence (see Chap-
ter 4) contains three essential parts: grammar extractors, a grammar comparator
and a grammar transformer. The latter component is needed for changing the
source grammars so that they become structurally identical at the convergence
point. XBGF suite can be used as a framework for programmable grammar trans-
formations, it provides all the required expressive power.

� Language documentation. It is possible and quite expected that the grammar that
is shown in the language standard, programmer’s manual or any similar document
is not exactly the same as the one used for creating a compiler. For instance, Java
Language Specification includes two grammars, each one created and maintained
manually and separately. A transformation suite can be useful in such a case since
it helps to generate one of the versions (perhaps the more reader-friendly one) from
the other automatically, both making their relationship more explicit and reducing
maintenance effort and increasing reliability.

� Language evolution. A language rarely stays as it was developed on its first day.
If any language is being used in practice for some time, new constructs are added to
it to respond to the needs of the end users (programmers). XBGF suite has multiple
operators for expressing language extensions and revisions, they can be used to
document the changes between versions and dialects of the language.

� Language design. DSL design is not a rare activity nowadays, and it is quite com-
mon to develop the language gradually, regularly synchronising with the needs and
knowledge of domain experts. XBGF suite allows to document these steps as trans-
formation steps departing from the base-line grammar or even an empty grammar
and finally reaching the language ready to be deployed.

� Disciplined grammar adaptation. In order to adapt the baseline grammar to the
working circumstances one needs it to work in, it is useful to have a good support
for grammar transformations [41, 43, 154, 219]. XBGF can be used to converge dif-
ferently adapted grammars or as a standalone tool for applying grammar adaptation
steps.
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7.4 Notation
BGF is a BNF-like Grammar Format, an XML dialect of Extended Backus Naur Form
that was used in the language convergence infrastructure. Its abstract syntax grammar is
automatically extracted from the corresponding XML Schema and presented below:

grammar:
root::nonterminal? production?

production:
label::label? nonterminal::nonterminal expression

expression:
epsilon::ε
empty::ε
value::value
any::ε
terminal::terminal
nonterminal::nonterminal
selectable::(selector::selector expression)

sequence::(expression+)
marked::expression

choice::(expression+)
optional::expression
plus::expression
star::expression

value:
int::ε
string::ε

label:
STR

nonterminal:
STR

selector:
STR

terminal:
STR

All BGF and XBGF listings are presented in a unified pretty-printed way. The concrete
syntax for it is presented below:
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grammar:

production+

label:
"[" STR "]"

production:
label::label? nonterminal::STR ":" right-hand-side

right-hand-side:

NEWLINE (INDENT symbol+ NEWLINE)+ NEWLINE

symbol:
"ε"
"EMPTY"
"ANY"
"STRING"
"INT"
terminal::(""" STR """)
nonterminal::STR
selectable::(selector::STR "::" symbol)

sequence::("(" symbol+ ")")
choice::("(" (symbol ("|" symbol)?) ")")
optional::(symbol "?")

plus::(symbol "+")
star::(symbol "?")
marked::("〈" symbol "〉")

Any XBGF command is pretty-printed as the name of the transformation and all the
parameters (productions, expressions, etc) in brackets, followed by a semicolon.

7.5 List of definitions
Grammar A set of interdependent productions.

grammar:
production?

Sequence Sequential composition of multiple transformations.

sequence:
(transformation | atomic)?
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Atomic Multiple transformations that must be for some reason perceived as one step.

atomic:

transformation+

Transformation A list of all the XBGF transformations is grouped in seven categories:
folding-unfolding-transformation collects those commands that perform the well-
known folding/unfolding operations in slightly varied circumstances; refactoring-
transformation contains transformations that perform factoring and reorganising
procedures that do not alter the language generated by the grammar; increasing-
transformation increase the semantics of the language by adding new options
and alternatives to it; decreasing-transformation similarly decrease the seman-
tics; concrete-revising-transformation are refactorings if we use term-oriented
semantics (abstract syntax) but they are neither semantic preserving, increasing nor
decreasing transformations if we use string-oriented semantics (concrete syntax);
transformations from abstract-revising-transformation change the language gen-
erated by the grammar in a way that they cannot be a priori classified as any of the
above; decorative-transformation are special refactorings that are used to make
or destroy labels and selectors in BGF.

transformation:
folding-unfolding-transformation
refactoring-transformation
increasing-transformation
decreasing-transformation
concrete-revising-transformation
abstract-revising-transformation
decorative-transformation
rename
reroot
dump

Scope Several transformation operators are possibly restricted to a specific scope as op-
posed to their application to the full input grammar. Two major forms of scope can
be identified. First, a production can be appointed by its label. Second, a defini-
tion (nonterminal) can be appointed by its defined nonterminal. Arguably, one may
want to be able to appoint a production even when it is not labeled, but a prior des-
ignate transformation can then be used in order to attach a label to the production
in question.

[label] scope:
label
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[nonterminal] scope:
nonterminal

Marked Some of the grammar transformations, namely addH, removeH, appear,
disappear, upgrade, downgrade, abstractize, concretize, inject, project,
anonymize, deanonymize, accept only marked productions as their arguments.

marked-production:
production

When transformations need to happen very locally, the level of nonterminal or pro-
duction is insufficient and introduction of selectable sub-expressions is too much
extra effort. For this cases, XBGF uses markers that show at which point exactly
should the transformation take place. Markers are pretty-printed as angle brackets.

7.6 Folding and unfolding transformations
Folding and unfolding activities are the most basic ones in grammar transformation and
the most used ones in grammar convergence. Since grammar comparison is done in such
a way that only applies very basic algebraic laws in its endeavours to match the two gram-
mars, many more sophisticated manipulations need to be executed semi-automatically in
a programmable fashion. These manual steps help to establish a stronger link between
the convergence point and the original grammar artefact since they aid to reveal some
unapparent properties of those grammars.

All these transformations are provably correct in the sense that it is possible to prove
that the languages generated by the grammars before the transformation and after it are
indeed the same. All refactorings are easily reversible and introduced below in pairs.

folding-unfolding-transformation:
unfold
fold
inline
extract
abridge
detour
unchain
chain

7.6.1 unfold
The most basic unfolding transformation searches the scope for all the instances of the
given nonterminal usage and replaces such occurrences with the defining expression of
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that nonterminal. By default the scope of the transformation is the full grammar, but
it can be limited to all the definitions of one nonterminal or to one labelled production.
Regardless of the specified scope, unfolding is not applied to the definition of the argument
nonterminal.

Almost all the unfold transformations used in Java Language Specification case study
are restricted in scope by a nonterminal. The reason for such statistics is that when the
language engineer wants to give up the nonterminal, he uses the inline transformations.
However, unfold usually happens as a part of sequences with fold, downgrade, disap-
pear, deyaccify, distribute, etc.—in which case it is only natural to limit the impact of
every step.

The definition that is being unfolded is assumed to be horizontal, i.e. to consist of one
single production. See the section on refactorings for more information about horizontal
and vertical definitions.

7.6.1.1 Syntax

unfold:
nonterminal in::scope?

7.6.1.2 Example

Given the input:

[l1] foo:
bar

[l2] qux:
bar

bar:
wez?

After using this transformation:

unfold(bar);

Will look like this:

[l1] foo:
wez?
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[l2] qux:
wez?

bar:
wez?

7.6.2 fold
Folding replaces every expression that matches with the right hand side of the given non-
terminal’s definition with the nonterminal itself. As with unfold, fold works on the scope
of the grammar, and its impact can be limited to one labelled production or to all the pro-
ductions belonging to one nonterminal. Regardless of the specified scope, folding is not
applied to the definition of the argument nonterminal.

Since this transformation strives to preserve the language, it needs a horizontal defini-
tion to work. When only one of several existing definitions is used for folding, it would
actually increase the semantics of the language after transformation—the corresponding
XBGF command is called upgrade.

7.6.2.1 Syntax

fold:
nonterminal in::scope?

7.6.2.2 Example

Very much like unfolding, folding can take place locally. For instance,

[l1] foo:
wez?

[l2] qux:
wez?

bar:
wez?

After using this transformation:

fold(bar in foo);

Will look like this:
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[l1] foo:
bar

[l2] qux:
wez?

bar:
wez?

7.6.3 inline
When this transformation is performed, an existing definition is eliminated by inlining.
This means that the argument nonterminal identifies the (horizontal) definition that is to
be unfolded and stripped away from the grammar.

The semantics of inline is that of a sequential composition of unfold and eliminate.

7.6.3.1 Syntax

inline:
nonterminal

7.6.3.2 Semantics

The inline transformation is by far the most used in Java Language Specification case
study. One of the reasons is what we call layering: in particular expressions and state-
ments are introduced in the GR

j with a set of related nonterminals: LabeledStatement,
IfThenElseStatement, WhileStatement, ForStatement, etc, and CastExpression, PreIncre-
mentExpression, PreDecrementExpression, PostfixExpression, etc. GI

j takes another ap-
proach, just listing all the alternatives in the productions for Statement and Expression.
In order to converge these two variants, a lot of inlining transformations are needed. This
can also be apparent from the Table 5.6, that demonstrates that targets that converge only
“readable” or only “implementable” grammars, require less than ten inline transforma-
tions each, while each target that takes both readable and implementable grammars in,
contains 67–100 inline transformations in convergence path.

7.6.3.3 Example

An example follows. When we have:

foo:
wez
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bar:
wez ".." wez

wez:
qux?

After using this transformation:

inline(wez);

It will look like this:

foo:
qux?

bar:
qux? ".." qux?

7.6.4 extract
A new definition is introduced by extraction. The argument provided for this transfor-
mation is a production that identifies both the fresh nonterminal to be introduced and the
expression that is used both as a pattern for folding and as a right hand side of the added
definition. An optional scope can limit the application of the folding part of the extraction
transformation to a specific production or a specific nonterminal.

If the nonterminal defined by the argument production is already mentioned (i.e., de-
fined or referenced) in the current grammar, the transformation refuses to work and re-
ports an error. This usually signals an error in the language engineer’s logic because the
existing traces of a possibly similar nonterminal conflict with the definition that is being
introduced.

7.6.4.1 Syntax

extract:
production in::scope?

7.6.4.2 Semantics

As seen from the experience gained from Java Language Specification case study, it is
highly unusual for extract to have limited scope. However, sometimes a limited impact is
desired in order to avoid excessive subsequent unfolding when the convergence requests
for having several nonterminals with similar definitions.
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7.6.4.3 Example

Extraction also works vertically. Given the input:

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration
";"

After performing this transformation step:

extract(
ClassOrInterfaceDeclaration:

ClassDeclaration
InterfaceDeclaration

);

The result will be:

TypeDeclaration:
ClassOrInterfaceDeclaration
";"

ClassOrInterfaceDeclaration:
ClassDeclaration
InterfaceDeclaration

7.6.5 abridge
Given a reflexive chain production, i.e., a production whose defined nonterminal equals
its body, this production is simply removed from the grammar, even if it contains some
potentially valuable information (like labels and selectors).

7.6.5.1 Syntax

abridge:
production

7.6.5.2 Semantics

Reflexive chain productions are rarely encountered explicitly in the base-line grammars,
but sometimes series of transformations result in them, and usually they are not needed.
An example of a transformation sequence that yields a reflexive chain production can be
a step from concrete syntax definition to abstract syntax definition. Concrete syntax usu-
ally needs explicit bracketing constructions for recursive composition, and after stripping
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away terminals and merging layers, these bracketing constructions become reflexive chain
productions. The Factorial Language case study has shown the need for it.

7.6.5.3 Example

Consider this abstract syntax:

[constant] expr:
int

[neg] expr:
expr

[bracket] expr:
expr

After performing this transformation step:

abridge(
[bracket] expr:

expr
);

The grammar will be the same, but without the reflexive chain production labelled as
“bracket” previously:

[constant] expr:
int

[neg] expr:
expr

7.6.6 detour

A reverse of abridge that can introduce a reflexive chain production.

7.6.6.1 Syntax

detour:
production
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7.6.6.2 Example

In the same way it was removed in the previous example, the bracketing production can be
added to the grammar. The transformation that reverts the impact of the previous abridge,
looks like this:

detour(
[bracket] expr:

expr
);

7.6.7 unchain
Unchaining is a disciplined form of inlining. The argument production must occur in the
input grammar, and it must be a chain production, i.e., a production with a nonterminal as
its defining expression. The latter nonterminal is the one whose definition is to be inlined;
it must not have any occurrences except in the chain production at hand.

The unchain transformation does not increase the expressivity of the transformational
language: technically, it is nothing more than an inline with a precondition. However,
this particular precondition seems useful and not uncommon when dealing with layered
grammars.

7.6.7.1 Syntax

unchain:
production

7.6.7.2 Semantics

Chain productions are not commonly encountered in grammars of mainstream program-
ming languages. However, when converging grammars that hail from different kinds of
sources (i.e., different extraction processes) it can be frequently needed to align grammars
that use chain productions with grammars that use labelled ones.

7.6.7.3 Example

Consider this grammar:

[constant] expr:
int

[binary] expr:
binexpr
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binexpr:
expr op expr

After performing this transformation step:

unchain(
[binary] expr:

binexpr
);

The auxiliary nonterminal symbol is gone, as is the chain production:

[constant] expr:
int

[binary] expr:
expr op expr

7.6.8 chain
Just like unchain is a specific form of inline, chaining is a disciplined form of extrac-
tion. The argument production will be part of the resulting grammar; it is a chain pro-
duction, i.e., a production with a nonterminal as its defining expression. That nonterminal
is the one whose definition is to be extracted. That definition is the defining expression
of the production (from the input grammar) whose defined nonterminal and label (if any)
matches with the argument production.

7.6.8.1 Syntax

chain:
production

7.6.8.2 Example

In the same way it was removed in the previous example, the chain production can be
added to the grammar. The transformation that reverts the impact of the previous unchain,
looks like this:

chain(
[binary] expr:

binexpr
);
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7.7 Other refactoring transformations

Here is a list of the XBGF transformations that perform other provably semantic-
preserving refactorings

refactoring-transformation:
massage
distribute
factor
deyaccify
yaccify
eliminate
introduce
import
vertical
horizontal
equate
rassoc
lassoc

7.7.1 massage

The grammar is rewritten by local transformations such that the language generated by
the grammar (or the denotation according to any other semantics for that matter) is pre-
served. The known rewriting rules affect the use of selectors and regular expression oper-
ators: e.g., any symbol will always generate the same set of strings that the same symbol
wrapped in a selector.

There are two expression arguments: one to be matched, and another one that replaces
the matched expression. One of them must be in a “massage relation” to the other.

The scope of the transformation can be limited.

7.7.1.1 Syntax

massage:
expression expression in::scope?

If (x, y) represents sequential composition of symbols x and y, and (x; y) represents a
choice with x and y as alternatives, then the following algebraic laws define the massage-
equality relation:
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x? = (x; ε) (x?)? = x? (x, x?) = x+

x? = (x?; ε) (x?)+ = x? (x?, x) = x+

x? = (x+; ε) (x?)? = x? (x?, x?) = x?

x? = (x?; ε) (x+)? = x? (x?, x?) = x?

x? = (x?;x) (x+)+ = x+ (x+, x?) = x+

x+ = (x+;x) (x+)? = x? (x?, x+) = x+

x? = (x?;x) (x?)? = x? (x+, x?) = x+

x? = (x?;x+) (x?)+ = x? (x?, x+) = x+

x? = (x?;x?) (x?)? = x? (x?, x?) = x?

x? = (x+;x?)

These additional formulæ for associativity also hold:

(x, (y, x)?) = ((x, y)?, x)

(x, (y, x)+) = ((x, y)+, x)

(x, (y, x)?) = ((x, y)?, x)

If we introduce an infix operator “::” to denote selectors (named addressable subex-
pressions), then this additional rule is also needed:

x = (s1 :: x; s2 :: x)

The reason for having such an explicit rule is the normalisation. As explained in
section 5.5, without selectors (x;x) is always normalised back to x.

7.7.1.2 Example

Distributivity rules for optionality modifier such as these:

(x?y?)? = x?y?

(x∗y?)? = x∗y?

(x?y∗)? = x?y∗

(x∗y∗)? = x∗y∗

(x|y)? = x?|y?

are not explicitly covered by massage since it is possible to emulate them with a
sequence of above mentioned patterns of massage, as well as with factor and similar
transformations. Let us take the last formula as an example of a massaging that takes
several steps to complete. The input BGF is:
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foo:
(bar | qux)?

After performing these transformation steps:

massage(
(bar | qux)?,
((bar | qux) | ε));

massage(
ε,
(bar::ε | qux::ε));

factor(
((bar | qux) | (bar::ε | qux::ε)),
((bar | bar::ε) | (qux | qux::ε)));

anonymize(
foo:

(bar | 〈bar::ε〉)
(qux | qux::ε)

);
massage(
(bar | ε),
bar?);

anonymize(
foo:

bar?
(qux | 〈qux::ε〉)

);
massage(
(qux | ε),
qux?);

The result will be:

foo:
bar?
qux?

The selectors and anonymize commands are necessary because otherwise the choice
of two epsilons would be removed automatically during the normalisation phase. The rest
of distributivity laws are expressed quite similarly to this example.

7.7.2 distribute
Distribute sequential composition over choices so that choices are pulled out of sequences.
The transformation is either attempted for all productions of a nonterminal or for a specific
one appointed by its label.

7.7.2.1 Syntax
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distribute:
scope

7.7.2.2 Semantics

In fact, distribute is nothing more than an automated version of factor that aggressively
pushes all the choices that can be found in a production outwards.

This transformation is apparently non-injective, hence, it is impossible to have a com-
plete inverse of it. A more general factor transformation, however, is as capable of emu-
lating distribute’s effect as it is capable of doing the reverse thing.

7.7.2.3 Example

For instance,

foo:
bar (qux | wez)

After using this transformation:

distribute( in foo );

Will look like this:

foo:
bar qux
bar wez

7.7.3 factor
Massage modulo factorisation over choices. The transformation is either attempted for all
productions of a nonterminal or for a specific one appointed by its label.

7.7.3.1 Syntax

factor:
expression expression in::scope?

7.7.3.2 Semantics

Factor transformations tend to be quite frequently used in grammar convergence. They
also have a tendency to be very long—since it is impossible to implement factor sym-
metrically to distribute (i.e., fully automated), the language engineer needs to supply two
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complete expressions. The transformer then can easily assert that they are related by dis-
tribution: basically, it internally performs distribute on both of them and expects them to
become identical. Hence, it is possible to do “incomplete” factoring by pushing choices
inwards but not to the innermost position.

Two most commonly seen patterns of factor use are the following. First, it is applied
when we have a choice of two long expressions that are almost identical except for some
mismatching part. That part can be either extracted or massaged later with more trans-
formations. Second, it is needed when we have a wide choice with the same leading (or
trailing) symbol, and the goal is to let the common part stay and encapsulate the rest inside
a different nonterminal (by following extract).

7.7.3.3 Example

For instance,

a:
a
b
c d e
c f g
h
i

After using this transformation (note the order of expressions):

factor(
((c d e) | (c f g)),
c ((d e) | (f g)));

Will look like this:

a:
a
b
c ((d e) | (f g))
h
i

7.7.4 deyaccify
Deyaccification is a widely used term that means converting recursive definitions to it-
erative ones where possible. The name comes from YACC, or Yet Another Compiler
Compiler, a tool which underlying parsing technology limits were enforcing the usage of
recursive definitions back in the 1970s. However, it somehow became common practice
to remain within them even when grammar engineers do not use yacc as such at all.

The name of a nonterminal must be provided as an argument, then the transformation
engine checks if the grammar productions for this nonterminal fit into one of the yaccified
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patterns. If not, the error is reported, otherwise the definition is replaced by one that uses
regular expression operators instead of epsilon, choice, and recursion.

Both left- and right-recursive forms can be factored with this transformation.

7.7.4.1 Syntax

deyaccify:
nonterminal::nonterminal

Deyaccification uses several general patterns. Left recursion like this:

foo:
bar

foo:
foo wez

Becomes:

foo:
bar wez?

Right recursion like this:

foo:
bar

foo:
wez foo

Becomes:

foo:
wez? bar

In either case, it is checked if bar and wez are the same nonterminal. If they are, the
result is more concise:

foo:

bar+
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7.7.5 yaccify
This transformation is the reverse of deyaccify. The productions provided as arguments
must be yaccified with respect to the actual content of the grammar. If the deyaccification
process on them is successful and yields the production that can be found in the gram-
mar, it is removed and replaced by these simpler definitions of an optional or repeating
nonterminal, given in BNF-only expressiveness.

Some complex yaccify cases require prior use of extract for introduction of an nonter-
minal for the optional or repeating phrase.

7.7.5.1 Syntax

yaccify:
production+

7.7.5.2 Semantics

Yaccification is a typical example of grammar adaptation activity. However, it can be
utilised in grammar convergence process as well: think of a situation when one of the
sources is yaccified using left recursion while the other one—using right recursion. In
such a case it would be better to deyaccify both of them. If this is due to some considera-
tions impossible or undesirable, one can deyaccify, say, left recursion and then yaccify if
back to right recursion.

Since it is not possible for the transformation engine to guess which kind of BNF
recursion the suite user would need, yaccify takes two productions as parameters, unlike
deyaccify which works perfectly just given the nonterminal name.

7.7.5.3 Example

For instance, this piece of grammar:

foo:

bar+

can either be yaccified with left recursion:

yaccify(
foo:

bar
foo:

foo bar
);

to look like this:
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foo:
bar

foo:
foo bar

or yaccified with right recursion:

yaccify(
foo:

bar
foo:

bar foo
);

to look like this:

foo:
bar

foo:
bar foo

7.7.6 eliminate

An unused definition (at most used within the definition itself) is removed. The undefine
operator should be utilised instead when the definition must be removed despite remaining
uses. The remove operator should be utilised instead when only part of the definition (i.e.,
a production of a vertical definition) is to be removed.

7.7.6.1 Syntax

eliminate:
nonterminal::nonterminal

7.7.6.2 Example

For instance,

expr:
int
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intexpr:
int

After using this transformation:

eliminate(intexpr);

Will look like this:

expr:
int

7.7.7 introduce
A definition of a fresh nonterminal is added. The add operator should be used instead, if
the nonterminal is already defined, is to be merely extended. The define operator should
be used instead, if the nonterminal is readily in use, but merely lacks a definition.

7.7.7.1 Syntax

introduce:
production+

7.7.7.2 Example

For instance,

a:
b

b:
ε

After using this transformation:

introduce(
c:

a
c:

b
);

Will look like this:
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a:
b

b:
ε

c:
a

c:
b

7.7.8 import
Allows to import another grammar: the nonterminals within it can refer to one another, but
none of the existing productions are allowed to refer to them before this transformation
takes place.

7.7.8.1 Syntax

import:
production+

7.7.8.2 Semantics

Consider a scenario where we want to introduce two productions, each defining a fresh
nonterminal symbol, and each using the other. Without import the only way to do so
would be to run one introduce and one define, which is semantically wrong since we are
sure that before the first nonterminal is introduced, the second one was fresh. So, instead
we take the interdependent productions together and introduce them in one step.

Technically, import can be used any time to substitute any number of introduce trans-
formations. Whether this is a desired use pattern or not, is left at the discretion of the
language engineer.

7.7.8.3 Example

For instance,

X:
"a" "b"

After using this transformation:
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import(
A:

B X
B:

A
ε

);

It will look like this:

X:
"a" "b"

A:
B X

B:
A
ε

7.7.9 vertical
Turn top-level choices into multiple productions. The transformation is either attempted
for all productions of a nonterminal or for a specific one appointed by its label. The action
is a reverse of horizontal.

Occasionally we use terms “vertical” productions or nonterminals and “horizontal”
ones. By vertical nonterminals we mean those that are defined by a list of productions,
with every production lacking a top-level choice. A horizontal nonterminal, on the other
hand, is defined by one production that is a top-level choice. Nonterminals that employ
both top-level choices and splitting into multiple productions are neither horizontal nor
vertical.

7.7.9.1 Syntax

vertical:
scope

7.7.9.2 Example

If the original production contained selectors:

decs:
onedec::dec
moredecs::(dec decs)
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then, after using this transformation:

vertical( in decs );

they are converted to labels:

[onedec] decs:
dec

[moredecs] decs:
dec decs

7.7.10 horizontal
Turn a definition based on multiple productions into a top choice-based one. The action
is a reverse of vertical.

7.7.10.1 Syntax

horizontal:
nonterminal::nonterminal

7.7.10.2 Example

If some or all of the original productions are labelled:

[onedec] decs:
dec

[moredecs] decs:
dec decs

the, after using this transformation:

horizontal(decs);

each label is converted to a selector in a corresponding place:

decs:
onedec::dec
moredecs::(dec decs)
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7.7.11 rassoc
This transformation operator replaces an iterative production found in the grammar by
the argument production, which is a right associative repeating equivalent of the former.
Its defining expression involves a pattern of binary recursion with regard to the defined
nonterminal. The “r” in “rassoc” refers to the intended effect at the level of derivation
trees: the list of subtrees is to be converted into a nested binary tree in a right-associative
manner.

7.7.11.1 Syntax

rassoc:
production

7.7.11.2 Example

For instance,

[constant] expr:
int

[binary] expr:
expr (op expr)?

After using this transformation:

rassoc(
[binary] expr:

expr op expr
);

Will look like this:

[constant] expr:
int

[binary] expr:
expr op expr

7.7.12 lassoc
The same as rassoc, but replaces an iterative production found in the grammar by a left
associative repeating equivalent. The “l” in “lassoc” refers to the intended effect at the



200 XBGF language manual

level of derivation trees: the list of subtrees is to be converted into a nested binary tree in
a left-associative manner.

7.7.12.1 Syntax

lassoc:
production

7.7.12.2 Example

For instance,

[terminal] expr:
STR

[sequence] expr:

expr+

After using this transformation:

lassoc(
[sequence] expr:

expr expr
);

Will look like this:

[terminal] expr:
STR

[sequence] expr:
expr expr

7.7.13 equate
Two nonterminals, say x and y, are merged, if their definitions are identical.

7.7.13.1 Syntax

equate:
align::nonterminal with::nonterminal
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7.8 Language increasing transformations
Here is a list of the XBGF transformations that lengthen the grammar (increase seman-
tics).

increasing-transformation:
add
appear
widen
upgrade
unite

7.8.1 add
Nonterminal definitions can be extended (”added to”) vertically and horizontally. In the
former case, a given production is added to an existing definition. In the latter case, a given
branch is added to a given expression. The horizontal mode is there for convenience only
because it could be simulated by a sequence of extraction, vertical addition, and inlining.
There are two operators that are very similar to the (vertical) add operator: define and
introduce. The define operator should be used when an the definition of an undefined
nonterminal is added. The introduce operator should be used when a fresh nonterminal is
to be defined.

7.8.1.1 addV

Syntax

[vertical] add:
production

Vertical addition operates on the level of productions: it adds one more production for
some nonterminal to any number of productions that are already present in the grammar.

Example Given the input:

expr:
int

After using this transformation:

addV(
expr:

id
);

The result will look like this:
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expr:
int

expr:
id

7.8.1.2 addH

Syntax

[horizontal] add:
marked-production

Horizontal addition looks inside productions: it adds any marked part of an internal
choice by either introducing one or enhancing the existing one. This allows to skip pre-
transformational vertical and post-transformational horizontal steps for productions with
a top-level choice, which is the most common use of this transformation. However, it is
useful to have a command at hand that is capable of adding alternatives to any particular
place of any grammar production.

Markers must denote the new part: i.e., the production without the marked part must
be present in the grammar, and if it is, the result will contain a production with the marked
part instead. Obviously, the markers itself do not end up in the grammar.

Example Given the input:

N:
a
b

After using this transformation:

addH(
N:

〈"x"〉
a
b

);

The result will look like this:

N:
"x"
a
b
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Example Given the input:

expr:
"-"? int

After using this transformation:

addH(
expr:

(〈"+"〉 | "-")? int
);

The result will look like this:

expr:

("+" | "-")? int

7.8.2 appear
The purpose of this transformation operator is to insert an nillable symbol (i.e., reducible
to an empty sequence) at any place in any existing grammar production. It takes a pro-
duction as an input. Inside that production, one nillable subexpression should be marked.

7.8.2.1 Syntax

appear:
marked-production

7.8.2.2 Example

Given the input:

foo:
bar

After using this transformation:

appear(
foo:

bar 〈qux?〉
);

The result will look like this:
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foo:
bar qux?

7.8.3 widen
The grammar is rewritten by local transformations such that the language generated by the
grammar (or the denotation according to any other semantics for that matter) is increased.
The known rewriting rules affect the use of epsilon and regular expression operators.
There are two expression arguments: one to be matched, and another one that replaces the
matched expression. The scope of the transformation can be limited.

7.8.3.1 Syntax

widen:
expression expression in::scope?

The widening relation is defined as follows:

x −→ x? or x+ or x∗

x? −→ x∗

x+ −→ x∗

It is trivial to prove that for each case the expression on the left is included in the
expression on the right, but not otherwise. For going the other way narrow transformation
is used. For shaping an expression into a completely equivalent one, use massage.

7.8.3.2 Example

Given the input:

[main] program:
fun::function

After using this transformation:

widen(
function,

function+

in [main]);

The result will look like this:

[main] program:

fun::(function+)
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7.8.4 upgrade

Upgrading is a special variation of replacement and a slightly more powerful and liberal
form of folding. This operator replaces an expression by a nonterminal that can be eval-
uated to it. The first parameter is the scope production with an expression marked. The
second parameter is one of that nonterminal’s definitions, which right hand side equals
that expression.

7.8.4.1 Syntax

upgrade:
marked-production production

7.8.4.2 Example

Given the input:

a:
d e c

b:
d e

b:
f g

After using this transformation:

upgrade(
a:

〈b〉 c
b:

d e
);

The result will look like this:

a:
b c

b:
d e
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b:
f g

7.8.5 unite

Two nonterminals, say x and y, are merged (possibly recursively). That is, the definitions
of x and y (i.e., their productions) are merged in one definition while preserving the non-
terminal y and replacing all occurrences of x (in the definition of x and anywhere else) by
y.

7.8.5.1 Syntax

unite:
add::nonterminal to::nonterminal

7.8.5.2 Example

Given the input:

foo:
"a"

foo:
"b"

bar:
"d"

After using this transformation:

unite(bar, foo);

The result will look like this:

foo:
"a"

foo:
"b"
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foo:
"d"

7.9 Language decreasing transformations
Here is a list of the XBGF transformations that shorten the grammar (decrease semantics).

decreasing-transformation:
remove
disappear
narrow
downgrade

7.9.1 remove
Productions can be removed from existing, vertical definitions. The remaining definition
must not become empty, i.e., undefined. There is the undefine operator that can be applied
in that case. There is also a horizontal mode of removing branches from choices.

7.9.1.1 removeV

Syntax

[vertical] remove:
production

Vertical removal operates on the level of productions: it takes away one production
for some nonterminal leaving at least one more in the grammar.

Example Given the input:

expr:
int

expr:
id

After using this transformation:

removeV(
expr:

id
);

The result will look like this:
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expr:
int

7.9.1.2 removeH

Syntax

[horizontal] remove:
marked-production

Horizontal removal looks inside productions: it removes any marked part of an in-
ternal choice, getting rid of the choice altogether if necessary (say, if the removed part
was one of two alternatives). This allows to skip pre-transformational vertical and post-
transformational horizontal steps for productions with a top-level choice, which is the
most common use of this transformation. However, it is useful to have a command at
hand that is capable of removing alternatives from any particular place of any grammar
production.

Markers must denote the part to be removed: i.e., the production with the marked part
must be present in the grammar, and if it is, the result will contain a production without
the marked part instead. Obviously, the markers itself do not end up in the grammar.

Example Given the input:

foo:
"x"
bar
wez

After using this transformation:

removeH(
foo:

〈"x"〉
bar
wez

);

The result will look like this:

foo:
bar
wez

Example Given the input:
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expr:

("+" | "-")? int

After using this transformation:

removeH(
expr:

(〈"+"〉 | "-")? int
);

The result will look like this:

expr:
"-"? int

7.9.2 disappear
This operator behaves like project, but only allows for nillable elements (optional, star)
to disappear.

7.9.2.1 Syntax

disappear:
marked-production

7.9.2.2 Example

Given the input:

foo:
bar wez? qux

After using this transformation:

disappear(
foo:

bar 〈wez?〉 qux
);

The result will look like this:

foo:
bar qux
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7.9.3 narrow

The grammar is rewritten by local transformations such that the language generated by the
grammar (or the denotation according to any other semantics for that matter) is decreased.
The known rewriting rules affect the use of epsilon and regular expression operators.
There are two expression arguments: one to be matched, and another one that replaces the
matched expression. The scope of the transformation can be limited.

7.9.3.1 Syntax

narrow:
expression expression in::scope?

The narrowing relation is defined as follows:

x? −→ x

x+ −→ x

x∗ −→ x or x? or x+

It is possible to prove that for each case the expression on the right is included in the
expression on the right, but not otherwise. For going the other way widen transformation
is used. For shaping an expression into a completely equivalent one, use massage.

7.9.3.2 Example

Given the input:

program:
fun::(function?)

After using this transformation:

narrow(
function?,

function+);

The result will look like this:

program:

fun::(function+)
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7.9.4 downgrade
Replaces a nonterminal with one of its definitions. The first parameter is the scope pro-
duction with one of the nonterminals marked. The second parameter is one of that non-
terminal’s definitions, which right hand side will be used for replacement.

The XBGF processor looks for the first production with the marked part (but without
the markers). If it is found, the marked part is replaced with the right hand side of the
second argument production.

7.9.4.1 Syntax

downgrade:
marked-production production

7.9.4.2 Example

Given the input:

a:
b c

b:
d e

b:
f g

After using this transformation:

downgrade(
a:

〈b〉 c
b:

d e
);

The result will look like this:

a:
d e c

b:
d e
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b:
f g

7.10 Refactorings in term-oriented semantics

We may refer to the semantics of a grammar as the language (set of strings) generated
by the grammar, as it is common for formal languages — for context-free grammars,
in particular. With the string-oriented semantics in mind, all transformations mentioned
above in folding and refactoring sections are semantics-preserving. To give an example
where different semantics are needed consider the scenario of aligning a concrete and an
abstract syntax.

When necessary, we may apply the algebraic interpretation of a grammar, where gram-
mar productions constitute an algebraic signature subject to a term-algebraic model. In
this case, the terminal occurrences in any given production do no longer carry semantic
meaning; they are part of the function symbol. (Hence, abstract and concrete syntaxes can
be aligned now.)

Some transformations that were effortlessly semantics-preserving w.r.t. the string-
oriented semantics, require designated bijective mappings w.r.t. the term-oriented seman-
tics, e.g., fold/unfold manipulations, but generally, the term-oriented semantics admits a
larger class of semantics-preserving transformations than the string-oriented one.

The following section gathers those transformations that would have been considered
refactorings if we only used term-oriented semantics. From the string-oriented point of
view they revise semantics and can be deemed as neither grammar lengthening nor gram-
mar shortening transformations.

concrete-revising-transformation:
abstractize
concretize
permute

7.10.1 abstractize

As project, but with an additional precondition that the part to be removed should consist
of terminals. This is checked automatically by the XBGF engine: if the precondition fails,
the transformation is inapplicable.

7.10.1.1 Syntax

abstractize:
marked-production
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7.10.1.2 Example

Given the input:

A:
b "x" c "y"

After using this transformation:

abstractize(
A:

b 〈"x"〉 c "y"
);

Will look like this:

A:
b c "y"

7.10.2 concretize
Just as abstractize is a preconditioned version of project, this operator is a variation of
inject. The XBGF engine checks if the marked part only consists of terminal symbols: if
yes, injection happens; if not, the transformation is inapplicable.

7.10.2.1 Syntax

concretize:
marked-production

7.10.2.2 Example

Given the input:

A:
b c

After using this transformation:

concretize(
A:

b 〈"x"〉 c
);

Will look like this:
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A:
b "x" c

7.10.3 permute
The argument production defines the intended result of the transformation — a production
that has the same components in the sequential composition, but in a different order, when
compared to the corresponding production in the input grammar with the same defined
nonterminal and the same label, if any.

7.10.3.1 Syntax

permute:
production

7.10.3.2 Example

Given the input:

a:
b d? c

After using this transformation:

permute(
a:

b c d?

);

Will look like this:

a:
b c d?

7.11 Semantics revising transformations
Some grammar differences may require more arbitrary replacements, that cannot be ex-
pressed as semantics-preserving even in abstract syntax. These include projections or
injections of non-optional nonterminals, adding definitions for bottom nonterminals, per-
forming volatile replacements.

Whenever a transformation from this group is used in a convergence path, it signals
either about a construction point where the grammar engineer is having a temporary
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shortcut to be substituted later with a longer sequence of more accurate manipulations,
or an inevitable error in the BGF that needs fixing (preferably in the original artefact—
specification, compiler sources, etc).

abstract-revising-transformation:
define
undefine
redefine
inject
project
replace

7.11.1 define
An undefined nonterminal is resolved by this operator. The nonterminal must be in use.
The introduce operator should be used when a fresh nonterminal is to be defined. The add
operator should be used when an existing definition is to be extended.

7.11.1.1 Syntax

define:
production+

7.11.2 undefine
This operator allows to undefine a nonterminal, i.e., remove all its productions. The non-
terminal must have using occurrences elsewhere than just in its own definition. If there
are no such using occurrences, then the less disruptive eliminate operator is to be used.

7.11.2.1 Syntax

undefine:
nonterminal+

7.11.3 redefine
Redefine is a replace variant that works on production level. When this transformation is
executed, all current productions for the nonterminal are dropped, and all the given ones
are added to the grammar.

This transformation is nothing more than syntactic sugar for an undefine followed
directly with define. Having it as a separate type of transformation allows to more clearly
distinguish completing the grammar with absent definitions (usually as initial correction
step) and brutal nonterminal-level replacements (semantic revising).
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7.11.3.1 Syntax

redefine:
production+

7.11.4 inject
The argument production defines the intended result of the transformation — a produc-
tion that has additional components in the sequential composition, when compared to the
corresponding production in the input grammar with the same defined nonterminal and
the same label, if any.

7.11.4.1 Syntax

inject:
marked-production

7.11.4.2 Example

Given the input:

a:
b d

After using this transformation:

inject(
a:

b 〈c〉 d
);

Will look like this:

a:
b c d

7.11.5 project
The argument production defines the intended result of the transformation — a produc-
tion that has fewer components in the sequential composition, when compared to the
corresponding production in the input grammar with the same defined nonterminal and
the same label, if any.
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7.11.5.1 Syntax

project:
marked-production

7.11.5.2 Example

Given the input:

a:
b c d

After using this transformation:

project(
a:

b 〈c〉 d
);

Will look like this:

a:
b d

7.11.6 replace

This operator provides a last resort to grammar editing. It basically provides access to
free editing without any semantically meaningful preconditions. There are two expression
arguments: one to be matched, and another one that replaces the matched expression. The
scope of the transformation can be limited.

7.11.6.1 Syntax

replace:
expression expression in::scope?

7.11.6.2 Example

It is possible to use replace in sophisticated context, cutting out any pieces of the grammar
to be replace with something different. For instance, given the input:
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a:
b c
b d
b e

After using this transformation (suppose we do not have factor):

replace(
((b c) | (b e)),
b (c | e));

Will look like this:

a:
b (c | e)
b d

7.12 Decorative transformations
Last but not least, there are four refactorings that are very specific to the BGF itself. Not all
grammar definition formalisms have labelled productions, but since we do, we also need
two transformation steps made possible: to designate an already available production
with a label, and to unlabel an existing labelled production. We strip selectors from
subexpressions with anonymize and add them, naturally, with deanonymize.

decorative-transformation:
designate
unlabel
deanonymize
anonymize

7.12.1 designate
An unlabeled production is labeled. The argument production is the intended result, i.e.,
the labeled production—the transformation refuses to work if the argument production
contains no label.

Labelling transformations serve two roles usually: they can be used directly to make
the labels in both grammars agree so that they can converge; or they are used to mark the
target for the transformations that follow them and perform local manipulations.

7.12.1.1 Syntax

designate:
production
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7.12.1.2 Example

Given the input:

expr:
int

After using this transformation:

designate(
[intexpr] expr:

int
);

Will look like this:

[intexpr] expr:
int

7.12.2 unlabel

This is a reverse of designate that strips an existing production from a label.

7.12.2.1 Syntax

unlabel:
label

7.12.2.2 Example

Unlike the previous one, this transformation relies on the fact that all labels are unique
within a grammar. This assumption allowed us to simplify the calling syntax. So, given
the input:

[intexpr] expr:
int

After using this transformation:

unlabel([intexpr]);

Will look like this:
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expr:
int

7.12.3 deanonymize

While labels are only used to name individual productions, selectors can name arbitrary
parts of any BGF expression. This command allows to add a selector to the existing
production. To avoid disambiguations, the whole production is required as an argument,
with the newly introduced part being marked.

7.12.3.1 Syntax

deanonymize:
marked-production

7.12.3.2 Example

Selectors can be introduced one at a time or in batch, but each one must be marked sepa-
rately. For instance, given the input:

A:
first::"a" "a" "a"

After using this transformation:

deanonymize(
A:

first::"a" 〈second::"a"〉 〈third::"a"〉
);

Will look like this:

A:
first::"a" second::"a" third::"a"

7.12.4 anonymize

This operator is the reverse of deanonymize that strips one (marked) selector from an
existing definition.
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7.12.4.1 Syntax

Given the input BGF and a clear goal to strip all selectors, it becomes trivial to generate
a list of anonymize commands that, if executed on the same grammar, would produce a
selector-free yet structurally equivalent grammar. We used such a generator called strips
in the FL case study as the final stage to converge the abstract syntax (with selectors) with
the concrete syntax (with terminals), see section 4.9.

anonymize:
marked-production

7.12.4.2 Example

Given the input:

[binary] expr:
"(" expr op::binary_op expr ")"

[unary] expr:
op::unary_op expr

After using this transformation:

anonymize(
[unary] expr:

〈op::unary_op〉 expr
);

Will look like this:

[binary] expr:
"(" expr op::binary_op expr ")"

[unary] expr:
unary_op expr

7.13 dump
This is a debugging tool for XBGF. When the dump command is encountered, the trans-
formation sequence stops and the grammar in its current state is dumped to the file
xbgf.log.

The contents of xbgf.log can be used as an input for grammar comparator or for copy-
pasting productions and expressions from the grammar to the construction point of the
XBGF sequence.
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7.13.1 Syntax

dump:
ε

7.14 rename
Labels, nonterminals, selectors and terminals can be renamed. Being in line with the
fundamental notion of renaming, such renaming must be done consistently throughout
the entire grammar, without introducing any clashes. There is one justifiable exception.
That is, arguably, the scope of selectors is the level of production as opposed to necessarily
the entire grammar. Hence, selectors can be renamed in such a scope, optionally.

7.14.1 renameL
7.14.1.1 Syntax

[label] rename:
from::label to::label

Renaming labels is a semantic preserving grammar transformation pretty-printed as
renameL. Given two label names, it simply searches the grammar for productions with
the original label and re-designates them with the new one.

renameL is a simple syntactic sugar for the specific combination of unlabel and des-
ignate.

7.14.1.2 Example

Given the input:

[constant] expr:
int

[binary] expr:
expr op::binary_op expr

[unary] expr:
op::unary_op expr

After using this transformation:

renameL([binary], [binary_expr]);
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Will look like this:

[constant] expr:
int

[binary_expr] expr:
expr op::binary_op expr

[unary] expr:
op::unary_op expr

7.14.2 renameN
7.14.2.1 Syntax

[nonterminal] rename:
from::nonterminal to::nonterminal

Similarly, this transformation can be used to rename nonterminals. This variant is a
syntactic sugar for the specific combination of inline and extract, it is a semantic preserv-
ing grammar transformation that is pretty-printed as renameN.

7.14.2.2 Example

Given the input:

[constant] expr:
int

[binary] expr:
expr op::binary_op expr

[unary] expr:
op::unary_op expr

After using this transformation:

renameN(expr, exp);

Will look like this:

[constant] exp:
int
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[binary] exp:
exp op::binary_op exp

[unary] exp:
op::unary_op exp

7.14.3 renameS
7.14.3.1 Syntax

[selector] rename:
in::label? from::selector to::selector

Selectors can also be renamed by a semantic preserving grammar transformation that
is pretty-printed as renameS. This variant is a syntactic sugar for the specific combination
of anonymize and deanonymize.

7.14.3.2 Example

Given the input:

[constant] expr:
int

[binary] expr:
expr op::binary_op expr

[unary] expr:
op::unary_op expr

After using this transformation:

renameS(op, operator);

Will look like this:

[constant] expr:
int

[binary] expr:
expr operator::binary_op expr
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[unary] expr:
operator::unary_op expr

7.14.4 renameT
7.14.4.1 Syntax

[terminal] rename:
from::terminal to::terminal

Renaming terminals breaks string-oriented (concrete) semantics, but is still possible.
This variant is pretty-printed as renameT, its behaviour is essentially that of a sequential
composition of abstractize and concretize, but its meaning is different: it changes an
entity that is already present in the grammar, not removes or adds anything.

7.14.4.2 Example

Given the input:

x:
"x"

After using this transformation:

renameT("x", "y");

Will look like this:

x:
"y"

7.15 reroot
Redefine the roots (start symbols) of the grammar. The empty set of roots is interpreted
to abbreviate the complete set of nonterminals used or defined by a grammar.

7.15.1 Syntax

reroot:
root::nonterminal?
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7.16 Compatibility
In order to establish the relation between BGF that is being used in the actual working
system and BNF that is being reported here, we apply the whole process of grammar
convergence to these two grammars. We presume to conclude that this BNF dialect plus
empty grammars plus root elements is the same as BGF language plus indentation rules
plus layout rules plus terminal symbols.

BNF was defined as a base-line grammar for a pretty-printer and therefor defines con-
crete syntax. BGF is extracted from the corresponding XML Schema and contains ab-
stract syntax annotated with selectors. We choose to converge them closer to abstract
syntax (BGF).

First, we resolve the name mismatch and compensate for the lack of notion of “root
elements” in BNF:

renameN(expression, symbol);
reroot();
disappear(
grammar:

〈root::nonterminal?〉 production?
);

The only remaining transformations applied to the BGF grammar are these:

narrow(
production?,

production+);
inline(terminal);
inline(nonterminal);
inline(selector);
vertical( in symbol );
vertical( in value );

As we can see, the first of these transformations, narrow, shortens the grammar, but its
semantics only means that we do not want to have empty samples while an empty gram-
mar is still acceptable in general. Since this is data refinement, a semantic decreasing
transformation is used without hesitation. The rest of the transformational sequence are
trivial refactorings (verticalisations are already performed in the example from the previ-
ous section).

The BNF source undergoes the following transformation for stripping it from lexical
details:

project(
right-hand-side:

〈NEWLINE〉 (〈INDENT〉 symbol+ 〈NEWLINE〉)+ 〈NEWLINE〉
);

Before the rest of the concrete syntax (i.e., the terminals) is stripped away, we need to add
some labels that correspond to the selectors of its BGF counterpart:
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extract(
value:

"STRING"
"INT"

);
vertical( in symbol );
vertical( in value );
designate(
[epsilon] symbol:

"ε"
);
designate(
[empty] symbol:

"EMPTY"
);
designate(
[any] symbol:

"ANY"
);
designate(
[string] value:

"STRING"
);
designate(
[int] value:

"INT"
);
designate(
[value] symbol:

value
);

Now we can remove all terminals from the grammar without disrupting its structure (i.e.,
various alternatives in symbol will not collide and vanish during normalisation phase).
Since we do not want to make a distinction and plan for all terminals to be removed, the
following transformation script is generated by a special tool executed automatically from
LCI (see section 4.9).

abstractize(
label:

〈"["〉 STR 〈"]"〉
);

abstractize(
production:

label::label? nonterminal::STR 〈":"〉 right-hand-side
);
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abstractize(
[epsilon] symbol:

〈"ε"〉
);

abstractize(
[empty] symbol:

〈"EMPTY"〉
);

abstractize(
[any] symbol:

〈"ANY"〉
);

abstractize(
[terminal] symbol:

〈"""〉 STR 〈"""〉
);

abstractize(
[selectable] symbol:

selector::STR 〈"::"〉 symbol
);

abstractize(
[sequence] symbol:

〈"("〉 symbol+ 〈")"〉
);

abstractize(
[choice] symbol:

〈"("〉 symbol (〈"|"〉 symbol)? 〈")"〉
);

abstractize(
[optional] symbol:

symbol 〈"?"〉
);

abstractize(
[plus] symbol:

symbol 〈"+"〉
);
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abstractize(
[star] symbol:

symbol 〈"?"〉
);

abstractize(
[marked] symbol:

〈"〈"〉 symbol 〈"〉"〉
);

abstractize(
[string] value:

〈"STRING"〉
);

abstractize(
[int] value:

〈"INT"〉
);

Finally we run a grammar comparator to see what is left and notice one mismatch that
is easily fixed with massage, as well as the right hand side still having (symbol+)+ in-
stead of just symbol. This corresponds to the design decision that treats top-level choices
and top-level sequences differently in BNF to make them more appealing to the eye by
avoiding unnecessary parenthesizing. The very specific upgrade command is run twice
here to fold first the sequence and then the choice.

massage(
symbol symbol?,

symbol+);
upgrade(
right-hand-side:

〈symbol〉+
[sequence] symbol:

symbol+

);
upgrade(
right-hand-side:

〈symbol〉
[choice] symbol:

symbol+

);
inline(right-hand-side);

After that, the grammars fully converge. The conclusion is that BNF language plus empty
grammars plus root elements is the same as BGF language plus indentation rules plus
layout rules plus terminal symbols.
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bgf bnf

7+3 5+4

grammarFormat

5+4

renameBgf

5+4

stripWhitespace

preferBnf

4+18

designate

4+17

stripTerminals
stript

refactorBnf

Figure 7.1: Full convergence diagram for BNF and BGF. The top nodes are sources, the
bottom node is the target, the arc labels are separate XBGF scripts, the nodes contain
numbers of name mismatches and structural mismatches between each step and the synch
point (marked as a double circle).



Chapter 8

Conclusion

An ideal world is left as an exercise to
the reader.

Paul Graham, 1993 [80]

8.1 Summary
The conceptual contributions of this thesis are listed by the fields of research.

Grammar recovery. A successful endeavour has been made to generalise the steps
needed for recovering grammars from real software artefacts with embedded gram-
mar knowledge.

Grammar extraction. The possibility has been shown to automate grammar extraction
and to make those extractors so advanced that they operate on a set of rules specified
by a language engineer beforehand. Based on such rules, the extractors detect and
repair presentation inconsistencies in typical existing language artefacts such as
standards that many assume are flawless.

Grammar convergence. We presented the methodology that allows a language engineer
to take two or more grammars that are assumed to be related (equal, one covered
by another, etc) and by applying a combination of described methods and tools to
surface the relationships among them. Such relationships are formally represented
by sequences of grammar transformation steps.

Grammar transformation. After careful examination of the existing achievements in
this field, an operator suite called XBGF was developed. To the best of our knowl-
edge and experience of working with different transformational frameworks, XBGF
surpasses previously existing technology in automation, granularity, maintainabil-
ity. The proposed set of operators fits the domain of grammar transformation
closely, providing separate specialised commands for common use patterns.

231
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Language documentation. We reverse engineered a large library of language specifica-
tions and designed a general document schema that describes a format of a typical
language standard or manual. We presented a description of an infrastructure that
needs to evolve around this schema to be integrated into the language evolution
process. The transformational language and all the tools have been successfully
prototyped, although the full scale application of this methodology to industrial
standards is beyond the scope of the thesis and was left for future work.

8.2 Research contributions
Scientific contributions of the thesis are summarised in the following list:

Deeper insight into grammar recovery field. The case study we have done for C# has
shown that the problems encountered in Cobol and C# manuals are quite similar
since similar methods turned out to be applicable to such different cases. Published
as [257].

Grammar convergence methodology. We presented a lightweight verification method
for transforming grammars until they become identical. We proposed to treat the
resulting transformation chains as relationships among the source grammars. A
case study converging six related Java grammars was also performed successfully.
Published as [166, 167].

Principles of automated grammar extraction. The rule-based structure of the extractor
that we used in the convergence case study, proved to be a viable grammar recovery
infrastructure. By generalising every problem and lifting it to the level of a pattern
applicable to a class of similar problems, we automated a significant part of the
error recovery process. The incremental development process of such an extractor
is repeatable for other notations and sources.

Detailed analysis of existing language documents. More than 40 language specifica-
tions and reference manuals were analysed and compared for their notations and
structure. Despite the diversity of notation for syntactic definitions, most EBNF
dialects have the same basic principles and the same expressivity, so automated mi-
gration from one to another does not pose any technical challenge. However, the
ways language documents are organised and structured, are sometimes fundamen-
tally different.

Unified language documentation data model. Based on our analysis, we proposed a
general schema that is useful for many language documents. Specific benefits of its
application are straightforward grammar extraction, solid separation of concerns,
advanced opportunities for testing and document querying.

Language documentation infrastructure prototype. We formulated the principles of
an integrated approach to language documentation design, evolution and mainte-
nance. We also proposed a supporting infrastructure to implement it. Published as
[143, 258].
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Operator suite for grammar transformation. After using grammar transformation in
several convergence scenarios, we designed an advanced and detailed grammar
transformation operator suite. Having a separate operator for each specific case
fits the domain closer by allowing better applicability conditioning and property
proving. Having a wide choice of well-advocated operators allows grammar engi-
neers to limit themselves to refactoring steps whenever possible and not backslide
to local replacements as is common in many frameworks. As a result, sequences of
grammar transformation steps are easier to comprehend.

8.3 Engineering deliverables
We did not limit ourselves to exploring ideas about grammar recovery, transformation and
convergence. All aspects were worked out up to the point of having a practical prototype,
an reusable tool, a language definition or a useful documentation. This approach yielded
several primarily engineering deliverables that are useful and reusable for a wide range of
tasks.

The following list describes all types of engineering deliverables, and each item has a
subsection associated with it.

Grammars. Designed or recovered, grammars are useful to parse code or for further
investigations into their properties.

Languages. The domain-specific languages form the backbone of our proposed frame-
work.

Documents. Each of the language documents both serves as a manual and exemplifies
language documentation facilities.

Grammar relationships. Grammar convergence case studies directly result in estab-
lished relationships among existing grammars.

Tools. We have developed mappers between existing notations and our DSLs.

8.3.1 Grammars
The thesis delivered the following grammars that are electronically accessible through the
internet at the SLPS Grammar Zoo (http://slps.sf.net/zoo).

C#. We applied grammar recovery skills to the international standard of C# by
ECMA [225] and ISO [114]. The recovering transformations were performed with
the Grammar Deployment Kit [149], a previously available framework. The re-
sulting grammar is available in Syntax Definition Formalism [86] as well as in a
browsable form generated from it.

Java: JDK 1.0 “Oak”, J2SE 1.2 “Playground”, J2SE 5.0 “Tiger”. The case study
that we completed with our own infrastructure delivered three Java grammars
recovered from three editions of the Java Language Specification [77, 78, 79]. The

http://slps.sf.net/zoo


234 Conclusion

extractor was designed to automatically correct presentation inconsistencies found
in the language documents.

Factorial Language. Nine small grammars in different forms were developed as exam-
ples when prototyping the method of grammar convergence. The author of this
thesis designed four FL grammars in ANTLR [202], TXL [39], ASF+SDF [22] and
Ecore [59]. Two other FL grammars were derived automatically by existing model
transformation or grammar transformation tools.

C: ISO/IEC 9899:1999(E), 9899:TC2, 9899:TC3. Since grammar notations used in
JLS and in [117, 118, 119] are very similar, it was possible to re-use the principles
of the Java grammar extractor for two different ISO standards containing grammars
of C.

C++: ISO/IEC 14882:1998(E), SC22/WG21 N2723. Grammar notations used in JLS
and ISO C standards are similar also to [111] and [120]. We re-used exactly the
same tool that was employed for extracting ISO C grammars, for the extraction of
ISO C++ grammars. Both C and C++ grammars will be used by SLPS contributors
in future work on language convergence, and are already being used by others as a
stable extraction source1.

These grammars differ at a level of possible practical use. Technically speaking, the
C# grammar is a Level 3 grammar, i.e., it is complete enough for a parser to be generated
from it and it was tested on a small codebase. The three Java grammars are Level 2
grammars, i.e., they only define language syntax and lack the lexical parts. All nine FL
grammars are at Level 5, i.e., they have been directly derived from compiler sources,
parser definitions, schemata and similar artefacts.

8.3.2 Languages

During this research, we designed, developed and implemented six new languages specific
for grammarware domain. They are used for storing grammars, documents, transforma-
tions, configurations and parse trees, and are generally useful and applicable to many ad-
jacent topics of grammar engineering, re-engineering and reverse engineering. We chose
to express these DSLs in XML Schema.

BGF, BNF-like Grammar Format. This language emerged as a compromise for stor-
ing grammar knowledge that is traditionally expressed in BNF, EBNF and dialects
thereof. BGF provides the usual functionality of specifying terminal and nontermi-
nal symbols and combining them sequentially or alternatively, plus extra features
like selectors, i.e., named sub-expressions for which we found use in many extrac-
tion and transformation activities.

1E.g., Lukas Renggli (University of Bern): http://twitter.com/renggli/status/
17401122412.

http://twitter.com/renggli/status/17401122412
http://twitter.com/renggli/status/17401122412
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XBGF, BGF Transformations. This is the basic transformation language used in gram-
mar convergence, we utilise it to express the sequences of calls to grammar trans-
formation operators. Whenever an operator requires a grammar production or a
grammar expression as a parameter, BGF is re-used.

BTF, BGF Tree Format. We used this language for coupled transformations, when we
needed to specify not only grammars as such, but also their instances, i.e., parse
trees. The trees contain the original productions that were used for their generation.

LDF, Language Document Format. After analysing 40+ language documents of differ-
ent nature, we inferred a general metamodel to cover all observed variations. This
metamodel is expressed and exploited in the form of LDF. The language defines
domain concepts like code samples of syntax description sections, as well as the
rules for combining them.

XLDF, LDF Transformations. We extended XBGF to work on language documents:
each XLDF command represents a language evolution step (such as adding a new
language construct) or a language documentation evolution step (such as rearrang-
ing sections).

LCF, LCI Configuration Format. Language convergence infrastructure needed a sepa-
rate DSL to represent the starting configuration and the desired outcome of a con-
vergence scenario. LCF concepts include the notions of an extractor, a generator, a
branch of convergence, a convergence phase and others.

8.3.3 Language documents
The thesis delivered the following language documents:

XBGF. This manual served as a showcase for our language documentation framework for
language documentation life cycle, i.e., storage, evolution, transformation, testing
and convergence. Its core was extracted in a completely automated manner from the
XML Schema definition of the language to form the starting LDF document. Then
it was transformed by a chain of XLDF commands that completed the text with
side remarks and inserted pretty-printed test cases. The resulting LDF document
was used directly to generate the grammar transformation chapter of the thesis (see
chapter 7 that is completely automatically generated using our framework). The
online hyperlinked version of the XBGF manual was generated from the same LDF
document as well.

XLDF. The XML Schema definition of XLDF was used as an extraction source for the
XLDF manual, and several XLDF scripts were used to refactor the resulting LDF
document to its final form. The corresponding thesis section was generated au-
tomatically from this final LDF document using the general LDF to LATEX pretty-
printer.

LDF. The self-definition of LDF in LDF was generated from the XML Schema definition
of LDF, and several XLDF scripts were used to refactor the resulting LDF document
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to its final form. The corresponding thesis section was generated automatically from
this final LDF document using the general LDF to LATEX pretty-printer.

LCF. The LCF manual focuses on the domain of configuration of the overall infrastruc-
ture and mainly on the semantics of the language constructs. For instance, if a
tool is defined with a particular tag, the manual documents, when it will be called
and with which parameters. The LCF manual is extracted from a corresponding
XML Schema definition, beautified by transformations and pretty-printed to LATEX.
It contains considerably less code fragments than the other manuals and more in-
formation about informally described semantics.

8.3.4 Grammar relationships
The following grammar relationships were recovered by performing the corresponding
case studies:

Factorial Language. Nine different grammars of the same language were converged, ex-
tracted from ANTLR, DCG, SDF, TXL, Ecore, XSD and Java sources. The trans-
formation steps representing the relationships uncovered all the peculiarities of each
of the source formats.

Java Language Specification. Six different grammars of the same language were con-
verged, extracted from three versions of Java Language Specification by pairs of
a grammar intended for reading and a grammar intended for implementation. The
recovered relationships were compared with the explicit and implicit claims such
as backward compatibility.

BNF-like Grammar Format. The abstract definition in the schema of BGF was con-
verged with its concrete representation used by a pretty-printer. This case study was
so small that we could a priori predict exactly the differences that we encountered
during convergence. In such a situation, our method was used as complementary
framework testing.

8.3.5 Tools
We do not list general tools like the transformation engine here, but rather assume that
the claims from other sections should be interpreted in a wide sense: thus, “we have a
language XBGF” means that there is a document schema for it, as well as the appropri-
ate language processor that can run XBGF commands, as well as libraries for parsing
XBGF files. However, we do distinguish between extractors and pretty-printers. Extrac-
tors establish mappings between certain classes of grammar artefacts and the BGF-driven
infrastructure, i.e., they transform other formats to BGF, BTF or LDF. Pretty-printers
were developed to map the grammars, documents and scripts stored in XML in a dis-
ciplined fashion, to other formats, i.e., to generate alternative textual representations of
them (mostly plain text, hypertext or LATEX). Only those tools attributed to the author
of the thesis are listed. All tools are easily executable via wrapper scripts with one or
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two necessary parameters, although internally they can consist of multiple calls to various
utilities from different frameworks.

Extractors:

HTML to BGF. This advanced extractor had to work on a manually and loosely
hypertext source. It comprised a set of generalised rules in a pattern form that
it tried to apply for automated recovery.

ANTLR to BGF. In order to be able to extract grammars from ANTL parser defi-
nitions, we re-used the standard ANTLR grammar for ANTLR grammars by
attaching appropriate semantic actions to it.

SDF to BGF. We encoded the necessary traversal functions for crawling the parse
trees of SDF grammars and producing BGF and reused the SDF module and
the XML module from the standard package of the Meta-Environment.

TXL to BGF. We re-used the TXL grammar for TXL grammars; the mapping be-
tween TXL XML and our XML (i.e., BGF) was straightforwardly encoded in
XSLT.

Ecore to BGF. Since Ecore models are by default serialised as XMI, we only
needed to express the mapping between Ecore and BGF, which was done in
XSLT.

AsFix to BTF. We encoded the necessary traversal functions for crawling the parse
trees of AsFix parse trees and producing BTF and reused the AsFix module
and the XML module from the standard package of the Meta-Environment.

XML Schema to LDF. The XSD has proven to be a suitable format for prototyp-
ing language documentation extraction, since it is capable of expressing a
grammar-like structure, as well as annotating functionality. This extractorin-
tertwines the XSD annotations with the extracted grammar productions.

LDF to BGF. Since we assume that any LDF document does contain grammar
knowledge explicitly, i.e., in BGF, we use a special extractor to take out the
BGF bits and compose a grammar from them.

Pretty-printers:

BGF to text. The main pretty-printer is the one that takes any BGF file and gener-
ates a purely textual serialisation of it suitable to be read by a human. Strictly
speaking, this pretty-printer re-invents the concrete syntax for BGF.

BGF to TEX. In order to use BGF more extensively and more efficiently for exam-
ples in this thesis and in all related articles, we developed a separate pretty-
printer that wraps the textual syntax of BGF in a proper LATEX environment.

LDF to TEX. Given a proper LDF, this pretty-printer generates a compilable stan-
dalone LATEX document. All textual sections are named properly, and all BGF
productions included in the LDF are pretty-printed by re-using the BGF to
text mapper.
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LDF to PDF. We have two competing implementations that map LDF to PDF: one
generates a LATEX file and runs pdflatex, while the other one generates
XHTML, transforms it to XSL:FO by re-using an openly distributed XSLT
sheet, and runs fop. Apparently, the LATEX-based path produces more appeal-
ing PDFs.

LDF to HTML. It is easy to represent an LDF document in a hypertext form.
Due to the nature of XSLT, the transformation always produces a well-formed
XHTML document (claim that is hard to make for LDF to TEX mapper). The
XBGF manual intended for online distribution was created using this pretty-
printer.

XBGF to text. We developed a BNF-resembling concrete syntax that we use for
representing the transformation scripts in a textual form. The productions and
expressions of BGF occur as parameters to XBGF commands.

XBGF to TEX. The appropriately parametrised LATEX package listings allows
to present XBGF scripts in an appealing presentation format. The textual
component is pretty-printed by re-using the XBGF to text mapping.

All pretty-printers were implemented in XSL: either in XSLT or in XSL:FO.

8.4 Future work
Automated grammar recovery. For this project we have designed, developed, imple-

mented and presented a heuristic rules-based grammar extractor. It was used for the
Java Language Specification case study, where it successfully extracted six gram-
mars from differently formatted HTML documents. However, it must be possible
to generalise the rules further and make them universally applicable to a broad class
of hypertext grammar descriptions. The development of robust extractors capable
of solving extraction problems in a generic way is one of the important directions of
future research and future contributions to the Software Language Processing Suite.

Dialect-parametric parsing of EBNF. During the research we have seen dozens of dif-
ferent dialects of BNF and EBNF and completed their study with concise conclu-
sions about how the variations relate to the ISO EBNF standard. In the future, we
plan to design a DSL for defining EBNF dialects and implement a generic parser
based on it. By combining disciplined dialect definition with automated grammar
extraction we will reach the milestone of treating all (E)BNF-based language spec-
ifications the same for the purposes of language recovery.

Suggestive convergence metrics. At its current state the method of grammar conver-
gence relies on a set of guidelines that the language engineer follows, and on a
set of comparison-based metrics that measure the convergence progress. The gram-
mar comparator at this stage displays only apparent differences between the two
grammars under consideration. One can suggest experimenting with aggressive
forms of normalisation, search automation for specific constructs that are known to
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be refactoring material, name matching automation algorithms. The boundaries for
effectiveness and automation in this area have not been reached yet.

Inference of converging transformations. Our method of grammar convergence is
based on automation of small atomic grammar transformation operators. All opera-
tor calls and parameters are performed by a human expert with the aid of metrics. It
is also known that the opposite extreme is possible, where all transformation steps
are derived automatically give the source and the target grammar. However, the in-
ference algorithms used in such a scenario use a limited set of possible transforma-
tions (cf. the Levenshtein distance: deletion, insertion, substitution). The question
of inferring transformation chains for the purpose of grammar convergence based
on an advanced operator suite such as XBGF is an interesting research topic.

Generality of XBGF. At this point we cannot make a useful generality statement about
the XBGF grammar transformation operator suite. Proving that all possible gram-
mar refactorings are expressible in XBGF, or that any transformation step except
error correction is expressible without substitution, is an interesting future research
topic.

Formal proofs for XBGF operator properties. The properties of grammar transforma-
tion operators such as preservation of semantics were explained in an “intuitive”
way. For operators dealing with concrete syntax, we also used arguments based on
string languages. However, it can also be useful to have formal proofs for them in
term algebra. This is a highly nontrivial task: the underlying grammar sources are
heterogeneous and are based on different semantics—the meaning of a selector in
one formalism can overlap with the meaning of a nonterminal symbol in another.
In order to approach a solution to this problem, we intend to enhance the BGF with
annotations and develop bidirectional mapping tools based on our existing gram-
mar extractors. With this, one will not only be able to derive a grammar from a data
model or a parser definition, but to consistently transform a data model or a parser
definition to a grammar and back without any loss of information. When such map-
ping is established, we will have the information about the necessary amount of ex-
tra annotations, and then we plan to utilise automated theorem proving techniques
here.

Language documentation. On the pages of this thesis we have proposed an infrastruc-
ture for language documentation life cycle. Several case studies were performed
to support the prototype. All of them used a “clean” source format for extrac-
tion (XML Schema) and the beautification transformations were dictated by trivial
differences between LDF and XSD. In the future we will take an existing specifi-
cation, extract the LDF document from it, perform improving transformations until
the acceptable level of usability is reached, examine it with various automated or
semi-automated analysis techniques, resolve the inconsistencies found in the pro-
cess, and regenerate the specification and satellite artefacts such as a test set.

Language document transformation. At this stage XLDF, the language for language
document transformation, is a minimal one needed to complete the case studies we
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have scheduled for this project. Just like with XBGF and even more so, this set of
commands will need streamlining in the future, with constructive claims about its
completeness and expressive power and verification thereof. There are also some
open research questions about the criteria for language document transformations:
e.g., will it be truly viable to have one suite for language evolution and language
adaptation?

Reversibility of grammar transformations. Currently most of XBGF operators are im-
plemented and presented in pairs: add and remove, upgrade and downgrade,
project and inject, etc—in each such pair one of the operators is the inverse of
the other. In future work, reversibility will be addressed and examined more thor-
oughly, with guaranteed properties and development of the prototype higher-order
tools to generate transformations that reverse the effect of a transformational script
given as input.

EBNF extension for language documentation. Given the analysis of EBNF dialects
that we performed and the general language documentation engineering effort,
we can see that a practically aimed, technology independent, modern and pow-
erful formalism for describing everything needed for a modern language defini-
tion is still needed. Backus normal form, Wirth syntax notation and their vari-
ations were mostly used for expressing grammar knowledge during the last five
decades, together with attempts to improve it, successful [112, 252], unsuccess-
ful [31, 123, 250] and domain-specifically successful [175, 201]. We did admit that
a standardised grammar definition formalism is needed, and even listed the factors
that should affect its design, such as tool support, freedom from a fixed parsing
technology, modularity, unambiguity. A possible future work direction is to define
such a language and perform case studies with it. The extension would perhaps
go even beyond “syntactic sugar”, they can bear something like static semantics to
express more structured details than possible with EBNF now.

Synchronisation points. We introduced the notion of a synchronisation point for targets
with two branches. It should be possible to define a synchronisation point for all tar-
gets, possibly by letting the comparator decide which grammar is closer to the one
under measurement. By doing so, an important issue of choosing what grammars
are to converge first, will be solved.

Coupled transformation. Convergence of parse trees is a topic that was not fully devel-
oped in this project. We did mention on several occasions that it is important to
extend grammar transformation operators’ behaviour to the level of instances. For
example, if the research on coupled transformation is completed, it will allow us to
converge test sets together with grammars.

Bridging grammarware and modelware. Currently there is no consensus about what
should count as programming and what as modelling. Together with classic pro-
gramming languages such as C and classic modelling ones like UML there exist
methodologies like EMFText that have both characteristics. Similarly, almost the
same problems often arise before grammar experts and metamodel experts. There
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are domains in which one or the other of these approaches prevails, and many where
their comparison was not performed or turned out indecisive. For convergence, we
will need to examine similar methods that compare, converge and calculate the
difference between two models. Also a deeper analysis and comparison of gram-
marware and modelware is needed in order to draw conclusions about overall com-
patibility, applicability and the advantages of our methodology when applied to this
adjacent area.
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Samenvatting

Het in dit proefschrift beschreven onderzoek is gericht op de ontwikkeling, het herstel
en het onderhoud van programmeertalen. Een programmeertaal kan gezien worden als
een formele grammatica. Er bestaan instrumenten die gebruikt kunnen worden om een
dergelijke grammatica te verbeteren, te verifiëren, aan te passen of te herstructureren.
Ook zijn er instrumenten die softwareartefacten, zoals taaldocumenten, automatisch uit
een formele grammatica kunnen generen.

Deze instrumenten worden vaak “grammarware” genoemd. Dit proefschrift heeft de
doelstelling om 1) de hedendaagse grammarware te verbeteren, uit te breiden en te ver-
diepen, en om 2) nieuwe benaderingen en methodologieën te ontwikkelen.

In het proefschrift is herwinning van een grammatica gedaan met behulp van zoge-
naamde “grammaticale onttrekkers”. Dit zijn speciale programma’s die formele gram-
matica’s kunnen afleiden van bestaande softwareartefacten met ingebouwde taalkennis
(zoals taaldocumentatie of de broncode van de compiler). Een typische herwinning van
een grammatica en een generiek stappenplan hiervoor zijn in hoofdstuk 3 te lezen. Daar-
naast vindt de lezer een beschrijving van een aantal complexe onttrekkers in de andere
hoofdstukken. Het automatiseren van het onttrekking proces is cruciaal in deze beschrij-
ving.

Grammaticale convergentie, besproken in hoofdstuk 4, is een nieuwe techniek voor
het afleiden van de relatie tussen twee of meer grammatica’s met behulp van grammaticale
transformaties. Deze methode is één van de weinige die op natuurlijke wijze in staat zijn
een aantal grammatica’s tegelijkertijd te behandelen. Grammaticale convergentie wordt
voor het eerst in dit proefschrift en de verwante publicaties gepresenteerd. Hoofdstuk
5 bevat een gevalsstudie die laat zien dat de methodologie goed toepasbaar is op grote
industriële projecten.

Het succes en de kracht van grammaticale convergentie wordt bepaald door de keuze
van de set operatoren die men gebruikt om de grammatica’s te transformeren. In dit
proefschrift wordt onze operatorenset XBGF zorgvuldig en nauwkeurig uitgelegd. We
tonen aan dat XBGF krachtiger en verder ontwikkeld is dan de bestaande sets operatoren.

In ons onderzoek hebben we veel gebruik gemaakt van taalstandaarden, onder andere
als een bron voor de onttrekkers of voor het documenteren van onze domein-gerichte ta-
len. Om efficient gebruik te kunnen maken van deze taaldocumentatie, is onderzocht hoe
deze in elkaar zit. Hiervoor werden tientallen taalstandaarden geanalyseerd, met het LDF
datamodel als resultaat. LDF is een taal waarin men niet alleen grammatica’s, maar ook
andere delen van een typisch taaldocument (zoals codevoorbeelden of tekst in een natuur-
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lijke taal) kan beschrijven. Zo wordt het mogelijk om een document op semi-automatische
wijze te verbeteren, te verifiëren, aan te passen of te herstructureren. Ook wordt het mo-
gelijk semi-automatisch een PDF- of HTML-versie van een document te genereren.

De voornaamste contributies van dit proefschrift zijn de volgende:

� Het stappenplan voor herwinning van een grammatica en andere inzichten op dat
gebied — zie [257] en Hoofdstuk 3.

� De lichtgewicht verificatietechniek genaamd “grammaticale convergentie” — zie
[166, 167, 168, 258, 259] en Hoofdstukken 4–5.

� De ontwikkeling van de grammaticale onttrekkers, met name de regel-gebaseerde
— zie [168] en Hoofdstuk 5.

� De 18 verschillende grammatica’s geproduceerd door deze onttrekkers — zie [260].

� De gedetailleerde analyse van meer dan 40 huidige taalstandaarden en taalhandboe-
ken — zie [262] en Hoofdstuk 6.

� Het datamodel voor het taalspecificatiedomein — zie [262] en Hoofdstuk 6.

� Het opstellen en het prototyperen van de taaldocumentatie infrastructuur — zie
[143, 258, 259] en Hoofdstuk 6.

� De 6 domein-specifieke talen voor grammarware en de door onze infrastructuur
geproduceerde taaldocumenten voor hen — zie [258, 259, 261] en Hoofdstukken
6–7.

� De krachtige set operatoren voor grammaticale transformaties — zie [168, 261] en
Hoofdstuk 7.

Met uitzondering van online documenten, zijn er in totaal acht publicaties op basis van
dit proefschrift, waarvan één journal paper [168], één ISO document [143], twéé extended
abstracts [257, 258] en vier proceedings papers [166, 167, 259, 262].
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Path Language (XPath) 2.0. W3C Recommendation, 23 January 2007. www.w3.org/TR/2007/
REC-xpath20-20070123.

245

www.ansi.org
www.w3.org/TR/2006/WD-xhtml2-20060726
www.w3.org/TR/2006/WD-xhtml2-20060726
www.w3.org/TR/2007/REC-xpath20-20070123
www.w3.org/TR/2007/REC-xpath20-20070123


246 Bibliography

[16] J. A. Bergstra, J. Heering, and P. Klint. The Algebraic Specification Formalism ASF. In J. Heering and
P. Klint, editors, Algebraic Specification, ACM Press Frontier Series, pages 1–66. ACM Press, Addison-
Wesley, 1989.

[17] D. Blasband. Parsing in a Hostile World. In R. Koschke, E. Burd, and P. Aiken, editors, Proceedings
of the 8th Working Conference on Reverse Engineering (WCRE’01), pages 291–300. IEEE Computer
Society Press, 2001.

[18] G. Booch. Object-Oriented Analysis and Design with Applications. Addison-Wesley, 1994.

[19] B. Bos, T. Çelik, I. Hickson, and H. W. Lie. Cascading Style Sheets, Level 2 Revision 1. CSS 2.1 Speci-
fication. W3C Working Draft, 6 November 2006. www.w3.org/TR/2006/WD-CSS21-20061106.

[20] J. Bosak, T. Bray, D. Connolly, E. Maler, G. Nicol, C. Michael Sperberg-McQueen, L. Wood, and J. Clark.
W3C XML Specification DTD (“XMLspec”). ArborText Inc., 1998. Available at www.w3.org/XML/
1998/06/xmlspec-report-19980910.htm.

[21] E. Bouwers, M. Bravenboer, and E. Visser. Grammar Engineering Support for Precedence Rule Recovery
and Compatibility Checking. ENTCS, 203(2):85–101, 2008.

[22] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Development Environment. In Proceedings of the 10th
International Conference on Compiler Construction (CC’01), volume 2027 of LNCS, pages 365–370,
London, UK, 2001. Springer-Verlag.

[23] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling Language Definitions:
the ASF+SDF Compiler. ACM Transactions on Programming Languages and Systems (TOPLAS),
24(4):334–368, 2002.

[24] M. G. J. van den Brand, A. T. Kooiker, N. P. Veerman, and J. J. Vinju. An Architecture for
Context-sensitive Formatting. In Proceedings of the International Conference on Software Maintenance
(ICSM’05), 2005.

[25] M. G. J. van den Brand, P. E. Moreau, and J. J. Vinju. Environments for Term Rewriting Engines for
Free! In Proceedings of the 14th International Conference on Rewriting Techniques and Applications
(RTA 2003), volume 2706 of LNCS, pages 424–435. Springer-Verlag, 2003.

[26] M. G. J. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disambiguation Filters for Scannerless
Generalized LR Parsers. In N. Horspool, editor, Compiler Construction 2002 (CC 2002), pages 143–158,
2002.

[27] M. G. J. van den Brand, A. Sellink, and C. Verhoef. Current Parsing Techniques in Software Renovation
Considered Harmful. In International Workshop on Program Comprehension, 1998.

[28] M. G. J. van den Brand, M. P. A. Sellink, and C. Verhoef. Obtaining a COBOL Grammar from Legacy
Code for Reengineering Purposes. In M. P. A. Sellink, editor, Proceedings of the 2nd International
Workshop on the Theory and Practice of Algebraic Specifications, Berlin, 1997. Springer-Verlag.

[29] M. G. J. van den Brand and E. Visser. Generation of Formatters for Context-Free Languages. ACM
Transactions on Software Engineering Methodology (TOSEM), 5(1):1–41, 1996.

[30] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup Language
(XML) 1.0 (Fourth Edition). W3C Recommendation, 16 August 2006, edited in place 29 September
2006. www.w3.org/TR/2006/REC-xml-20060816.

[31] W. H. Burkhardt. Metalanguage and Syntax Specification. Communications of the ACM, 8(5):304–305,
1965.

[32] N. Chomsky. Three Models for the Description of Language. IRE Transactions on Information Theory,
2(2):113–123, 1956.

[33] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating Co-evolution in Model-Driven
Engineering. In 12th International IEEE Enterprise Distributed Object Computing Conference (EDOC
2008), pages 222–231. IEEE Computer Society, 2008.

[34] J. Clark and M. Murata. RELAX NG Specification. OASIS Committee Specification, 3 December 2001.
Available at relaxng.org/spec-20011203.html, also being standardised by ISO as multiple
parts of ISO/IEC 19757.

www.w3.org/TR/2006/WD-CSS21-20061106
www.w3.org/XML/1998/06/xmlspec-report-19980910.htm
www.w3.org/XML/1998/06/xmlspec-report-19980910.htm
www.w3.org/TR/2006/REC-xml-20060816
http://relaxng.org/spec-20011203.html


Bibliography 247

[35] A. Cleve and J.-L. Hainaut. Co-transformations in Database Applications Evolution. In Generative
and Transformational Techniques in Software Engineering, International Summer School (GTTSE’05),
Braga, Portugal, July 4-8, 2005. Revised Papers, volume 4143 of LNCS, pages 409–421. Springer, 2006.

[36] M. Cohen, J. Reid, et al. ISO/IEC 1539-1: Information Technology—Programming Languages—Fortran,
WD 1539–1 J3/08–007, an Internal Working Document of J3, 2008.

[37] COMPAQ Information Technology Group. COBOL Reference Manual Version 2.5, 2002.

[38] J. R. Cordy. Generalized Selective XML Markup of Source Code Using Agile Parsing. In Proceedings
of the 11th IEEE International Workshop on Program Comprehension (IWPC), pages 144–153, Portland,
Oregon, May 2003.

[39] J. R. Cordy. The TXL Source Transformation Language. Science of Computer Programming, 61(3):190–
210, 2006.

[40] J. Cunha, J. Saraiva, and J. Visser. From Spreadsheets to Relational Databases and Back. In PEPM ’09:
Proceedings of the 2009 ACM SIGPLAN workshop on Partial evaluation and program manipulation,
pages 179–188, New York, NY, USA, 2008. ACM.

[41] T. Dean and M. Synytskyy. Agile Parsing Techniques for Web Applications. In Proceedings of the
International Summer School on Generative and Transformational Techniques in Software Engineering,
Part II, Technology Presentations, pages 29–38, Braga, Portugal, July 2005.

[42] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A. Schneider. Grammar Programming in TXL. In Proceed-
ings, Source Code Analysis and Manipulation (SCAM’02). IEEE, 2002.

[43] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A. Schneider. Agile Parsing in TXL. Journal of Automated
Software Engineering, 10(4):311–336, 2003.

[44] F. L. Deremer. Practical Translators for LR(k) Languages. Technical report, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1969.

[45] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An Algebraic Specification
Approach: Vol. V. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1996.

[46] Digital Equipment Corporation. COBOL Reference Manual Version 2.3, 2002.

[47] E. W. Dijkstra. EWD 1009: On a Somewhat Disappointing Correspondence. Available at www.cs.
utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1009.html.

[48] E. W. Dijkstra. Go To Statement Considered Harmful. Communications of the ACM, 11:147–148, 1968.
Available at www.acm.org/classics/oct95.

[49] H. H. Do and E. Rahm. Matching Large Schemas: Approaches and Evaluation. Information Systems,
32(6):857–885, 2007.

[50] J. J. Donovan and H. F. Ledgard. Formal Language Description Languages for Computer Programming.
In T. B. Steel, Jr., editor, IFIP Working Conference on Formal Language Description Languages, Ams-
terdam, 1966. North-Holland Publishing Company.

[51] J. J. Donovan and H. F. Ledgard. A Formal System for the Specification of the Syntax and Translation
of Computer Languages. In AFIPS ’67 (Fall): Proceedings of the November 14–16, 1967, Fall Joint
Computer Conference, pages 553–569, New York, NY, USA, 1967. ACM.

[52] M. Dowson. The Ariane 5 Software Failure. ACM SIGSOFT Software Engineering Notes, 22(2):84,
1997.

[53] S. Drossopoulou and S. Eisenbach. Java is Type Safe — Probably. In ECOOP’97—Object-Oriented
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[163] R. Lämmel and C. Verhoef. Cracking the 500-Language Problem. IEEE Software, pages 78–88, Novem-
ber/December 2001.



Bibliography 253
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