
A Unified Format for Language Documents

Vadim Zaytsev and Ralf Lämmel

Software Languages Team
Universität Koblenz-Landau

Universitätsstraße 1
56072 Koblenz

Germany

Abstract. We have analyzed a substantial number of language doc-
umentation artifacts, including language standards, language specifica-
tions, language reference manuals, as well as internal documents of stan-
dardization bodies. We have reverse-engineered their intended internal
structure, and compared the results. The Language Document Format
(LDF), was developed to specifically support the documentation domain.
We have also integrated LDF into an engineering discipline for language
documents including tool support, for example, for rendering language
documents, extracting grammars and samples, and migrating existing
documents into LDF. The definition of LDF, tool support for LDF, and
LDF applications are freely available through SourceForge.

Keywords: language documentation, language document engineering,
grammar engineering, software language engineering

1 Introduction

Language documents form an important basis for software language engineering
activities because they are primary references for the development of grammar-
based tools. These documents are often viewed as static, read-only artifacts.
We contend that this view is outdated. Language documents contain formalized
elements of knowledge such as grammars and code examples. These elements
should be checked and made available for the development of grammarware.
Also, language documents may contain other formal statements, e.g., assertions
about backward compatibility or the applicability of parsing technology. Again,
such assertions should be validated in an automated fashion. Furthermore, the
maintenance of language documents should be supported by designated tools for
the benefit of improved consistency and traceability. In an earlier publication, a
note for ISO [KZ05], we have explained why a language standardization body
needs grammar engineering (or document engineering).

This paper presents a data model (say, metamodel or grammar) for develop-
ing language documents. Upon analyzing and reverse-engineering a wide range
of language documents, which included international ISO-approved standards
and vendor-specific 4GL manuals, we have designed a general format for lan-
guage documents, the Language Document Format (LDF), which supports the

2 Vadim Zaytsev and Ralf Lämmel

documentation of languages in a domain-specific manner. We have integrated
LDF with a formalism for syntax definition that we designed and successfully
utilized in previous work [LZ09a,LZ09b,Zay10a].

We have integrated LDF also with existing tools and methods for grammar
engineering from our previous work; see the grammar life cycle at the top of
Figure 1 for an illustration. Furthermore, we have added LDF-specific tools, and
begun working towards a discipline of language document engineering. There is
support for creating, rendering, testing, and transforming language documents;
see the document life cycle at the bottom of Figure 1 for an illustration. Given the
new format LDF, it is particularly important that there are document extractors
so that one can construct consistent LDF documents from existing language
documents.

In this paper, we will be mainly interested in LDF as the format for language
documents, and the survey that supports the synthesis of LDF documents. The
broader discussion of language document engineering including aspects of rich
tool support is only sketched here, and deserves substantial future work efforts.

LDF can be seen as an application of literate programming [Knu84] ideology
to the domain of language documentation: we aim to have one artifact that is
both readable and executable. By “readable” we mean its readability, under-
standability and information retrievability qualities. By “executable” we assume
a proper environment such as a compiler compiler (for parser definitions) or a
web browser (for hyperlinked grammars). LDF provides us with a data model
narrowly tailored to the domain; it allows us to focus on one baseline artifact
which is meant for both understanding and formal specification. Other artifacts
such as grammars, test sets, web pages, language manuals and change documents
are considered secondary in that they are to be generated or programmed. The
full implementation of this approach relies on a transformation language for
language documents that we will briefly discuss.

Summary of contributions

– We have analyzed a substantial number of language documentation artifacts,
including language standards, specifications and manuals of languages such
as BNF dialects, C, C++, C#, Cobol dialects, Fortran, 4GLs, Haskell, Jovial,
Python, SDF, XML, and other data modeling languages. Company-specific
internal documents and software engineering books that document a software
language (e.g., [GHJV95] with the well-known design patterns), were also
researched. The objective of the analysis was to identify domain concepts
and structuring principles of language documentation.

– We have designed the Language Document Format (LDF) to specifically sup-
port the documentation domain, and to make available language documents
to language document engineering.

A Unified Format for Language Documents 3

Grammar focus

XML Schema

Extracted
grammar
(BGF)

Prolog
mapping

XML
(W3C, Ecore, ...) XSLT

TXL TXL + XSLT

BNF in HTML

robust
parser

SDF

ASF

...

?

Transformed
grammar
(BGF)

XBGF

XBGF

HTML
XSLT

BNFXSLT

SDF

XSLT

...

XSLT?

evolution
restructuring
abstraction
correction

specialization

Document focus

XML Schema

Extracted
document

(LDF)

Prolog
mapping

W3C XML XSLT

HTML

robust parser

...

Transformed
document

(LDF)

XLDF

XLDF

HTML

XSLT

TeX
XSLT

DocBook

XSLT

...

XSLT?

PDF

LaTeX

DocBook

evolution
improvement

...

Fig. 1. Megamodels related to language document engineering. At the top,
we see the life cycle of grammar extraction, recovery, and deployment. Grammars are
extracted from existing software artifacts on the left, and represented in the unified
format BGF. Grammars may then be subject to transformation using the XBGF trans-
formation language. Parsers, browsable grammars, and other “executable” artifacts are
delivered on the right. Such grammar engineering feeds into language document engi-
neering. At the bottom, we see the life cycle of language document extraction, language
(document) evolution, generation of end-user documents, extraction of grammars and
test suites. Non-LDF documents can be converted to LDF through the extraction
shown on the left. Document transformation may be needed for very different reasons,
e.g., structure recovery or language evolution; see the reference to XLDF, which is the
transformation language for LDF.

4 Vadim Zaytsev and Ralf Lämmel

Validation

We have applied LDF to a number of language documentation problems, but
a detailed discussion of such problems is not feasible in this paper for space
reasons. For instance, we have applied language document engineering system-
atically to the documentation of XBGF—the transformation language for BGF
grammars which is used extensively in our work on grammar convergence; the
outcome of this case study is available online [Zay09]. In the current paper, we
briefly consider mapping W3C XML to LDF, specifically W3C’s XPath stan-
dard; this case study is available online, too [W3C]. In the former case, we rely
on a document extractor that processes XSD schemata in a specific manner. In
the latter case, the extractor maps W3C’s XML Spec Schema to LDF.

More generally, the SourceForge project “Software Processing Language Suite”
(SLPS) hosts the abovementioned two case studies, the LDF definition, tool
support for LDF, other LDF applications, and all other grammars and tools
mentioned in this paper and our referenced, previous work. For instance, we
refer to the SLPS Zoo, slps.sf.net/zoo; it contains a collection of grammars
that we extracted from diverse language documents. The next step would be too
properly LDF-enable all these documents.

Road-map

The rest of the paper is organized as follows. §2 discusses the state of the art in
language documentation as far as it affects our focus on a format for language
documents and its role in language document engineering. §3 identifies the con-
cepts of language documentation as they are to be supported by a unified format
for language documents, and as they can be inferred, to some extent, from exist-
ing language documents. §4 describes the Language Document Format (LDF) in
terms of the definitional grammar for LDF. It also provides a small scenario for
language document transformation. §5 discusses related work (beyond the state
of the art section). §6 concludes the paper.

2 State of the art in language documentation

As a means of motivation for our research on a unified format for language
documents, let us study the state of the art in this area. The bottom line of this
discussion is that real-world language documents are engineered at a relatively
low level of support for the language documentation domain.

2.1 Background on language standardization

In practice, all mainstream languages are somehow standardized; the standard of
a mainstream language would need to be considered the primary language doc-
ument. For instance, the typical standard for a programming language entails
grammar knowledge and substantial textual parts for the benefit of understand-
ing the language.

http://slps.sf.net/zoo

A Unified Format for Language Documents 5

Let us provide some background on language standardization. In particular,
we list standardization bodies, and we discuss some of the characteristics of lan-
guage standards. Standardization bodies that produce, maintain and distribute
language standards, are, among others:

– American National Standards Institute (ANSI, since 1918), ansi.org
– European Computer Manufacturers Association (ECMA, since 1961),

ecma-international.org

– Institute of Electrical and Electronics Engineers Standards Association
(IEEE-SA, since 1884), standards.ieee.org

– International Electrotechnical Commission (IEC, since 1906), iec.ch
– International Organization for Standardization (ISO, since 1947),

open-std.org

– International Telecommunication Union (ITU, since 1865), itu.int
– Internet Engineering Task Force (IETF, since 1986), ietf.org
– Object Management Group (OMG, since 1989), omg.org
– Organization for the Advancement of Structured Information Standards

(OASIS, since 1993), oasis-open.org
– Website Standards Association (WSA, since 2006), websitestandards.org
– World Wide Web Consortium (W3C, since 1994), w3.org

A language specification (programming language standard) is a complex doc-
ument that may consist of hundreds of pages: the latest COBOL standard,
ISO/IEC 1989:2002 [ISO02], has more than 800 pages; the latest C [ISO05] and
C# [Sta06] standards contain over 500 pages each, C++ draft is already well
over 1100 pages [ISO07]. It has not always been like that. For example, the Algol
60 standard [BBG+63] is not much longer than 30 pages, and yet, it claimed to
contain a complete definition of the language. However, programming languages
evolve, their specifications grow in size. Also, complicated structure of modern
language documents reflects the complicated structure of modern programming
languages and the associated ecosystems.

2.2 The language documentation challenge

Writing and maintaining such a document and keeping it consistent is as complex
as writing and maintaining a large software system—these processes have a lot
in common.

Defining a programming language in a standardized specification is often con-
sidered as a process that is executed just once. The dynamic and evolving nature
of programming languages is frequently underestimated and overlooked [Fav05].
Not only software itself, but programming languages that are used to make it,
evolve over time. This process usually comes naturally in the sense that the first
version of a language does not have all the features desired by its creator. Also,
new requirements may be discovered for a language, and hence, the language
needs to be extended or revised. However, it is desirable for that process to be
guided and controlled for the sake of the quality of resulting specifications.

ansi.org
ecma-international.org
standards.ieee.org
iec.ch
open-std.org
itu.int
ietf.org
omg.org
oasis-open.org
websitestandards.org
w3.org

6 Vadim Zaytsev and Ralf Lämmel

There are tools like parsers and compilers whose development is based on
a language specification. Inconsistencies in the language documents may lead
to non-conformant language tools; such inconsistencies certainly challenge the
effective use of the language documents. Languages need to evolve, and hence, it
should be easy enough to evolve language documents. However, with the current
practice of language standardization, evolution of language documents may be
too ad-hoc, error-prone and labor-intensive; see, for example, our previous study
on the language documentation for the Java Language Specification [LZ09b].

Overall, it is difficult to support language evolution for programming lan-
guages or software languages that are widely used. We contend that a systematic
approach to language documents is an important contribution to a reliable and
scalable approach to language evolution in practice.

2.3 Language documentation approaches

In practice, language documents are created and maintained with various tech-
nologies, e.g., LATEX [ISO08], HTML [BBC+07], Framemaker [ISO02], home-
grown DSLs based on the language being defined in the document [Bru05], XML
Schema [Zay09], DITA, DocBook. The creation and maintenance of language
document is also regulated by practices of design committees and standard-
ization bodies or simply language document editors. The practices are often
constrained by the technologies (or vice versa). We make an attempt to orga-
nize technologies and practices. To this end, we identify language documentation
approaches.

The text- and presentation-oriented approach considers a language
specification as a text document subject to text editing. The editor manually
adds text to the document, manages section structure, moves around paragraphs
and other units of text, performs layout and formatting operations. Typically,
the text is meant to be immediately ready for presentation—perhaps even based
on WYSIWYG.

The course of action for an editor of a language document is often described
in a separate “change document” that is created before the actual change takes
place or directly after it. The change document comprises a list of intended mod-
ifications. Once the editing process reaches a certain milestone, a new “revision”
is delivered and stored in the repository. Once all the modifications approved
by the language design committee are brought upon the main document, a new
“version” is delivered and officially distributed within the terms of its license.
This approach tends to utilize programs like Adobe Framemaker (ISO/IEC
JTC1/SC22/WG41), Microsoft Word (Microsoft version of C# [Mic03]), etc. It
is also possible to use HTML (early W3C [Rag97]) in such a way that the main
document is edited manually and the changes are discussed and/or documented
elsewhere.

1 ISO/IEC JTC1/SC22/WG4 — COBOL Standardization Working Group, http://
www.cobolstandard.info/wg4/wg4.html.

http://www.cobolstandard.info/wg4/wg4.html
http://www.cobolstandard.info/wg4/wg4.html

A Unified Format for Language Documents 7

This approach involves significant low-level text editing. The links between
the change documents and the main document revisions are often not verified.
(Versioning and change tracking facilities can be too constraining.) Any struc-
tured content that is a part of a language document must be formatted in a way
dictated by the medium: e.g., the formulæ can only use the symbols available
in the font. It is also common to have several differently organized layers in the
infrastructure: e.g., the main document is edited by one person following the
instructions in the change document, but the change documents circulate in the
form of co-authored Word documents.

The structure-oriented approach operates on documentation domain
concepts such as “sections” or “divisions”. The approach may leverage existing
editing software to support maintenance activities at the central repository of
structured data. The approach also leverages backend tools that produce PDF,
LATEX, and other types of deliverables. An example of such a documentation
support system is DocBook [WM99]. It is a mature, well-document, actively
used technology. Microsoft is known to use DocBook to generate help files for
Windows applications.

The separation between the content and its presentation can be sufficient
in DocBook and similar systems. However, their orientation on books does not
anticipate documents that have several intertwined hierarchies. For example, a
grammar production that is a part of the corresponding section, is also a part of
the complete grammar in the appendix, and should appear there automatically
(as opposed to being manually cloned). In principle, one could leverage trans-
formations (such as XSLT for DocBook) for the representation of the evolution
of a (language) document. We are not aware of related work of this kind.

The topic-oriented approach operate in terms of “topics” that should
be covered in order for the documentation to be complete. The DocBook coun-
terpart in this group of approaches is Darwin Information Typing Architecture
(DITA) [OAS07] which was designed specifically for authoring, producing and
delivering technical information. IBM uses DITA for their hardware documen-
tation. PDF, HTML, Windows help files and other output formats are possible.
DITA is a relatively modern technology (2004 versus 1991 for DocBook), its
support is growing, but is not as mature as for DocBook. A more lightweight
approach is wiki technology that allows for topics to be left uncovered, showing
explicitly which parts of the documentation are intended to be written in the
future.

Language documentation is not naturally organized in topics and tasks, and
thus is not anticipated by DITA. In principle, it is possible to use DITA to repre-
sent our proposed model (LDF). In order to do that, necessary element types—
like grammar productions, code examples, notes concerning version differences,
optional feature descriptions, possible implementation remarks, language engi-
neering explanations—would need to be defined. Designated backends will also
be required. There is no apparent benefit of using DITA, when compared to the
XML/XSD-based approach that we chose for LDF’s description.

8 Vadim Zaytsev and Ralf Lämmel

The XML Spec Schema, available from http://www.w3.org/2002/xmlspec,
combines elements of structure and topic orientation in a manner that brings
us closer to the domain of language documentation. The XML Spec Schema
is a DTD that is used for some W3C recommendations. It is based on the
literate programming tag set SWEB and the text encoding tag set TEI Lite.
The Spec Schema covers some elements of the language documentation domain
such as tagging facilities for grammar fragments; it does not capture the rich
classification of sections in language documents.

3 Concepts of language documentation

As a preparatory step towards introducing LDF, we identify the concepts of the
language documentation domain. We set up a control group to this end, and we
also illustrate several concepts specifically for one member of the control group:
the XPath W3C Recommendation.

3.1 Control group for the domain model

As we have indicated in the introduction, we have consulted a large set of lan-
guage documents to eventually synthesize a unified format. For reasons of scala-
bility, we have selected a smaller set of documents which we use here to present
the results of our reverse-engineering efforts and to prepare the synthesis of a
unified format for language documents. The reference set of documents has been
chosen for its diversity. Table 1 shows some basic metadata about the language
documents for the reference set. We describe the reference set in more detail as
follows:

IAL Jovial Patterns Smalltalk Informix C# MOF XPath
Property [Bac60] [MIL84] [GHJV95] [Sha97] [IBM03] [Sta06] [MOF06] [BBC+07]

Body ACM DoD — ANSI IBM ECMA, ISO OMG W3C

Company IBM — Pearson — IBM Microsoft — —

Year 1960 1984 1995 1997 2003 2006 2006 2007

Pages 21 158 395 304 1344 548 88 111

Notation BNF BNF UML BNF RT BNF UML EBNF

Table 1. Some basic metadata of the standards chosen for the survey.

– IAL stands for International Algebraic Language that later became known as
Algol-58 [Bac60]. It is historically the first programming language document, and
as such it is the first time that the notation for specifying grammar productions was
explicitly defined. The majority of all other standards produced over the following
decades re-used this notation and extended it.

– JOVIAL, or J73 [MIL84] is a Military Standard of 1984, which “has been reviewed
and determined to be valid” in 1994. It is approved for use by the Department of
the Air Force and is available for use by all other Departments and Agencies of

http://www.w3.org/2002/xmlspec

A Unified Format for Language Documents 9

the Department of Defense of USA. The version that was examined in this survey
is a result of a second upgrade of the original language. It is less than 200 pages
and very strictly composed: basically every section has a syntax, semantics and
constraints subsections, with rare notes or examples. A traditional BNF is used
for syntax, plain English for semantics.

– Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95] is a
well-known book by Erich Gamma et al., which defines 23 well-known design pat-
terns. Since design patterns can be considered a special language, their definition
can be considered a language document—and Table 2 only proves that, letting the
400 pages long book’s structure fit in the general data model perfectly.

– ANSI Smalltalk [Sha97] is an NCITS J20 draft of 1997, 300+ pages long, it
describes both the language (ANSI Smalltalk is derived from Smalltalk-80) and
the Standard Class Library.

– Informix [IBM03] is an IBM manual for a proprietary fourth generation language.
It exemplifies industrial standards, which are extensively strictly structured, con-
tain minimum extra sections and have impressive volume. Informix specification
utilizes “railroad track” syntax diagrams, which can be mapped more or less di-
rectly to EBNF.

– C# specification [Mic03,Sta06] is both an ISO and an ECMA standard, yet it
was developed entirely within Microsoft and only approved by standardization
bodies. The ECMA version used for this survey is 550 pages long and very loosely
structured, explaining a lot of issues in running text and using arbitrary sub-
sectioning.

– MOF Core Specification [MOF06] is a 90-pages long document describing Meta
Object Facility. It uses UML and presents the information is a significantly different
way, being oriented on diagrams, properties, operations and constraints. However,
the overall information structuring turns out to be similar to conventional (E)BNF-
based standards.

– The structure of XPath W3C Recommendation [BBC+07] is rather volatile,
following the tradition of all other W3C recommendations. Each section contains
one or several EBNF formulæ, the definition for a domain concept modeled by it
and a body of text organized arbitrarily in lists and subsections.

3.2 Identification of concepts

The core domain concepts of LDF are: synopsis, description (an extended
textual definition), syntax (associated grammar productions), constraints (re-
stricting the use of the construct), references (to other language constructs), re-
lationship (with other language constructs), semantics, rationale, example,
update (from the previous language version), default (for absent parts). Four
additional concepts can occur multiple times: value (associated named piece of
metadata), list (itemized data), section (volatile textual content), subtopic
(structured section).

Table 2 compares the documents from the reference sets in terms of the
domain concepts.The cells in the table are filled with names of the sections,

10 Vadim Zaytsev and Ralf Lämmel

subsections or otherwise identifiable paragraphs in the corresponding documents,
unless noted otherwise. The coverage graph shows fully covered parts of LDF in
black (represented by section names in table cells), partially covered in gray (“∼”
in a table cell means that the information is given but lacks any specific markup)
and not covered in white (“—” in a cell means that this kind of information is
absent from the language document). Gray concepts are interesting in so far that
we face instances of implicit structure which can only be recovered with human
intervention or advanced information retrieval techniques in the extraction tool.

3.3 Example: the XPath language document

The discovery of a language document’s structure and underlying domain con-
cepts is a genuine process which we would like to sketch here for one example.
We have chosen XPath 1.0 for this purpose—mainly because of its modest size.

The XML Path Language 1.0 specification [CD99] is one of the small stan-
dards, it contains only 32 pages in the printed version. We perform a cursory
examination of it, trying to locate the domain concepts identified in the previous
section:

Synopsis — is not automatically retrievable. We note that in some sections it
is possible to use the first sentence as a synopsis (e.g., “Every axis has a
principal node type.”), but we can only defer it to the transformation phase.

Description — if no specific structure can be recovered, we will treat all section
content as a description.

Syntax — when we use the XML version of the specification as a source, all
grammar production are easily identifiable by the <scrap> tag. A specific
parser needed to be developed in XSLT to deal with the mix of plain text
(e.g., for EBNF metasymbols) and XML tags (e.g., for nonterminal symbols).

Constraints — some of the Notes are mentioning constraints (e.g., “The num-
ber function should not be used...”), but they are not automatically distin-
guishable from other Notes.

References — since all nonterminal names are always annotated with hyper-
links to the corresponding sections, no explicit references are required.

Relationship — there are mentions of relationships, some of which are even
inter-documentary (e.g., the mod operator is being compared to the % op-
erator in ECMAScript and the IEEE 754 remainder operation, but it is
impossible to derive them naturally during recovery.

Semantics — is defined in plain English in running text.
Rationale — almost all Notes can be classified as providing rationales. We

decide to map them all to rationales at the extraction step and sort the
exceptions later with more advanced recovery techniques or programmed
transformations.

Example — as typical for a W3C document, examples sections are inlined, but
preceded by the sentences like “for example,” or “here are some examples”.

Update — XPath 1.0 is the first specification of its kind, which means that it
contains no updates.

A Unified Format for Language Documents 11

D
o
m

a
in

IA
L

J
ov

ia
l

D
es

ig
n

P
a
tt

er
n
s

S
m

a
ll
ta

lk
In

fo
rm

ix
C

#
M

O
F

X
P

a
th

c
o
n
c
e
p
t

[B
a
c6

0
]

[M
IL

8
4
]

[G
H

J
V

9
5
]

[S
h
a
9
7
]

[I
B

M
0
3
]

[S
ta

0
6
]

[M
O

F
0
6
]

[B
B

C
+

0
7
]

sy
n
o
p
si

s
—

∼
in

te
n
t

sy
n
o
p
si

s
∼

∼
∼

—

d
e
sc

ri
p
ti

o
n

∼
—

m
o
ti

va
ti

o
n

d
efi

n
it

io
n

u
sa

g
e

∼
—

∼
sy

n
ta

x
—

a
sy

n
ta

x
st

ru
ct

u
re

∼
∼

∼
—

[N
N

]b

c
o
n
st

ra
in

ts
—

co
n
st

ra
in

ts
a
p
p
li
ca

b
il
it

y
er

ro
rs

re
st

ri
ct

io
n
s

∼
co

n
st

ra
in

ts
∼

re
fe

re
n
c
e
s

—
—

re
la

te
d

p
a
tt

er
n
s

—
re

fe
re

n
ce

s
∼

—
∼

re
la

ti
o
n
sh

ip
—

—
co

n
se

q
u
en

ce
s

re
tu

rn
va

lu
e,

re
la

te
d

re
tu

rn
—

∼
re

fi
n
em

en
t

ty
p

e

se
m

a
n
ti

c
s

—
se

m
a
n
ti

cs
co

ll
a
b

o
ra

ti
o
n
s

—
im

p
o
rt

a
n
t

∼
se

m
a
n
ti

cs
∼

ra
ti

o
n
a
le

∼
n
o
te

s
im

p
le

m
en

ta
ti

o
n

ra
ti

o
n
a
le

G
L

S
,

E
S
c

n
o
te

ra
ti

o
n
a
le

n
o
te

e
x
a
m

p
le

ex
a
m

p
le

s
ex

a
m

p
le

s
sa

m
p
le

co
d
e,

—
∼

ex
a
m

p
le

—
∼

k
n
ow

n
u
se

s

u
p

d
a
te

—
—

—
—

—
—

d
ch

a
n
g
es

—

d
e
fa

u
lt

—
—

—
—

n
o
te

d
ef

a
u
lt

—
—

va
lu

es

v
a
lu

e
—

—
a
ls

o
k
n
ow

n
a
s

co
n
fo

rm
s

to
—

—
—

—

li
st

∼
—

—
m

es
sa

g
es

,
te

rm
in

a
ls

—
p
ro

p
er

ti
es

∼
p
a
ra

m
et

er
s

se
c
ti

o
n

∼
—

—
—

∼
∼

—
∼

su
b
to

p
ic

—
ty

p
es

p
a
rt

ic
ip

a
n
ts

—
fi
el

d
s

p
a
ra

m
et

er
s,

o
p

er
a
ti

o
n
s

fu
n
ct

io
n
s

m
et

h
o
d
s

C
ov

er
a
g
e

o
f

L
D

F

T
a
b
le

2
.

M
a
p
p
in

g
la

n
g
u
a
g
e

d
efi

n
it

io
n
s

to
d
o
m

a
in

co
n
ce

p
ts

fo
r

la
n
g
u
a
g
e

d
o
cu

m
en

ta
ti

o
n

a
T

h
e

a
b
se

n
ce

o
f

sy
n
ta

x
el

em
en

ts
m

ea
n
s

th
a
t

g
ra

m
m

a
r

p
ro

d
u
ct

io
n
s

o
n
ly

o
cc

u
r

w
it

h
in

th
e

d
es

ig
n
a
te

d
p
a
rt

o
f

a
st

a
n
d
a
rd

.
b

A
ll

p
ro

d
u
ct

io
n
s

in
X

P
a
th

st
a
n
d
a
rd

a
re

n
u
m

b
er

ed
a
n
d

m
a
rk

ed
a
s

[1
],

[2
],

et
c.

c
G

L
S

—
G

lo
b
a
l

L
a
n
g
u
a
g
e

S
u
p
p

o
rt

,
E

S
—

a
n

IB
M

In
fo

rm
ix

d
a
ta

b
a
se

ty
p

e.
d

F
o
r

ev
er

y
v
er

si
o
n

o
f

C
#

,
th

er
e

is
a

se
p
a
ra

te
d
o
cu

m
en

t
th

a
t

su
m

m
a
ri

ze
s

th
e

ch
a
n
g
es

b
ro

u
g
h
t

to
th

e
la

n
g
u
a
g
e.

12 Vadim Zaytsev and Ralf Lämmel

Default, Value — not found in this standard.
List — found inside the <ulist> and <slist> tags in the XML version of the

document.
Section — Data Model section contains simple subsections.
Subtopic — every function description (the <proto> tag) can be treated as a

subtopic. They are never long, but still can contain structured information
such as lists and examples.

The global structure of the XPath specification is mapped to LDF in a
straightforward fashion: for example, specific sections within the <header> such
as Abstract and Status form a front matter part; <body> subsections populate
the core part; <back> subsections become the back matter part. The mapping
is mainly terminological: i.e., Status becomes “scope”, “Introduction” becomes
“foreword”, etc.

4 A unified format for language documents

We will now describe the Language Document Format (LDF)—a unified format
for language documents (say, language documentation). Given the motivation
of LDF in previous sections, we will focus here on the actual language descrip-
tion for LDF. LDF’s description and related infrastructure are available online
through the SLPS SourceForge project.2 This section presents and discusses a
full grammar for (current) LDF. The grammar notation we use here is a pretty-
printed EBNF dialect called BGF [LZ09b,Zay10a], for BNF-like Grammar For-
mat, which should be intuitively comprehensible. For brevity’s sake, some more
routine (obvious) format elements are skipped in the discussion.

4.1 Language document partitioning

Consider the following productions concerning the document top sort and
top level sections. For example, a document always contains one document
metainfo, and one or more parts:

document:

document-metainfo part+

document-metainfo:

((body number::string) | author::string+) topic::string status

(version::string | edition::string) previous? date::time-stamp
body:

ansi::ε | ecma::ε | ieee::ε | iso::ε | iso/iet::ε | itu::ε | iec::ε
| ietf::ε | oasis::ε | omg::ε | wsa::ε | w3c::ε

status:

unknown::ε | draft::ε | candidate::ε | proposed::ε | approved::ε
| revised::ε | obsolete::ε | withdrawn::ε | collection::ε
| trial::ε | errata::ε | report::ε

2 LDF’s primary description leverages XSD: shared/xsd/ldf.xsd

http://slps.svn.sourceforge.net/viewvc/slps/shared/xsd/ldf.xsd

A Unified Format for Language Documents 13

previous:

title::string (version::string | edition::string) uri::any-uri
part:

part-metainfo section+

part-metainfo:

part-role title::string? author::string? id::id?
part-role:

front-matter::ε | core-part::ε | back-matter::ε | annex::ε
section:

placeholder | simple-section | lexical-section | structured-section

| list-section

placeholder:

index::ε | full-grammar::ε | list-of-tables::ε | list-of-authors::ε
| list-of-contents::ε | list-of-references::ε

Most of the structural facets and elements should be self-explanatory. Let us
highlight here the mandatory division of each language document into parts. In
this manner, we encourage more structure than a simple list of top-level chapters.
Existing documents vary greatly in the order of sections and their presentation.
For instance, a “conformance” section is usually found in the front matter
between the title page (document-metainfo) and the core chapters, but in the
XPath 1.0 standard [CD99], it is the last core chapter. However, another typical
front matter section, namely “normative references”, is found in XPath as one of
the appendices. LDF’s parts encourage some grouping among the many sections.

4.2 Simple sections

“Simple” sections do not have any intricate internal structure and are usually
found in front matter, back matter, annex or as an extra subsection in the
usual structure.

simple-section:

section-metainfo section-content::textual-content

section-metainfo:

section-role title::string? author::string? id::id?
section-role:

abstract::ε | conformance::ε | compliance::ε | compatibility::ε
| document-structure::ε | notation::ε | normative-references::ε
| design-goals::ε | scope::ε | whatsnew::ε | foreword::ε

As shown above, the metainfo of any simple section contains its role, a
possible specific title (if absent, assumed to be equal to the role), a possible list
of authors (if absent, assumed to be equal to the list of the document authors),
and a possible id that is used to refer to this section from elsewhere. If the id
is missing, one can still use an XPath expression over the document structure
to access the section at hand. However, explicit ids are potentially preferred
because of their greater robustness with regard to document evolution.

The list of section roles was synthesized from the reverse-engineered lan-
guage documents. The roles should be intuitively understandable, but the con-

14 Vadim Zaytsev and Ralf Lämmel

crete wording may vary: a particular foreword can be called “introduction” the
same way that an obsolete standard can be called “rescinded”.

4.3 Lexical sections

Our analysis showed that the sections about lexical details are significantly dif-
ferently structured than other core sections or front/back matter simple sections.

lexical-section:

lexical-metainfo lexical-section-content::textual-content

lexical-metainfo:

lexical-section-role title::string? author::string? id::id?
lexical-section-role:

line-continuations::ε | whitespace::ε | tokens::ε
| preprocessor::ε | literals::ε | lexical-issue::ε

The list of lexical section roles was derived similarly to the list of section
roles. The last role, lexical issue, is reserved for all other special cases, which
all together occur more rarely than any of the other predefined roles.

4.4 List sections

Lists can occur anywhere in the document naturally, but we are concerned here
with a specific kind of lists, referred to as list section. Such lists are commonly
found in the front matter.

list-section:

list-section-metainfo list-section-content::(term+)

list-section-metainfo:

list-section-role title::string? author::string? id::id?
list-section-role:

definitions::ε | abbreviations::ε | language-overview::ε
| normative-references::ε

term:

name::string definition::textual-content

Normative references list, if strictly and properly structured, forms a list
section, but some standards discuss references instead of presenting them in an
itemized list. This is the reason for normative references to appear as a possible
role for a simple section.

4.5 Structured sections

A structured section is any section of a document that describes a separate
language construct in a structured way. The following productions resemble the
domain concepts of Table 2.

structured-section:

structured-section-metainfo structured-section-content

A Unified Format for Language Documents 15

structured-section-metainfo:

title::string author::string? id::id?
structured-section-content:

structured-section-element+

structured-section-element:

subtopic::structured-section | references::list | placeholder

| value::(key::string data::string) | (element-role simple-section)

element-role:

normative-role | informative-role | specific-section::ε
normative-role:

synopsis::ε | description::ε | syntax::ε | constraints::ε
| relationship::ε | semantics::ε | default::ε

informative:

rationale::ε | example::ε | update::ε

One can notice that the metainfo of a structured section is different from
any other metainfo we have seen so far: there is no role involved since every
section is dedicated to a language construct, and their set of such constructs
varies from language to language, and varies greatly from paradigm to paradigm.
The mandatory title is assumed to identify the language construct.

The elements of a structured section do have roles, and many of them
have already been seen in Table 2—LDF as a DSL contains those domain con-
cepts explicitly. The difference between a specific section and a subtopic
becomes apparent here since they come up at different levels: the former is a
possible role of a simple section; the latter is a structured section placed
inside another structured section.

Theoretically, it is possible to have a normative (i.e., not just informative)
section with examples—for instance, when we have a standard test set integrated
in the language standard. Yet we have never seen this in practice.

4.6 Detailed content

Language documents, especially modern standards, have structured content even
at the textual level of a section: hyperlinks, other references, tables, figures, for-
mulæ, lists, inline code fragments are among the most commonly used formatting
elements.

textual-content:

text-element+

text-element:

empty::ε | code::string | text::mixed-type | figure | table | list

| formula | sample::(string source::string) | production

figure:

figure-metainfo figure-source+

figure-metainfo:

short-caption::string? caption::string id::id?
figure-type:

PDF::ε | PostScript::ε | SVG::ε | PNG::ε | GIF::ε | JPEG::ε
figure-source:

16 Vadim Zaytsev and Ralf Lämmel

type::figure-type (local-file::string | uri::any-uri)
table:

header::table-row? row::table-row+

table-row:

table-cell::textual-content+

list:

item::mixed-type+

For formulæ we reuse MathML, which definition is omitted here. For pro-
ductions we reuse BGF [LZ09b,Zay10a]—the notation we use in this section.

We allow multiple figure sources so that the rendering tools for LDF can
pick the source that is most convenient for the desired output format. For in-
stance, a bitmap (PNG, GIF, JPEG) picture can be easily inserted into a web
page, but a PDF file cannot be used in this manner. However, PDF may be
preferred when LDF is rendered with pdfLATEX.

4.7 Transformation of LDF documents

In the introduction, we mentioned the pivotal role of transformations for enabling
the life cycle of language documents. In this section, we want to briefly illustrate
such document transformations on top of LDF.

Let us set up a challenge for document transformation. Consider the two stan-
dards of XPath: versions 1.0 [CD99] and 2.0 [BBC+07]. They are vastly different
documents, the one being three times the size of the other; with different author
teams, and generally following different structure. Thus, there is no correspon-
dence (neither explicitly defined nor easily conceived) between the two versions,
except for the backwards compatibility section in the latter, which statements
cannot be validated explicitly. However, using language document engineering—
including document transformations—we should be able to represent the delta
between the two versions through a script of appropriate transformation steps.

We are working on a transformation language for LDF, i.e., XLDF, which
should be ultimately sufficient in addressing conveniently the above challenge.
We refer to [Zay10b] for a more extensive discussion of the XLDF effort, and we
sketch XLDF in the sequel. Our current XLDF design and implementation has
been useful already for simpler problems. For [Zay09], we extracted a complete
XBGF manual from the corresponding XML Schema, improved it with a few
XLDF transformation steps and delivered a browsable version at the end. Such
steps were needed because the assumed profile of XML Schema does not cover
all LDF functionality.

XLDF is to LDF what XBGF [Zay09] is to BGF [LZ09a]. That is, in the same
sense as grammars can be adapted programmatically with XBGF, language doc-
uments would be adapted with XLDF. Apart from xldf:transform-grammar

operator that lifts grammar transformations, XLDF also contains operators for
introducing and moving content. Consider the following illustration where a
number of operators are applied in a transformation sequence.

xldf:add-section(structured-section:((title:"For Expressions",

A Unified Format for Language Documents 17

id:"id-for-expressions"),

...));

xldf:move-section(id:"section-Function-Calls",

inside:"id-primary-expressions");

xldf:rename-id(from:"section-Function-Calls",

to:"id-function-calls");

One could even think of meta-level transformations that affect the grammar
notation used in LDF. For instance, XPath 1.0’s grammar notation uses single
quotes, while XPath 2.0’s grammar notation uses double quotes:

xldf:change-grammar-notation(start-terminal,");

xldf:change-grammar-notation(end-terminal,");

Executing such XLDF commands would have to involve transforming the
transformations that pretty-print BGF productions. Higher-order transforma-
tions are one of the few challenges of the future work on XLDF.

5 Additional related work

A discussion about general documentation approaches was already included in
§2. Below we will discuss related work more broadly.

We have carried out a previously published case study for Cobol [Läm05]
where the grammar of Cobol is extracted from the Cobol standard; it is then
refactored, made consistent and finally put back into the standard without de-
tailed parsing of the standard’s structure. This is a limited case of document
engineering where only grammar parts are affected, but it goes beyond grammar
extraction due to the persistent link between the grammar and the manual.

In [Wai02,Wei02], respected experts in the field of technical documentation
advocate the engineering approach to documentation, as opposed to the artistic
one—without though covering the kind of domain support or life cycle that is
enabled by LDF.

Original verification techniques on language documentation are presented
in [SWJF09]. Checks include formulae like “for all reading paths, a term X must
be defined before it is used”. These ideas are complementary to ours.

The use of highly interactive eBooks for technical documentation is proposed
in [DMW05]. In our domain, we use “browsable grammars” to enable interaction
with language documentation.

Extraction for documentation is not necessarily restricted to text; extrac-
tion in [TL08] operates on graphic-rich documents. We could think of visual
languages, UML-like models and “railroad tracks” kind of syntax diagrams.

One may also use Natural Language Generation (NLG) in deriving read-
able documents. For instance, in [RML98], the text is automatically generated
with NLG when creating a final PDF out of the domain knowledge stored in
a well-structured way. On a related account, several OMG technologies such as
Knowledge Discovery Metamodel [KDM09] and Semantics of Business Vocab-
ulary and Business Rules [SBV08] try to capture ontological concepts of the
software domain and a means to make formal statements about them.

18 Vadim Zaytsev and Ralf Lämmel

In [HR07], an industrial (Hewlett Packard) case study on documentation is
presented. It involves user guides, manpages, context-sensitive help and white
papers. The approach caters for a primary artifact from which a heterogeneous
set of deliverables is generated with XMLware. To this end, disparate pieces of
related information are positioned into final documents. A conceptually simi-
lar relationship between different documentation artifacts considered in [BM06],
where a view-based approach to software documentation is proposed.

6 Concluding remarks

We have described the Language Document Format (LDF)—a unified format for
language documents (say, language documentation). The unique characteristics
of LDF are that i) it is derived by abstracting over a substantial and diverse
body of actual language documents, and ii) it is integrated well with our previous
research and infrastructure for grammar extraction, grammar recovery, grammar
convergence, and grammar transformation.

Language document engineering with LDF brings us a step closer to the
technical and methodological feasibility of life-cycle-enabled language documents
so that state of the art documents could be migrated to a more structured
setup of language documentation that is amenable to i) continuous validation,
ii) systematic reuse of all embedded formal parts (grammars, examples) in other
grammar engineering activities, and iii) transformational support for evolution.

There are these major areas for future work on the subject. First, we will fur-
ther improve our infrastructure for engineering language documents so that we
serve a number of input and output formats with sufficient quality, for example,
in terms of “recall” for extraction or “roundtripping” for re-exporting to legacy
formats. Second, our current approach to supporting evolution of language doc-
uments is not fully developed. Language design work and possibly tool support
is needed for the transformation language XLDF. Third, a proper case study is
required where an important language document (say, Cobol’s or Java’s stan-
dard) is converted into LDF, and the various benefits of our approach (language
document engineering) are properly illustrated, with language evolution as one
of the most important point.

References on language documentation

Bac60. J. W. Backus. The Syntax and Semantics of the Proposed International Al-
gebraic Language of the Zurich ACM-GAMM Conference. In S. de Picciotto,
editor, Proceedings of the International Conference on Information Processing,
pages 125–131, Unesco, Paris, 1960.

BBC+07. A. Berglund, S. Boag, D. Chamberlin, M. Fernández, M. Kay, J. Robie, and
J. Siméon. XML Path Language (XPath) 2.0. W3C Recommendation, 23
January 2007. www.w3.org/TR/2007/REC-xpath20-20070123.

BBG+63. J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J.
Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wi-
jngaarden, and M. Woodger. Revised Report on the Algorithmic Language

www.w3.org/TR/2007/REC-xpath20-20070123

A Unified Format for Language Documents 19

ALGOL 60. Numerische Mathematik, 4:420–453, Springer-Verlag, Berlin, Hei-
delberg, New York, 1963. International Federation for Information Processing
1962. Edited by Peter Naur.

Bru05. R. Brukardt. ISO/IEC JTC1/SC22/WG9 Document N465—Report on
“Grammar Engineering”, 2005.

CD99. J. Clark and S. DeRose. XML Path Language (XPath) 1.0. W3C Recommen-
dation, 16 November 1999. www.w3.org/TR/1999/REC-xpath-19991116.

GHJV95. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

IBM03. IBM. Informix 4GL Reference Manual, 7.32 edition, March 2003.
ISO02. ISO/IEC 1989:2002. Information Technology—Programming Languages—

COBOL, 2002.
ISO05. ISO/IEC 9899:TC2. Information Technology—Programming Languages—C,

Committee Draft WG14/N1124, 2005.
ISO07. ISO/IEC 14882. Information Technology—Programming Languages—C++,

Committee Draft WG21/N2315, 2007. Available at http://www.open-std.

org/JTC1/SC22/WG21/docs/papers/2007/n2315.pdf. Accessed in September
2010.

ISO08. ISO/IEC N2723=08-0233. Working Draft, Standard for Programming Lan-
guage C++, 2008.

KDM09. Object Management Group. Knowledge Discovery Metamodel (KDM), 1.1
edition, January 2009. Available at http://www.omg.org/spec/KDM/1.1/.

Mic03. Microsoft .NET Framework Developer Center. ECMA and ISO/IEC C#
and Common Language Infrastructure Standards, 2003. Available at msdn.

microsoft.com/netframework/ecma and mirror sites.
MIL84. MIL–STD–1589C. Military Standard Jovial (J73), July 1984.
MOF06. Object Management Group. Meta-Object Facility (MOFTM) Core Specifica-

tion, 2.0 edition, January 2006. Available at http://omg.org/spec/MOF/2.0.
OAS07. OASIS. DITA Version 1.1 Language Specification Approved as an OASIS

Standard. Committee Specification 01, 31 May 2007. docs.oasis-open.org/
dita/v1.1/CS01/langspec.

Rag97. D. Raggett. HTML 3.2 Reference Specification. W3C Recommendation, 14
January 1997. www.w3.org/TR/REC-html32.

SBV08. Object Management Group. Semantics of Business Vocabulary and Rules
(SBVR), 1.0 edition, January 2008. Available at omg.org/spec/SBVR/1.0.

Sha97. Y.-P. Shan et al. NCITS J20 DRAFT of ANSI Smalltalk Standard, Revision
1.9, December 1997. Available at wiki.squeak.org/squeak/uploads/172/

standard_v1_9-indexed.pdf. Accessed in June 2007.
Sta06. Standard ECMA-334. C# Language Specification, 4th edition, June

2006. Available at http://www.ecma-international.org/publications/

standards/Ecma-334.htm.
W3C. Software Language Processing Suite: Mapping Spec Schema to LDF. http:

//slps.sf.net/w3c.
WM99. N. Walsh and L. Meullner. DocBook: The Definitive Guide. O’Reilly, 1999.
Zay09. V. Zaytsev. XBGF Manual: BGF Transformation Operator Suite v.1.0, Au-

gust 2009. Available at http://slps.sf.net/xbgf.

Other references

BM06. J. Bayer and D. Muthig. A View-Based Approach for Improving Software
Documentation Practices. In Proceedings of the 13th Annual IEEE Inter-

www.w3.org/TR/1999/REC-xpath-19991116
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2007/n2315.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2007/n2315.pdf
http://www.omg.org/spec/KDM/1.1/
msdn.microsoft.com/netframework/ecma
msdn.microsoft.com/netframework/ecma
http://omg.org/spec/MOF/2.0
docs.oasis-open.org/dita/v1.1/CS01/langspec
docs.oasis-open.org/dita/v1.1/CS01/langspec
www.w3.org/TR/REC-html32
http://www.omg.org/spec/SBVR/1.0/
wiki.squeak.org/squeak/uploads/172/standard_v1_9-indexed.pdf
wiki.squeak.org/squeak/uploads/172/standard_v1_9-indexed.pdf
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://slps.sf.net/w3c
http://slps.sf.net/w3c
http://slps.sf.net/xbgf

20 Vadim Zaytsev and Ralf Lämmel

national Symposium and Workshop on Engineering of Computer Based Sys-
tems (ECBS), pages 269–278, Washington, DC, USA, 2006. IEEE Computer
Society.

DMW05. G. Davison, S. Murphy, and R. Wong. The use of eBooks and interactive
multimedia as alternative forms of technical documentation. In Proceedings
of the 23rd annual international conference on Design of communication
(SIGDOC), pages 108–115, New York, NY, USA, 2005. ACM.

Fav05. J.-M. Favre. Languages Evolve Too! Changing the Software Time Scale. In
IEEE, editor, 8th Interntational Workshop on Principles of Software Evolu-
tion, IWPSE, 2005.

HR07. K. Haramundanis and L. Rowland. Experience Paper: a Content Reuse Doc-
umentation Design Experience. In Proceedings of the 25th annual ACM in-
ternational conference on Design of communication (SIGDOC), pages 229–
233, New York, NY, USA, 2007. ACM.

Knu84. D. E. Knuth. Literate Programming. The Computer Journal, 27(2):97–111,
1984.

KZ05. S. Klusener and V. Zaytsev. ISO/IEC JTC1/SC22 Document N3977—
Language Standardization Needs Grammarware. Available at http://www.

open-std.org/jtc1/sc22/open/n3977.pdf, 2005.
Läm05. R. Lämmel. The Amsterdam Toolkit for Language Archaeology. Electronic

Notes in Theoretical Computer Science (ENTCS), 137(3):43–55, 8 Septem-
ber 2005. Proceedings of the Second International Workshop on Metamodels,
Schemas and Grammars for Reverse Engineering (ATEM’04).

LZ09a. R. Lämmel and V. Zaytsev. An Introduction to Grammar Convergence. In
Proceedings of 7th International Conference on Integrated Formal Methods
(iFM’09), volume 5423 of LNCS, pages 246–260. Springer, 2009.

LZ09b. R. Lämmel and V. Zaytsev. Recovering Grammar Relationships for the Java
Language Specification. In Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 178–186. IEEE, Septem-
ber 2009.

RML98. E. Reiter, C. Mellish, and J. Levine. Automatic Generation of Technical Doc-
umentation. Readings in Intelligent User Interfaces, pages 141–156, 1998.

SWJF09. C. Schönberg, F. Weitl, M. Jakšić, and B. Freitag. Logic-based Verification
of Technical Documentation. In Proceedings of the 9th ACM symposium on
Document engineering, pages 251–252, New York, NY, USA, 2009. ACM.

TL08. K. Tombre and B. Lamiroy. Pattern Recognition Methods for Querying and
Browsing Technical Documentation. In Proceedings of the 13th Iberoamer-
ican congress on Pattern Recognition, pages 504–518, Berlin, Heidelberg,
2008. Springer-Verlag.

Wai02. B. Waite. Consequences of the Engineering Approach to Technical Writing.
ACM Journal of Computer Documentation (JCD), 26(1):22–26, 2002.

Wei02. E. H. Weiss. Egoless Writing: Improving Quality by Replacing Artistic Im-
pulse with Engineering Discipline. ACM Journal of Computer Documenta-
tion (JCD), 26(1):3–10, 2002.

Zay10a. V. Zaytsev. Language Convergence Infrastructure. In Post-proceedings of
the 3rd International Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE’09), July 2010. In print.

Zay10b. V. Zaytsev. Recovery, Convergence and Documentation of Languages. PhD
thesis, Vrije Universiteit, Amsterdam, The Netherlands, October 2010.

http://www.open-std.org/jtc1/sc22/open/n3977.pdf
http://www.open-std.org/jtc1/sc22/open/n3977.pdf

