
Language Convergence Infrastructure

Vadim Zaytsev, zaytsev@uni-koblenz.de
Software Languages Team, Universität Koblenz-Landau, Germany

Overall setup. The methodology for grammar convergence has been presented in
[1] and elaborated in a large case study [2]. In short, it is a method of establishing
relationships between language grammars by extracting them from available grammar
artifacts and transforming until they become equivalent. The relationship is represented
by the transformation chain properties: its length, the type of steps it consists of, the
correspondence with the properties expected a priori from documentation, etc.

Grammar convergence is a complicated process that can only be automated par-
tially and therefore requires expert knowledge to use successfully. In order to make
things as simple as possible for the grammar engineer, we need a solid transformation
operators suite and a powerful tool support. The former, called XBGF, where BGF
stands for BNF-like Grammar Format—the XML variant that we use to store grammar
knowledge, was sketched in [1] and is far too complex and voluminous to be explained
in this abstract. Thus, the latter becomes the main topic of our interest.

Overall tool support for grammar convergence has been developed and released as a
part of SLPS, Software Language Processing Suite, slps.sf.net. It comprises several
stand-alone scripts targeting comparison, transformation, benchmarking, validation,
extraction—most of those scripts written in Python, Prolog and Shell. The centre that
ties it all together is called LCI, or Language Convergence Infrastructure. It operates on
a DSL we call LCF (F for Format) in which the input configuration must be expressed.

Core convergence tools. There are three top-level tools that are used univer-
sally on all grammars: comparison, transformation and validation. Comparison tool
references an external program that takes two BGF grammars and returns the verdict
on their equivalence. Since the premise of grammar convergence method was to docu-
ment grammar relationships, the comparator is not expected to do any sophisticated
matching. Transformation tool takes a BGF grammar and an XBGF script and applies
the latter on the former, resulting in a transformed BGF grammar (or an error return
code). Validation is an optional tool that is asked to check the XML validity of every
grammar produced in the convergence process.

Convergence sources. In LCF one

Fig. 1. The convergence graph for the Factorial
Language as generated by LCI.

can specify one or more sources — the
places where new languages are fed into
LCI. Each source has a name, grammar
properties, instance properties and test-
ing properties. There are three kinds of
properties for grammars and instances:
extraction, parsing and evaluation. All
of them refer to external tools (or tool
wrappers) that use a unified interface
which allows LCI to execute them, de-
tect abnormal termination and accept the
output. The only property that is needed
for a source to be valid is grammar extraction, the rest is optional. It happens only
once per source even if the source is used more than once. When it succeeds, LCI
stores the extracted grammar in order to fall back to the old snapshot if it ever goes



wrong in one of the future runs. If there are no instance properties present, no coupled
transformations (see below) take place. Testing properties consist of a list of test sets
that can be used to find bugs in this source’s grammar. Optionally, a source could also
include a priori known relationships that are invisible for LCI otherwise (e.g., ECore
model generated from XSD can be marked as derived from the XSD source).

Convergence targets. By target we mean a node in convergence tree where two
or more grammars become equivalent (i.e., they converge). In LCF a target has a name
and any number of branches. A branch has an input grammar (be it another target or a
source) and a list of transformations, grouped by phases. A convergence phase relates
to the strategy advised by [2], the notion is used to separate preliminary nominal
matching scripts from language-preserving refactorings doing structural matching and
from unsafe steps like relaxation, correction or extension. Whenever a script fails, that
branch is terminated prematurely, implying that all consecutive transformations will
fail. For all branches that reach the target, their results are compared pairwise to all
others. If all branches fail or the comparator reports a mismatch, the target fails.

Grammar transformation. Any step is either bound to an XBGF file or relates
to a generator. This is not necessarily a one-to-one relation, in Java case study some
scripts were designed so universally that they were re-used several times for different
sources. Transformation generators are external tools that take a BGF grammar as
an input and produce an XBGF script applicable to that grammar and containing
transformations of a certain nature. For example, one of the generators used for FL
case study in [1] could make a script that stripped all terminal symbols from any
grammar—this was needed to converge concrete syntax of a language with abstract
syntax of the same language. Generators are defined on top-level just as transformation
or comparison tools, so that they can be applied in different places. LCI is prepared
for a generator to fail or to produce inapplicable scripts.

Coupled transformations. It is possible to implement all transformation opera-
tors to be applicable not only to grammars, but also to instances (parse trees). If this
is done and the corresponding instance extractors and parsers are provided in LCF,
then LCI is not limited to converging grammars only. One can specify one or more
test sets to be extracted from somewhere or perhaps just copied. For every source that
has a test set attached, for every test case in that set, LCI performs coupled extrac-
tion, transformation and comparison. Additionally, evaluators can be provided that
can execute test cases and compare return values with expected ones. Test sets must
be present in a unified format for LCI to figure out applicable actions. Test cases will
also be validated if the validation tool is specified.

Language documentation. Grammars can be extracted from language docu-
ments, test sets can also be formed from the samples present in the standards. We also
have designed a transformation suite for language documentation, so it is possible to
converge languages as such triples (text, grammar, samples).

Conclusion. Language Convergence Format allows to express the domain concepts
of grammar convergence for further automation, allowing a language engineer to take
on convergence scenarios of considerable size. Test cases can complement the method
by using coupled transformations. Language documents can be transformed, too, to
support language evolution or surface relationships between language specifications.

References.

1. R. Lämmel, V. Zaytsev. An Introduction to Grammar Convergence. In iFM’09,
LNCS 5423, pages 246–260. Springer, 2009.

2. R. Lämmel, V. Zaytsev. Recovering Grammar Relationships for the Java Language
Specification. In SCAM’09, 2009. To appear.


