
Correct C# Grammar too Sharp for ISO

Vadim Zaytsev

Vrije Universiteit Amsterdam, The Netherlands,
vadim@cs.vu.nl

Introduction. The most used programming language nowadays is COBOL.
At the Free Unversity in Amsterdam we have done numerous transformations on
COBOL, parsed and transformed millions of lines of code. COBOL is standard-
ised, but vendors usually deviate from the standard, making their own dialects.
In order to parse code, we need a working grammar, which should be derived
from the compiler documentation. However, documentation is never complete
nor error-free, and special techniques are needed to obtain correct grammars:
grammar recovery and grammar (re)engineering. One can argue whether this
happens because of COBOL decades-long evolution and legacy.

Recently we started thinking about transforming C# code, too. C# is quite
different from COBOL, it is a very sharp modern language, the latest big ac-
complishment in programming languages design. C# was produced by a big
corporation and submitted as a specification to both ECMA International1 and
ISO2. C# compiler provided by Microsoft claims to fully implement the stan-
dard. Thus, one might think that this standard is of much better quality that
COBOL’s, making it easier to use it in parser construction. This research piece
shows that it is not.

Specification quality: being sharp upon C#. The C# specification is
almost 500 pages long, it is written in English, explains all language features in
detail, and has an appendix with the formal language definition in a BNF-like
form (the same formulae are used throughout the text). One might suppose it
would be very easy to take that grammar and transform it into a working parser
(which is needed for our re-engineering purposes). Unfortunately, it did not work
out that easy: the C# specification’s formal contents turned out to be unusable
“as is”. This means: no compiler. Actually, not even one line of code could have
been parsed with that specification—so inconsistent was it.

In order to get to the parser, we took the BNF grammar apart from the
text and put it into GDK3, which is expected to generate SDF formulae from it
(for use in the ASF+SDF Meta-Environment). This process showed that some
BNF formulae are informally described (“separated by”, “one of the follow-
ing”), some are redundant (occur more than once, some sorts have identical
definitions), some incorrect (e.g., forgotten “optional” marks), some inconsis-
tent (formulae given in the text and in the appendix differ), some non-intuitive
(e.g., expressions unintelligibly presented without priorities made implicit), some
idiosyncratic (omnipresent YACCified constructions), some ambiguous (the

1 European Computer Manufacturers Association. Here the ECMA-334 is meant.
2 International Organization for Standardization. C# is ISO/IEC 23270:2003.
3 Grammar Deployment Kit by C. Verhoef, R. Lämmel and J. Kort.



same code could be parsed in different ways), some just non-lege artis4 (more
compact grammar is better in many cases, same for parse trees).

Methods used and results obtained. GDK provides means for trace-
able grammar transformations. Around 1300 lines of GDK rewriting rules were
needed to eliminate all irregularities, introduce absent definitions, disambiguate
equivocal formulae (by reformulating them), deYACCify expressions, etc. The
C# grammar was cut down from 281 sorts and 710 BNF formulae to about 172
sorts and 466 GDK rules (slightly extended EBNF). More than 100000 lines of
C# code could been successfully parsed (SGLR) with it.

Grammar recovery—a technique for extracting a complete grammar out of an
existing programming language’s manual, a specification or a compiler’s source
code, assessing it, correcting, testing, an so on—has not been invented yester-
day. This technique has been used in 1998 for the first time with PLEX5, later
it proved to be a success with COBOL—the language we mentioned in the first
paragraph. There is ongoing work on Fortran and C grammars (which are consid-
erably smaller than COBOL or C#). We make some grammars publicly available
on the web: http://www.cs.vu.nl/grammars/browsable/.

The unofficial version of the C# standard, which can be found on the Mi-
crosoft website, is slighly less inconsistent—this fact shows the authors do care
about such issues, but it does not give those corrections any official status.

Generalisation. This research has shown that grammar recovery techniques
are needed with new languages as sharp as with the old ones. The problem is
that most specifications are written by hand in a hope that the authors would
be careful enough. Standards are very important part of the software industry
nowadays, they should be reliable. It is possible to generate such specifications
automatically from a complete working grammar and some textual remarks ex-
plaining it. This may take care of the consistency problem: all the BNF chunks
in the standard will be correct, all the code examples will be valid, too. This
has already been done with IBM VS COBOL II6, and it can become a common
practice, leading to tools like “Specification Deployment Kit” (non-existent yet).

It is well known that having a correct grammar of a programming language
means that we can parse code, analyse it, re-engineer, compile, etc. Almost
no transformational technique can be used without having a grammar. Besides
that, a manual or an hyperlinked on-line documentation can be automatically
generated from a complete well-commented grammar, too.

Conclusion. Language specification composed using “grammar hacking” is
useless, but can be re-engineered into a neat grammar and a working parser. Con-
versely, language specification can be easily generated from a correct grammar.
Grammar transformation techniques applied to this field lead to other advan-
tages as well: backtracking, versioning, vendor specialising, subsetting, etc.

4 Lege artis—Latin for “to be done in accordance with the rules of the art”.
5 Programming Language for EXchanges, a proprietary DSL for real time embedded

software systems by Ericsson.
6 Original VS COBOL II Reference Summary is here: http://publibz.boulder.ibm.
com/cgi-bin/bookmgr OS390/BOOKS/IGYR1101/CCONTENTS.


