
Combinatorial
Test Set Generation:

Concepts,

Implementation,

Case Study

Vadim Zaytsev,
Universiteit Twente, Enschede

June 22, 2004

Abstract

This project is about test data generation in a combinatorial way, with usage
of specific mechanisms to control explosion. The work consists of adoption of
existing concepts, description of the test data generator, application to the XML
case study with XML Schema as grammar description formalism and practical
usage of the tool. Actual results presented in the work show the differences and
the common behaviour among three XML validators—the information that can
be used to judge, choose, discard and upgrade them.

i

Hosting organisation: Vrije Universiteit, Amsterdam, The Netherlands
Supervisors: Dr.ing. Ralf Lämmel,

Vrije Universiteit, Amsterdam
Prof.dr. Hendrik Brinksma,

Universiteit Twente, Enschede

Note:
This Master’s thesis contributes to a collaboration between Dr. Wolfram Schulte
from Microsoft Research Redmond, Foundations of Software Engineering (FSE)
group and Dr. Ralf Lämmel from Centrum voor Wiskunde en Informatica (CWI)
and Vrije Universiteit (VU), Amsterdam.

The thesis contributes a possible extension of Geno and a case study on using the
tool Geno being developed by the FSE group. In Chapter 2 and Chapter 3 the
thesis describes and elaborates some of the Geno concepts, which are extracted
from a Microsoft internal document [22].

Contents

1 Introduction 1

2 Background 2
2.1 Testing: terms and definitions . 2

2.1.1 Conformance testing . 2
2.1.2 Testing of grammarware 3

2.2 Combinatorial vs. stochastic testing 5
2.3 Mechanisms to control explosion 7

2.3.1 Depth control . 7
2.3.2 Recursion control . 8
2.3.3 Equivalence control . 10
2.3.4 Balance control . 10
2.3.5 Combination control . 11
2.3.6 Context control . 12

3 C# .NET-based Test Data Generation 14
3.1 .NET Framework overview . 14
3.2 Test data generator architecture 15

3.2.1 Grammarware testing in practice 15
3.2.2 Grammar parsing and representation 16
3.2.3 Term generation algorithm 17
3.2.4 Serialisation . 17

3.3 Control mechanisms implemented 17
3.3.1 Attributes assignable to sorts 17
3.3.2 Attributes assignable to constructors 18

4 The XML Case Study 19
4.1 Introduction into the topic . 19

4.1.1 XML and XML Schema 19
4.1.2 Testing concerns in the XML 20

4.2 Applying Geno to the XML area 23
4.2.1 System under test . 23
4.2.2 Using Geno for the XML 24

4.3 Usage . 25

ii

CONTENTS iii

4.3.1 Possible scenarios . 25
4.3.2 Postprocessing . 27

4.4 Changes to the Geno’s architecture 28
4.4.1 Grammar input language 29
4.4.2 Internal structural changes 29
4.4.3 Terms generation algorithm 30
4.4.4 Explosion visualisation . 30
4.4.5 XML Serialisation . 31

4.5 XML Validators . 34
4.5.1 C# API . 34
4.5.2 Java XML data binding frameworks 35
4.5.3 Validation facilities in other languages 37

5 XML Schema Mapping 38
5.1 XML Schema vs. (E)BNF . 38

5.1.1 Input language of Geno 38
5.1.2 XML Schema . 40
5.1.3 XML Attributes . 40

5.2 Grammar adaptation . 40
5.2.1 Documentation . 41
5.2.2 Element . 41
5.2.3 Complex type . 42
5.2.4 Attributes . 43
5.2.5 Group . 44
5.2.6 maxOccurs="unbounded" 44
5.2.7 minOccurs="0" . 45
5.2.8 Arbitrary numbers in minOccurs and maxOccurs 46

6 Results 47
6.1 Experiments: directions and details 47

6.1.1 Chosen scenarios . 47
6.1.2 Implementation details . 48

6.2 Results: environment and validators 50
6.2.1 Differences in validators 50
6.2.2 Environmental errors . 52

7 Related Work 53
7.1 XML Conformance Testing . 53
7.2 Testing hypotheses . 53
7.3 Coverage criteria . 54
7.4 Miscellaneous . 55

8 Conclusion 56

CONTENTS iv

A Source Code (C#) 58
A.1 Serialisation.cs . 58
A.2 XSDValidator.cs . 59

List of Figures

2.1 Combinatorial explosion in logarithmic scale: green diamonds represent
a simple language with 1, + and -; blue triangles—its “upgrade” with
0, 1, 2 and all arithmetic operation symbols; black boxes describe the
C#. Points not included are higher than 18446744073709551616. . . . 6

2.2 “The brighter—the better covered”—the precision of combinatorial cov-
erage in signature exploration [22]. Depth control stops the generation
process entirely at a given depth; recursion control limits nesting; equiv-
alence control relies on the definition of equivalence classes. 9

3.1 Grammarware testing tool: a test data generator takes a grammar and
produces test data, which is fed to the application that operates on that
grammar. 15

3.2 The original architecture of Geno broken into pieces: four main blocks. 16

4.1 Subtree shifting example: the head tag which is expected as a sub-
element of the html tag becomes a sub-element of the body tag. 21

4.2 System under test: an XML validator which operates on an XML
Schema schema, takes an XML document as an input and produces
either a positive or a negative result. 24

4.3 Generating XML documents from an XML Schema schema (confor-
mance testing). We use an oracle to conclude that the system under
test is bug-free. 25

4.4 Generating XML documents from an XML Schema schema (differential
testing). A bug-exposing test is the one on which the XML validators
under test did not agree. 26

4.5 The changes brought to the original architecture of Geno: input and
output blocks are substituted. Dashed lines represent new blocks rela-
tions with the old architecture. 29

4.6 A screenshot: Geno generating terms for XHTML1 Strict: the main
window on the left, the progress window on the right. 30

5.1 Datatype system of the XML Schema W3C Recommendation: only
simple types presented. [2]. 39

v

Chapter 1

Introduction

This project applies testing theory to grammarware: namely, combinatorial test
generation to XML Schema-based validators. It contains not only the theoretical
background, but also the actual source code and purely practical results.

Test data generation is used in grammarware testing, where we test software
operating upon a clearly distinguished grammar (a protocol, a data format, a
programming language). Having faced lots of different XML validators, we do
differential testing (let them find out one another’s errors instead of checking
them with the standard). Also, we do not want to pick up only some test cases
randomly and use exhaustive approach (generate everything possible within the
given limits). Chapter 2 tells a short story about those issues, including both
the definitions from other sources and the description of our way to use them.

When our project had started, we had a tool called Geno, written in C# at
Microsoft Research Redmond (see the disclaimer on the page i). It is a support-
ing tool for combinatorial test data generation theory with control mechanisms.
Chapter 3 describes Geno’s architecture in the words of the first chapter.

The XML and the XML Schema specifications are grammar description
formalisms that do not map one to one to the BNF-like signatures that were
used in the tool. Chapter 4 concentrates mainly on the case study, its distinct
issues and the changes to the tool that have their origin in this work. Also
theoretical considerations are put there, such as the most probable places for a
bug.

The largest issue that we have encountered so far finds its place in Chap-
ter 5: we learn to adapt the tree-like XML Schema structure during its parsing
to the Geno’s internal grammar representation in the form of a signature. This
result is also original for this project and will be published after some more
experiments.

The actual results together with the careful description of the way they have
been acquired are put to Chapter 6, as well as the hope for the future. The
last Chapter 7 says a few words about the related work that did not contribute
to the basic theory we used, but is somehow linked to our project and may
eventually become valuable for us, too.

1

Chapter 2

Background

This chapter includes some brief background description, literature survey re-
sults, as well as other issues concerning some research that had existed before
us, but upon which this project is based.

2.1 Testing: terms and definitions

The case study of this project (as it will be put in the Section 4.1.1) is XML
test data generation in .NET environment. We use XML [6] as a data language
and XML Schema [12] as a data definition language, i.e., a grammar formalism.

2.1.1 Conformance testing

In general, there can be only two kinds of testing: structural testing, which is
based on knowledge of the guts of the system under test, and functional testing,
which can rely only on the externally observable behaviour [38]. Sometimes
they are referred to as white box testing and black box testing accordingly, or
even program-based and specification-based accordingly.

Conformance testing happens when we do have a specification of what a
program should do and an implementation doing something its creators believe
is right. It can belong to either of the classes described above. In the first case
we possess some knowledge about how the implementation is constructed, in
the latter we can rely only on what we can see from the outside.

Usually by testing an implementation it is meant that a set of tests, called a
test suite is applied to the implementation with the aim of determining whether
the implementation conforms to the relevant specification. Two completely
different implementations of the same specification may be correct if they behave
similar enough.

A test case, or a test, is a term used very often. A test case is, in general,
a sequence of actions being performed upon a system under test together with
the required inputs and the desired outputs in order to find a bug in the system.

2

CHAPTER 2. BACKGROUND 3

More concrete definitions can rely on a final sequence of states [14], a pair of
states [5], a set of events [28], etc. Unlike all those, we will consider test data,
which consists of data inputs. This can always be done in grammarware testing,
but software may operate with no explicit formalism behind it, and generation
of sole inputs yields a problem of how to evaluate the correctness of the observed
system behaviour [14].

As it will become clear in the sections to follow, we are going to use a
grammar as a specification of the program.

Unlike conformance testing, the differential testing approach, as put in [26],
is a form of stochastic testing that takes two or more different systems and feeds
them with series of mechanically generated test cases. If (better say when) the
outcomes are different (or one of the systems loops indefinitely or crashes), the
tester has a candidate for a bug-exposing test. Differential testing can be used
with either of the aforementioned approaches. We will use it together with
combinatorial testing, application details and related discussion can be found
in the next chapters.

2.1.2 Testing of grammarware

“Grammarware comprises grammars and all grammar-dependent software, i.e.,
software artifacts that directly involve grammar knowledge” [18]. In fact, by
the word grammar any syntactic formalism may be meant, just to name a few:
syntax definitions, interface descriptions, application programming interfaces,
regular expressions, telematics protocols and XML Schema schemata. With the
word grammarware we mean any software that operates upon such a grammar: a
parser, a compiler, a pretty-printer, a lexical analyser, a run-time environment,
a development environment, a browser, a type checker, a structural editor, a
loader (load-and-go compiler), a debugger, a preprocessor, a profiler, as well
as an interpreter and other numerous reverse engineering tools, code refactor-
ing tools, slicing tools, (re)documentation tools, software analysis tools, static
checkers, optimisers, etc. In grammarware testing the input is always a test data
which consists of words in the language defined by the grammar.

All the grammars used to be forged using grammar hacking techniques
where issues like testing and disciplined adaptation of grammars played a minor
role [20]. Nowadays it is moving slowly towards grammar engineering, where the
development, the maintenance, the recovery and the implementation of gram-
mars are based on well-founded concepts [18, 20, 23]1. We will concentrate on
grammar testing from now on.

A grammar can be used as a specification, and that is exactly how we
are going to look at it. But on the other hand, a grammar can be seen as a
program (compiler compiler’s input, for example). In the future work section
we will describe another way: one can treat the “XML Schema schema for XML
Schemas” [40] as just another XML language, for which we can generate test

1One being interested in such issues is referred to the project “Engineering of Grammar-
ware” at the Free University, Amsterdam: http://www.cs.vu.nl/grammarware).

http://www.cs.vu.nl/grammarware

CHAPTER 2. BACKGROUND 4

data. In this case, test data will be XML Schema schemata themselves, and
afterwards we can use them to generate XML files).

Also, there can be no approved or standardised grammar for a language
at all, that is the moment when grammar recovery techniques come into
play [20, 23]. We do not consider this issue in this project, but it is worth
mentioning—even the official version of XML Schema does not claim that it is
correct, referring to hundreds and hundreds of pages with verbal description.
Again, we know it, we point it out, but we do not deal with it within the current
project.

Grammarware testing is not easy. Grammar-based functionality operates
on richly structured, sometimes arbitrarily nested data, which leads to chal-
lenges which we still have to meet. There are also a lot of problems, as an
example we can give generation of semantically correct terms (programs): given
the fact that generated test data is a syntactically correct program, it still does
not imply that its semantics is correct too. In other words, we can write it
down, but it does not make any sense (just like in the real life languages).

Scenarios of grammar testing

We can think of quite a number of scenarios of grammar-based testing (the
following list is partially taken from and totally inspired by [18] and [22]).

� Telematics protocol design.

Interfaces, communication standards, interchange formats and the inter-
action protocols themselves are all very well described in grammar form.
XML Schema schemata, ASN.1 formalism, IDL from CORBA, façade de-
sign pattern, UML diagrams, (W)SDL, API and programming libraries—
they all can be seen as grammar formalism, and can be helpful in testing
every piece of telematics protocol design [13, 18].

� Virtual processor implementation.

Here by a virtual processor we mean anything that has an instruction set
and is not a real processor: a virtual machine, a just-in-time compiler, a
silicon processor, an intermediate code interpreter, a debugger and so on.
During development of a virtual processor, its instruction set is continu-
ously being enhanced and updated. If this is done in a systematic way,
testing can easily find its place in a lifecycle. Having a specification of
valid instructions and their semantic meaning, we can generate arbitrary
long (in)valid instruction sequences and run them on the implementation
under test [22, 32].

� Implementation testing.

Almost any given idea can have a couple of implementations that differ
drastically in performance. In order to guarantee that performance opti-
misation does not introduce any odd behaviour to our implementation, it
seems appropriate to test the optimised and the original versions against
each other in a sense of differential testing [22, 26].

CHAPTER 2. BACKGROUND 5

� Compiler development for a known language.

Different compilers of the same programming language often behave dif-
ferently: a program accepted by one of them may yield an error message
with another. Thus, different compilers lead to different dialects (and
eventually to extensions, sub- and super-sets, etc). But even if by making
a compiler one changes the language, it is important to know the differ-
ences. Again, differential testing is very helpful. Alternatively, we may
want to modify the language intentionally (as Modula-3 extends Modula-
2, as C++ extends C, as Cω extends C#) and then put the effort on
testing the new features exclusively.

� Browser development.

Browsers are not just markup language compilers. They are intended
for showing the content no matter how clumsy and sloppy it is written:
a good browser never says “error on the page!”, a good browser should
always find some way to resolve any mistake a web page designer has made.
Good error-fixing mechanism is perhaps more important for a browser
than strong conformance to the markup language specification.

Therefore, we need to do stress testing with large amount of invalid
(X)HTML, CSS and perhaps XSLT files, as well as programs written
in supported scripting languages (JScript, JavaScript, ECMAScript, VB-
Script, etc). In this scenario the outcome of any test case comes usually
in graphical form, which involves GUI testing techniques [28].

So, grammarware is not all about programming languages [18]!

2.2 Combinatorial vs. stochastic testing

We can classify all testing approaches in two vast groups. The first one is
called combinatorial testing (or exhaustive testing). By taking this approach,
we generate all possible combinations of test data, which is usually a huge test
data set. Most of the time it is unacceptably big or even infinite, so that is why
the other approach is used more often. That one is called stochastic testing (or
random testing). Assuming that execution of all test cases is not possible (it
is infinite or too costly), we instead pick some of them in sorry hope that they
will point a bug. Such reduction of the size of generated test set is called test
selection technique, which may include, for example, assigning costs and values
to all test suites [38]. Despite the name of this approach (random testing), test
selection should not be done at random but a strategy should be applied such
that the resulting reduced test suite is valuable for conformance testing, in the
sense that there is a large chance of detecting non-conforming implementations.
A lot of different heuristics are known and used in such cases.

A project related to our work is Massive Stochastic Testing for SQL [33]. It
is about automated generation of huge SQL test set, and related to us in a sense
that it uses differential grammar-based testing [26]. It is being carried out at

CHAPTER 2. BACKGROUND 6

Cardinalities per depth

1 2 3 4 5 6

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1

Figure 2.1: Combinatorial explosion in logarithmic scale: green diamonds rep-
resent a simple language with 1, + and -; blue triangles—its “upgrade” with 0,
1, 2 and all arithmetic operation symbols; black boxes describe the C#. Points
not included are higher than 18446744073709551616.

the Microsoft Research Redmond. However, it uses stochastic testing techniques
and we use the first approach, namely the combinatorial one [22]. Test data is
going to be generated in a very systematic manner achieving coverage of the
underlying grammar in a fundamental way [20].

Obviously, the straightforward combinatorial approach is way too thorough
and inefficient to be used as is and its nature is too explosive to make it possible
to use it in practice. We use the word explosion that means not only that the
function value (number of terms) goes to infinity with the finite increment, but
also that the number of generated test cases becomes unfeasible within a very
small number of depth layers explored. In practice this means that there is
always a depth for which the term generation process is not workable (number
of terms is far beyond the amount with which we can deal).

As it can be seen from Figure 2.1, number of terms per depth level increases
exponentially even on logarithmic scale (therefore, it is close to eex

)! The lowest
line (green diamonds) on the diagram corresponds to the most silliest language
we could have imagined: the one that has 1 as a terminal, “−” as an unary
operator and “+” as a binary one. Even given such a simple example, it is
not possible to proceed beyond depth 6 (the number of terms on the depth
7 is outside the long integer range: 264 = 18446744073709551616). The next
example (blue triangles on Figure 2.1) corresponds to the “upgrade” of the
same language: it has 0, 1 and 2 as terminals, two unary operators (+,−) and
all binary ones (+,−, ∗, /). This minor improvement not only consumes one
depth level entirely, but also dramatically increases the number of terms on the

CHAPTER 2. BACKGROUND 7

last accessible ones (that might lead to severe consequences for these levels up
to becoming practically inaccessible). The line above these two (black boxes
on Figure 2.1) shows an object-oriented language like C# or C++ in all its
complexity.

In order to keep up with this explosion we apply some control mechanisms
to our situation.

2.3 Mechanisms to control explosion

The following control mechanisms are introduced in the Microsoft internal doc-
ument [22]. We adopt them here and provide a semi-formal definition of them
including some illustrative examples.

There are six major control mechanisms:

� Depth control — we limit the maximum number of constructors to be
applied.

� Recursion control — we limit nested applications of recursive constructors.

� Equivalence control — we build equivalence classes.

� Balance control — we limit the preceding levels from which the terms are
reused.

� Combination control — we limit the Cartesian product on argument
terms. Pair-wise testing, ordering and duplicate controls also belong here.

� Context control — we enforce various context conditions and add context-
dependent information.

The first three of them are shown on Figure 2.2 taken from [22]. The
illustration conveys that precision of coverage can be restricted to certain parts
of the combinatorial search space. More details to follow in the next sections.

We will show how all the control mechanisms work on a rather simple
example of a grammar (it is supposed to represent a tiny subset of the HTML):

html = (head, body);
head = title;
body = (block*);
block = (data) | p(block);
data = em(data) | strong (data) | text;

2.3.1 Depth control

The depth is defined to be 1 for all literals (constants); it increases every time
a new constructor is applied to something on the top-level. If a constructor
is applied to several parameters, the resulting depth is counted as 1 + max-
imum depth of all its parameters. Therefore the depth of c(t, c(t, t)) is 3, as

CHAPTER 2. BACKGROUND 8

well as the depth of c(c(t, t), c(t, t)). For our example, we have title (for
sort head) and text (for sort data) as literals. Then, to step on the next
depth level, we may apply one constructor on them: html is not yet accessible,
so we can only generate the first term for the sort block and longer datas,
having on the depth 2: block(text), em(text) and strong(text). On the
next depth level we hit the body with terms like body*(block(text)) and
body*(block(text),block(text)). On this depth block is also allowed for
three more sophisticated terms: block(em(text)), block(strong(text)), as
well as for p(block(text)). They will contribute on the next depth, where the
first html is going to be built.

The main idea that lies behind the combinatorial test data generation is to
explore (to generate) all possible terms up to a certain depth (Figure 2.2 [22]).
However, this is not exactly what we want: we would rather generate all possible
terms of a given sort (html in the example above). Therefore it is possible to
introduce depth control on constructor basis, too. Instead of defining and lim-
iting the depth as the maximum reached depth in global (per sort), we can also
manage depth per argument position to be considered separately. This is more
specific and in ideal situation can lead to better coverage (since combinatorial
test case generation is exhaustive, the coverage is always 100%, so we mean
here that we can go deeper to more interesting directions and forget about less
interesting ones), but it is much more complicated to specify.

The depth control mechanism seems to be the main limitation: it is def-
initely the most generous we could ever imagine, it is always applicable, very
simple, and therefore—the least interesting. This is also the last control to be
applied: it can stop the generation process entirely at any point that turns out
to be last of our interest.

Some layers (sets of terms of the same depth) may not be interesting for
us at all. For the example we use, depth levels before 4 look uninhabited with
respect to the sort html, which is the one we need to explore. This happens quite
often in practice: the grammar is written in such a way that the first several
layers do not contribute at all to the root sort (the one we need), because at
least on term of all its argument sorts should be constructed before that (we
will say from now on: become inhabited).

2.3.2 Recursion control

By the word “recursion” here we mean a sort that has a constructor with one or
more arguments of that sort. In the example from the previous page the sorts
block and data are recursive.

The recursion control is another way to limit unnecessary generation of
terms. As one can see from Figure 2.2 [22], it is a more sophisticated version of
the depth control: limitation of the recursive exploration of sorts holds before we
reach sorts of interest. By saying that, for example, no term can have subterms
of the same sort, we can seriously decrease the number of terms to be generated.
The impact of this is growing with the depth explored. In our example, we can
present a table with numbers of terms for each sort per depth (no recursion

CHAPTER 2. BACKGROUND 9

Depth control Recursion control Equivalence control

Figure 2.2: “The brighter—the better covered”—the precision of combinato-
rial coverage in signature exploration [22]. Depth control stops the generation
process entirely at a given depth; recursion control limits nesting; equivalence
control relies on the definition of equivalence classes.

control, sequence control (see below) set to 5):

1 2 3 4 5 6 7 8 · · ·
html 0 0 0 11 159 1225 6951 33717 · · ·
body 0 0 11 159 1225 6951 33717 150219 · · ·
block 0 1 3 7 15 31 63 127 · · ·
data 1 2 4 8 16 32 64 128 · · ·

For obvious reason, we do not include here the head, which has only one
literal and does not acquire any more terms with depth. Then, we assign
MaxRecDepth=2 to the sorts block (due to its constructor p(block)) and data
(due to its constructors em(data)) and strong(data)). The table changes as
follows:

1 2 3 4 5 6 7 · · ·
html 0 0 0 11 159 652 0 · · ·
body 0 0 11 159 652 0 0 · · ·
block 0 1 3 4 0 0 0 · · ·
data 1 2 4 0 0 0 0 · · ·

To put it bluntly: we have applied a control mechanism to two sorts, and
this has reduced the test space from infinitely large to finite and small. We
would not lie to you: it rarely happens like this in real life, but at least it shows
well how powerful those control mechanisms are.

NB: we did not even use depth control: it is not necessary now!
Another powerful part of a recursion control is applied to constructors

rather than to sorts, it is called sequence control. In the case we have a sequence
constructor (a star, in words of the BNF [30]), that can generate arbitrarily long
sequences of subterms of the same sort, we can add an attribute to restrict the
maximum length of such a sequence. The power and the meaning of this control
strongly varies on how far is the constructor’s sort from the root: for something
deep inside the term we are interested in, it is natural to introduce as many
restrictions as possible. On the other hand, if our root is a sequence of some
other element, which has huge set of all kinds of constructors yielding different

CHAPTER 2. BACKGROUND 10

subtrees, we will certainly think twice before taking away that root element’s
ability for production of long sequences.

Anyway, we can apply this to our grammar (restricted variant—with sort
recursion control as described above), increasing [MaxLength] Geno attribute
up to 50 to the body’s one and only constructor.

1 2 3 4 5 6 7 · · ·
html 0 0 0 1226 19554 91732 0 · · ·
body 0 0 1226 19554 91732 0 0 · · ·
block 0 1 3 4 0 0 0 · · ·
data 1 2 4 0 0 0 0 · · ·

As we see, it is impossible to ruin all the wonderful job of the sort recursion
control, yet as a final result we have 137 times more terms for html than the
number of terms with using some lousy limitations (5 is not a very strict limit,
either). Obviously, no control at all (MaxLength = ∞, if it were possible)
leads to immediate explosion as soon as the sort with a sequence constructor is
accessible.

2.3.3 Equivalence control

Halting the term generation process entirely is not a perfect solution. Eventually
we may still want to generate deeper terms of our interest (and not abandoning
the depth control, too). In order to complete this task we introduce the equiv-
alence relation between terms which states: every two terms are considered
equivalent if they are of the same shape up to a given depth.

Having built such equivalence classes, we do not need to generate all terms
for every depth any longer. Instead, we can pick up one representative from each
of the equivalence classes. As it can be seen on Figure 2.2 [22], combinatorial
exploration is terminated when we reach a certain depth.

For our example, we can consider all terms that look like html(title,
body*(p(em(strong(. . .))))) to be equivalent (it actually makes sense, since
“...” may have only ems and strongs, which are already there). So, only
the term html(title, body*(p(em(strong(text))))) will be generated to
represent this equivalence class.

2.3.4 Balance control

We can also limit the preceding levels from which the terms are reused such that
only terms from the immediately preceding levels are taken. It can not only be
specified generally, but also per sort (we might not need terms of some sort
to have simple short subterms); per constructor (the same applies only to one
constructor of a sort); or even per sort occurrence (per constructor argument).

If we use the balance control for our example in the most strict way
(only one previous depth layer), this can rule out any occurrences of the
shorter terms of the same sort if there are longer ones. Thus, on the
depth 4 we will have body*(block(em(text)),p(block(text))), but not

CHAPTER 2. BACKGROUND 11

body*(block(em(text)),block(text)), because the subterm block(text)
cannot be taken from the depth 2!

2.3.5 Combination control

Often we may have a constructor which has more than one argument. In that
case, it is not always necessary to vary them all when constructing terms (i.e.,
to combine argument positions in a Cartesian product). The combinatorial
completeness can often be relaxed using knowledge of test experts: for exam-
ple, when testing binary expressions one would like to exhaust operators and
operandi, but not both simultaneously [22]. The other extreme is called one-way
coverage, when each argument position is exhausted separately (it is a rather
aggressive way to avoid explosion).

However, there are other possibilities between those two: multi-way cov-
erage notion exists and allows for specifying almost any combination require-
ments. The most simple scenarios include ∅ (no combination at all—leads to
construction of a single term), {{1}, . . . , {n}} (one-way coverage exhausting
all components), {{1, 2}, . . . , {1, n}, {2, 3}, . . . , {2, n}, . . . , {n− 1, n}} (pair-wise
coverage) and, of course, {{1, 2, . . . , n}} (full Cartesian product).

In our example there is no constructor with two arguments (except for
the only one in the html which is not interesting (because the head is not
particularly rich with terms). We can introduce another example (which is a
slightly modified version of the grammar we have used so far), where the body
has a few attributes:

body = (blocks, onload, onunload, style, class);
blocks = (block*);
block = (data) | p(block);
data = em(data) | strong (data) | text;
onload = ""

| "alert(’hi’);";
onunload = ""

| "alert(’bye’);";
style = ""

| "text-align: left;"
| "text-color: blue";

class = "" | "a" | "b" | "c";

With all control mechanisms relaxed besides the sequence control set to 4
and two-way coverage, we have results as follows:

CHAPTER 2. BACKGROUND 12

1 2 3 4 5 6 7 8 · · ·
body 0 0 0 34 390 2890 16158 77794 · · ·
blocks 0 0 7 96 721 4038 19447 86292 · · ·
block 0 1 3 7 15 31 63 127 · · ·
data 1 2 4 8 16 32 64 128 · · ·
onload 2 0 0 0 0 0 0 0 · · ·
onunload 2 0 0 0 0 0 0 0 · · ·
style 3 0 0 0 0 0 0 0 · · ·
class 4 0 0 0 0 0 0 0 · · ·

With one-way coverage, the number of terms of our interest (i.e., those
from the body sort) decreases. It corresponds now exactly to the number of
subterms of the most complex subterm’s sort (blocks in our case):

1 2 3 4 5 6 7 8 · · ·
body 0 0 0 7 96 721 4038 19447 · · ·
blocks 0 0 7 96 721 4038 19447 86292 · · ·
block 0 1 3 7 15 31 63 127 · · ·
data 1 2 4 8 16 32 64 128 · · ·
onload 2 0 0 0 0 0 0 0 · · ·
onunload 2 0 0 0 0 0 0 0 · · ·
style 3 0 0 0 0 0 0 0 · · ·
class 4 0 0 0 0 0 0 0 · · ·

We see that it decreases not only the number of terms, but also the speed
their number grows with depth.

2.3.6 Context control

We may also decide to enforce various context conditions and add context-
dependent information. By doing so we can incorporate semantic meaning to
the terms that are being generated. Before constructing a new term with a
constructor and all the sub-terms which can serve as its arguments, we check
the predicate associated with that particular constructor.

The reasonable predicates may be: implying a relationship between the
arguments (should not be equal, should sum up to a certain number, should
be homogeneous, etc); assuring a good place for a term (should be preceded
by, should be followed by, should appear only once, etc); posing additional
requirements on the arguments (one of them should be equal to, all should
begin with, etc); introducing a relationship with a distant term (especially for
references); recursive predicate (for all subterms of all the arguments it should
be, etc).

For our example (we take the original one from the page 7, not the one
from the preceding control mechanism description), we will use the so called
transform control, which allows for term transformation or dropping. In order
to do that, we write a method2 that takes an array of newly generated terms

2According to the delegate: public delegate Term[] FilterProc(Term[] ta);

CHAPTER 2. BACKGROUND 13

and filters it. For example, for some reason we want to discard all terms that
use both em and strong constructors. Now we can refer to that method directly
from the annotated grammar. Without using that filter option the results are
(with MaxLength=5 for body and MaxRecDepth=5 for both block and data):

1 2 3 4 5 6 7 8 · · ·
html 0 0 0 11 159 1225 6951 33717 · · ·
body 0 0 11 159 1225 6951 33717 85398 · · ·

When we assign the filter described above to the body’s sole constructor,
the statistics changes as follows:

1 2 3 4 5 6 7 8 · · ·
html 0 0 0 11 159 1204 6423 27885 · · ·
body 0 0 11 159 1204 6423 27885 64174 · · ·

Two results are acquired: first, we do not generate the terms we do not want
and can concentrate on the desired remains; second, the number of generated
terms is decreased—both are important.

Chapter 3

C# .NET-based Test Data
Generation

3.1 .NET Framework overview

The Microsoft .NET Framework is an important new component of the
Microsoft-hosted family of operating systems. It is the foundation of the next
generation of applications running under Windows which are easier to build,
deploy and integrate with other networked systems.

Microsoft claims that most of their consumers will never notice that the
.NET Framework is running on their Pocket PC, smart phone or desktop com-
puter, but may appreciate the reliability, ease of use and ability to connect to
other systems that the .NET Framework helps bring to computers [29].

Anyway, the .NET Framework is the most recently developed software plat-
form. Its core features, as well as the “official” programming languages (C++-
like C# and assembly-like IL) have been standardised by the ECMA1 and the
ISO2. There exists an open source version (including compilers) that runs un-
der FreeBSD and on Mac. It is also suitable for multi-language programming,
being shipped with a bunch of compilers as well as providing unified access to
the library or class contents [41].

The principal designers of the C# language were Anders Hejlsberg, Scott
Wiltamuth and Peter Golde [4]. The first widely distributed implementation
of C# was released by Microsoft in July 2000, as a part of the .NET Frame-
work initiative. It is intended to be a simple, modern, general-purpose, object-
oriented programming language. It is strongly statically typed, not strictly
object-oriented language with support for polymorphism, operator overloading,

1Standard ECMA-335 Common Language Infrastructure (CLI), 2nd edition (December
2002): http://www.ecma-international.org/publications/standards/Ecma-335.htm.

Standard ECMA-334 C# Language Specification, 2nd edition (December 2002): http:

//www.ecma-international.org/publications/standards/Ecma-334.htm.
2ISO/IEC 23271:2003, Information technology — Common Language Infrastructure.

ISO/IEC 23270:2003, Information technology — C# Language Specification.

14

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm

CHAPTER 3. C# .NET-BASED TEST DATA GENERATION 15

Grammar

TDGenerator

Test data

Grammarware

Output

Figure 3.1: Grammarware testing tool: a test data generator takes a grammar
and produces test data, which is fed to the application that operates on that
grammar.

multiple threads, delegates, events, properties, exceptions, XML comments and
automated garbage collection; without multiple inheritance, generics or type
inference whatsoever, with its roots in C++, Delphi, Modula and Smalltalk,
and some minor nifty features borrowed from other languages, too. It has syn-
tactical dialect in Basic-style (not in C++ style) called Visual Basic .NET (not
to be confused with the Microsoft Visual Basic 6).

A new version of the C# programming language in now being designed (it
is claimed to have generics, a bit of type inference and functional programming
features, co-routines, as well as some new operators), but is not yet available
for public usage.

3.2 Test data generator architecture

A test data generator is supposed to be a program which computes a test data set
achieving the desired coverage criterion [20]. We shall be dealing with the special
test data generation project Geno under development at Microsoft Research
Redmond (see the disclaimer on the page i).

We are now going to describe briefly Geno’s architecture with more tech-
nical details and the changes we have brought to it are to follow in Chapter 4.

3.2.1 Grammarware testing in practice

Geno is a support application for “Controlled Explosion in Grammar-based
Testing” [22]. It was a command-line tool written entirely in C# and consisted
of some 3200 lines of code when our project started. It has now more then 5700
lines of code and has a simple GUI (which is another 80k of generated XML
data).

CHAPTER 3. C# .NET-BASED TEST DATA GENERATION 16

grammar
in BNF

C
on

st
ru

ct
or

s
So

rt
s

an
d

grammar

Pa
rs

in
g

test data

T
er

m
s

in text
termsThe Tool

Se
ri

al
is

at
io

n

Figure 3.2: The original architecture of Geno broken into pieces: four main
blocks.

The tool built for grammarware testing works as depicted on Figure 3.1.
Its input is a grammar of test data it should generate (so, it is grammarware,
too). After test data is generated, it can be fed to the system under test. The
line going from the grammar to the system is not solid because this relationship
can be implicit. The system under test produces then a sequence of outputs
that should be somehow classified and eventually leads to a conclusion whether
that piece of grammarware contains a bug.

Thus, we have a tool that takes a textual description of a grammar in BNF-
like language as an input and produces sequence of terms, also in textual format.
We can break it in four blocks for further understanding and development (see
Figure 3.1).

The leftmost block is the first stage of dealing with the grammar: one must
parse it (of course, it also involves scanning). Then, a set of sorts together with
their constructors are passed to the next block, where they are well organised,
filtered (not all of them might be of importance for us) and the whole engine
is initialised. Then the terms generation mechanism is executed. It produces a
lot of terms, which can be treated one by one in the next block (Serialisation),
which transforms them to actual test data.

3.2.2 Grammar parsing and representation

As long as we are not concerned with the concrete syntax, we operate on simple
signatures and not on the context-free grammars [22]. Therefore we have sorts
and constructors. Sorts represent “types” of the expressions and constructors
help to build up terms which correspond to those sorts.

The original version of Geno used a special BNF-like language for descrip-
tions of the signature input (see Section 5.1.1 for more details). It allows for
writing down sorts and their constructors in a very straightforward way, together
with the specification of attributes (control mechanisms parameters).

In that version the grammar textual description was scanned, parsed and

CHAPTER 3. C# .NET-BASED TEST DATA GENERATION 17

only after that the actual core engine was initialised (the version of ours is very
much the same, but it uses the standard XML parser (DOM).

3.2.3 Term generation algorithm

The algorithm for combinatorial exploration and all its enhancements and mod-
ifications can be found in [22].

3.2.4 Serialisation

The word “serialisation” actually means that we store a run-time object to its
data description, using one way or another. People from electronic commerce
and related area where information interchange plays a big role, are certainly fa-
miliar with such process, calling it marshalling3. It can be used to save memory,
to exchange data, to backup data, to encrypt data, and to do thousand more
things that you can do with data—but to do that with objects. The process
of going the other way around (rebuilding run-time objects from text data) is
called “deserialisation” (demarshalling).

In this project we have to serialise terms, because after the generation
algorithm finishes, they are still objects. Also, as long as we talk about XML
test data generation, we need to make an XML file out of every single term. The
details on XML serialisation and the source code for it are found in Section 4.4.5.

3.3 Control mechanisms implemented

Section 2.3 has described the control mechanisms, now we will list the attributes
one can use in the grammar description or directly inside Geno. Not every con-
trol mechanism has its bunch of attributes yet, but Geno is still being developed:
we list only fully implemented and tested attributes, although.

3.3.1 Attributes assignable to sorts

� MaxDepth—this attribute represents the depth control (page 7), it limits
maximum depth of terms, can be assigned to any sort (works not only
at the top level) and has a default value of maximum possible integer
(System.Int32.MaxValue in C#, that is 2147483647).

� MaxRecDepth—this attribute represents the recursion control (page 8), it
limits nested applications of recursive constructors, can be assigned to
any recursive sort and has a default value of maximum possible integer
(System.Int32.MaxValue in C#, that is 2147483647).

3Talking about different words: our colleagues from Microsoft Research Redmond call it
“serialization”, of course.

CHAPTER 3. C# .NET-BASED TEST DATA GENERATION 18

3.3.2 Attributes assignable to constructors

� Oneway—this attribute represents the combination control (page 11), it
enforces the one-way coverage, can be assigned to any star constructor
and is switched off by default.

� Twoway—its counterpart is always switched on (unless one-way is), i.e., no
multi-way coverage is implemented yet.

� Unordered—the combination control parameter for two-way coverage, ig-
nores the order of appearance, makes sense only for a star constructor.

� NoDuplicates—another combination control parameter for two-way cov-
erage, ignores duplicate occurences, makes sense only for a star construc-
tor.

� MinLength—this attribute represents the recursion control again (page 8),
it tells the minimal length of a sequence, can be assigned to any product
constructor, has a default value of 1.

� MaxLength—the other side of the same story, tells the maximal length of a
sequence, can be assigned to any product constructor, has a default value
of 2.

� Filter—this attribute represents the part of the context control (page 12),
it gives the name of a C# function that should be run after the terms are
generated but before they are passed outside the generator, it can be
assigned to any constructor and is not used by default.

Chapter 4

The XML Case Study

4.1 Introduction into the topic

4.1.1 XML and XML Schema

The XML (eXtensible Markup Language) is a simple flexible text format for
data representation and markup. It has been derived from the SGML (Standard
Generalised Markup Language) by the W3C (World Wide Web Consortium) as
early as in November 1996, but the current standard (W3C Recommendation
confusingly called Extensible Markup Language 1.0, Third Edition) is dated
February 2004 [6]. However, there is also an XML version 1.1 evolving indepen-
dently, which tries to be compatible to Unicode of all versions. Anyway, it is in
no way our goal to list or describe, let alone classify, all standards found on the
W3C web site.

XML schemata express shared vocabularies providing a means for defining
the structure, constraining the content and describing the semantics of XML
documents. It had started in 1999 as a Document Definition Markup Language
(DDML), followed by its introduction in practice as the Document Type Defi-
nition (DTD)1. Later it was enhanced, made XML-compliant and renamed to
what we have today. Hence, we can safely say that XML Schema is an XML-
compatible superset of the DDML.

The standard of the day contains over four honderd pages and consists of
four parts. The first (and the most important) three are these W3C Recommen-
dations of May 2001: “XML Schema Part 0: Primer” [11, 12], a non-normative
document providing a sort of readable description of the XML Schema facilities
in general; “XML Schema Part 1: Structures” [36, 37], which gives more formal
definition of what one can do with XML Schema schemata and how this should
be done; and “XML Schema Part 2: Datatypes” [2, 3] adds to those the data
types used in the standard as well as the mechanisms introduced to define one’s

1The terms DTD and XSD are purely practical and are nowhere to be found on the W3C
official web-site. They usually denote a file containing a grammar in the DDML or the XML
Schema, accordingly.

19

CHAPTER 4. THE XML CASE STUDY 20

own data types (that might sound as a feature of secondary importance, but we
shall not forget that any element that has sub-elements or even attributes, has
a type, i.e., XML Schema without types and type definition is almost useless).
These parts also exist as second edition versions [2, 12, 36], but those have not
yet made it to a standard (now it is at a W3C Proposed Edited Recommendation
level).

The fourth part is a requirements part: “XML Schema Requirements” [25],
W3C Note of February 1999, or “Requirements for XML Schema 1.1” [8], W3C
Working Draft of January 2003, about the purpose and goals of XML Schema
and the possible scenarios of its use. One can check herself if the requirements
were fulfilled, there exist different points of view about it [31].

Also we use the more formal description of the Part 1 [7], the XHTML 1.0
in XML Schema [16], as well as an anonymous resource that contains a DTD
and XML Schema for XML Schema itself [40].

4.1.2 Testing concerns in the XML

We can put our effort on testing different corners of the XML. The XML Schema
standard is huge, and there are lots of things that can go wrong in its imple-
mentation. We list here a few issues that we can test:

� Well-formedness

As it will be described in details later (see page 23), there are two levels
of XML file correctness, and we can try the simplest one first. Well-
formedness assures that it is possible to make a schema such that the given
file will be valid against it. Sometimes it makes sense to test this issue:
if a validator gives a positive result for an ill-formed file, it is definitely
possessed by a bug.

� XML declaration

Every XML document should2 have a header called XML declaration. It
is just one line, but without that line we cannot tell the XML file from
any other: it is a signature.

<?xml version="1.0" encoding="UTF-8" ?>

Many pieces of software still forget about this signature. One of them is
the .NET Framework, surprisingly! For example, the class XmlDocument
has a method Save() which takes a file name and is supposed to save the
object contents right into the file. It does, but without a signature.

The XML specification [6] gives also very strict description of how the
document type declaration should conform to the document content.

Despite all the recommendations that are given by the specifications,
some grammarware developers may deliberately decide to omit those “tiny
things” in order to improve their system’s robustness. We do not discuss

2In the context of the RFC 2119.

CHAPTER 4. THE XML CASE STUDY 21

choice

head

choice title choice

body

html

body

head

titlechoice

html

Figure 4.1: Subtree shifting example: the head tag which is expected as a
sub-element of the html tag becomes a sub-element of the body tag.

the underlying reasons, but do not feel certain enough to call this an error
regardless the circumstances.

� Root element

We can also check for the root element whether it is on its place. According
to the XML standard [6] and the World Wide Web Consortium politics,
every XML file should have one and only one root element and that el-
ement name must3 be listed even before its occurrence, in the document
header. An example is given below:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html> ... </html>

The simplest test cases we can think of are: misplaced root element, no
root element, misspelled root element name, several root elements, etc.

� Grammar mutation

It is very common in testing to stress boundaries by introducing additional
test cases. We can do the same thing on a grammar level by slightly
changing the grammar. This will lead to generation of lots of incorrect
(not valid) files, which we should try on XML validators. With using
differential testing [26] we do not even need to know which test data is
correct and which is not. However, it would be good to know it just to
have some certainly correct test data, too.

The list of things that can be mutated includes: occurrence conditions
(minOccurs and maxOccurs), simple types, degradation of references,
mixed content rules.

� Subtree shift
3In the context of the RFC 2119.

CHAPTER 4. THE XML CASE STUDY 22

As a specific kind of mutation we can try to push some elements (element
occurrences) from their places. For an element that is necessary on its
place this already must yield an error (for example, this would happen if
one tried to make an (X)HTML document without the <body> tag). For
an optional element its occurrence on the wrong place should, too. An
example of subtree shifting is shown on Figure 4.1.

� Attributes

Attributes launch a challenge to XML testers: they are plentiful, freely
used and may belong to hundreds of types (called simple types in the XML
Schema). Anyway, one may concentrate purely on checking attributes,
their use, positioning, types, values, ordering, duplicates, omitting re-
quired attributes, etc.

� References

Since the beginning of the XML we have references. A reference in unlike
any other XML feature, because one entity is actually broken into two
parts: one with some element and the other with the reference to it.
Testing references relies both on syntax and semantics, hence, requires
the usage of the context control mechanism.

Two things can be tested upon the XML references: first, they should
be unique (no two elements with equal ids should exist within the same
namespace); second, they should be consistent (if there is a reference to
some x, there should always be one element with its id attribute set
to x within the same namespace). Obvious invalid tests include double
declarations and referring to non-existing entity.

� Stress testing

We can also stress things that are not specific for the XML and that all test
data share in common. In words of the XML it would be: the sequences
that are too long, the patterns that are too complex, the simple types that
are not that simple, the attributes that are too numerous, etc.

� XML representation of schemata

In the W3C Specification [36] there are three levels of XML schema-aware
processors defined. The first one is minimally conforming, implementing
XML Schema component constraints, validation rules and XML Schema
information set contributors without additional features. The medium
level is called conforming to the XML Representation of Schemas, they
are minimally conforming and accept schemata represented in the form of
XML documents as described in [2] (<include> item). The third level is
described within the next issue:

� Full conformance

CHAPTER 4. THE XML CASE STUDY 23

Fully conforming processors are network-enabled processors which con-
form to the XML Representation of schemata and are additionally capa-
ble of accessing schema documents from the World Wide Web according
to [36]. Usage of additional external schemata should therefore be tested.

� Namespaces

Elements in an XML document usually belong to one namespace. For
example, a common XML Schema schema will use only tags with the xs
prefix, which is the short form for a namespace named http://www.w3.
org/2001/XMLSchema (so, it would be <xs:element>, <xs:attribute>,
etc). For XHTML [16] documents the prefix is even omitted, but it is
possible anyway to use a schema element from another namespace, just
by using a different prefix. This requires additional support effort from
APIs, data binding frameworks and XML validators.

� Schema-related markup in documents under validation

XML Schema: Structures [36] also defines several attributes for di-
rect use in any XML document. These attributes are in a different
namespace, which has the namespace name http://www.w3.org/2001/
XMLSchema-instance (short prefix: xsi). All schema processors should
have appropriate attribute declarations for these attributes built in.

4.2 Applying Geno to the XML area

This section sketches the case study of this project as the next one explains the
way it has been solved. One particular issue, namely the mapping process from
XML Schema, is however shifted to the next chapter.

4.2.1 System under test

We assume an XML Validator (Figure 4.2) to be our system under test. It takes
two arguments: the XML-marked text file and the grammar it is suspected to
be valid against.

The XML files have two levels of conformance. The first one is called well-
formedness: any file that has been written with all tags closed, proper tags
nesting, and obeying some other rules of hygiene, is considered well-formed.
Tags not closed at all or closed in improper place (like the all-famous construc-
tion <i>text</i> produced by the early versions of Microsoft Front
Page) prevent a file from being well-formed. Sloppy way to write down at-
tributes (width=10 instead of width="10") might do the same thing. This level
is nowadays considered to be just courtesy and nothing more. Everyone is now
expected to write well-formed XML code. Luckily, most of the time this is done
for us automatically by computer programs.

The second level of conformance is called validity. This is the moment
when the XML Schema comes into play. In short, validity is nothing more

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

CHAPTER 4. THE XML CASE STUDY 24

XML

Validator

XSD

NOYES

Figure 4.2: System under test: an XML validator which operates on an XML
Schema schema, takes an XML document as an input and produces either a
positive or a negative result.

sophisticated than conformance to a certain XML Schema schema (they say,
is valid against . . .). That means that every single tag in the XML file is an
element defined in the schema, every attribute is defined there as well and the
overal structure (how the elements are placed according to one another, what
attributes do they have, etc) conforms to the schema too.

Talking in terms of grammarware, an XML Validator is a twisted parser.
It parses the file according to the grammar, yes, but it does not construct the
parse tree, just saying either “yes, I might have done that” or “no, I wouldn’t
bother doing that”. It just tries its best to parse the file, and gives the result
whether is can be parsed (with the given grammar).

Alternatively, an XML Validator may be a part of a data binding architec-
ture and actually construct a kind of parse tree (therefore being a real parser):
in this case we can treat successful construction as a positive result and the
presence of error(s) as a negative one.

4.2.2 Using Geno for the XML

The first possible solution proposal can be seen on Figure 4.3. It is very straight-
forward, we assume to have some kind of test data generator that can take the
grammar as an input and produce lots of XML files according to it (perhaps by
generating them with the combinatorial algorithm we have discussed earlier).
Then that test data set is fed into an XML validator, which outcome (set of
yes/no answers) leads to the deduction whether it is a good or a bad validator.
In this scheme we need some kind of an Oracle that can tell for each XML
validator’s answer (being it yes or no) if it is correct, and eventually to let us
decide whether the system is correct and bug-free. We do not use such scheme.

Figure 4.4 proposes something what we actually do use: test data set gen-
erated by our tool is fed into several systems under test. We run several (say,
three) XML validators against one another and report the cases when their re-
sults are not the same. By the way, there is always a chance that either all

CHAPTER 4. THE XML CASE STUDY 25

YES

GOOD/BAD

YES

Oracle Validator

XSDXML

TDGenerator

NO

Figure 4.3: Generating XML documents from an XML Schema schema (con-
formance testing). We use an oracle to conclude that the system under test is
bug-free.

XML validators agree on what is considered an error, or they have different
opinions about something that is vague enough in the standard to be under-
stood in several right ways. In the first case (all agree on an error) this might
lead to changes in the standard—that is what the W3C standards are for: to
give everyone equal chances to understand them equally good. In the second
case (differ on a vague point) it is also important to report such difference and
necessary to determine the right way to resolve the problem and to change the
description in the standard. Now, may be that is the reason why the W3C
Recommendations keep on growing so fast. . .

This problem solution lets us test all kinds of XML files with one XML
Schema schema (one grammar).

4.3 Usage

Before we start doing the essential (the testing part), we should know with some
degree of certainty about how it can be used, for what purpose, and what do
we do with the results. The next sections are totally dedicated to those issues.

4.3.1 Possible scenarios

The reasoning behind one’s willingness to apply combinatorial test data gener-
ation technique to several XML validators can be different:

� Testing new XML validator

CHAPTER 4. THE XML CASE STUDY 26

TDGenerator

GOOD/BAD

Decider

Validator Validator

YES

XML XSD

NOYES

...
NO

Figure 4.4: Generating XML documents from an XML Schema schema (differ-
ential testing). A bug-exposing test is the one on which the XML validators
under test did not agree.

In this scenario we assume some kind of new XML validator which we
cannot totally trust. We cannot rely on its output, so some testing tech-
nique must be applied. If we already have a couple of validators on hand,
we can use differential testing technique to run this new XML validator
against the trustworthy ones.

Why should we bother with the new one, already having a bunch of work-
ing pieces? There might be a lot of reasons: for example, they show worse
performance or have inconvenient interfaces.

� Choosing the XML validator

This scenario is more about the user side: we have to choose one XML
validator among the several existing. Almost all XML validators either are
free or have some freely downloadable (albeit limited) version by which it
should be possible to judge them.

Solving this problem, we may end up with quite a number of different XML
validators with different functionality, interfaces, performance and other
features, but all doing the same job. They are then executed against one
another in a way differential testing does it. The outcome would be a set
of files on which some of them cannot agree. Which one to choose, will be
decided according to the requirements we have in mind: some reasonable
balance should be found between the fast and buggy and the slow and
correct; besides, the given licensing mechanism may strongly influence the

CHAPTER 4. THE XML CASE STUDY 27

choice.

� Reviewing the specification

Even the best standardised specification should be reviewed with time.
Especially with the World Wide Web Consortium standards it seems ap-
propriate to review the Recommendations not only on a base of new fea-
tures that the end users want to be introduced and old bugs that they want
to be fixed, but also on a base of misinterpreted issues of the previously
used specification.

There can be two kinds of such issues: those on which all available gram-
marware artifacts do something unacceptable, as well as those on which
only some of them make mistakes. (The word “mistake” is used here as
a synonym for the word “misinterpretation”, because it would be too evil
to point each of those as a real error.) In the former case we are powerless
(already discussed earlier): differential testing cannot detect that kind of
bug, period. However, in the latter case, when, say, the half of all XML
validators produce a positive answer and the other half produce a negative
one, this can help.

4.3.2 Postprocessing

As long as the description of scenarios above mostly considered procedures being
executed before the actual testing phase, now we are going to list through the
things we can do after it. This is not the major purpose of our project, we
concentrate on searching for the bug-exposing test data case, and not on its
postprocessing. Anyway, we list our thoughts considering what might be done
afterwards.

NB: unless stated the opposite, we can have only two kinds of outcome: it
is either valid or not valid, with nothing in between!

� Absolute majority

If we found a situation where all (more than two different) XML validators
have one opinion, and just one disagrees. We most probably can just
discard its opinion and assume it is a bug in that particular XML validator.

� Majority report

With less degree of confidence we can conclude that, given any odd number
of systems under test, the correct result is the one for which there are
more answers and the minority have made a mistake. Assuming this can
be wrong, though.

� More detailed analysis

Sometimes XML validators do not only fetch errors (one or more of which
lead to the negative result), but also warnings (usually by having a small
number of them a positive result is still accessible). For example, as we

CHAPTER 4. THE XML CASE STUDY 28

will see later, .NET Framework validation API throws a warning for some
reason when it encounters an element that is not found in the correspond-
ing XML Schema schema or a document type definition in DDML. Those
warnings or any other intermediate results may be examined further.

� Third solid outcome

While we assume at the beginning that there can be only two outcomes
possible, namely valid and not valid, in practice sometimes we can get
the third one, namely: program crash. If the XML validator crashes, we
cannot conclude whether the file under concern was valid. Although it
seems quite appropriate to assume it to be invalid, this crash may have
no apparent link with the file, but with the environment.

As we will see in the Section 6.2, C# APIs also give explicit third result:
a warning (opposed to an error). We assume a warning belongs to the
valid outcome, but it is not that obvious.

� Localisation

It must be very useful to try to localise the error, if we think we have
found one. For doing so we need to collect all the files on which the XML
validators disagree and by means of some analysis try to figure out to
which schema details those correspond. Besides, as it has been shown
above, the error may be outside the actual system under test, but here by
localisation we mean, for example “the validator X does not pay attention
to Y feature of the supplied XML Schema schema”.

� Report to the implementor

This is the simplest way, and the most probable one: testers do not have
to be involved in the process of fixing the bug they have found. However,
this is the last way and the previous item certainly helps to empower it.

4.4 Changes to the Geno’s architecture

We can now recall the architecture that we had in Chapter 3 (changes to Fig-
ure 3.2 are shown on Figure 4.5). If we look into the center of the new figure,
we see that there is everything perfect, so we just need to correct the input lan-
guage parser, as well as the output serialisation (additional boxes on the bottom
of the figure).

The first part (which brings the understanding of the XML Schema schema
to the test data generation engine) is called the XSD Mapping, it parses the
grammar and creates all necessary sorts and constructors with which the engine
can be initialised. With this issue we deal mainly in Chapter 5 due to its utter
complexity.

The second new block (which should serialise the generated terms and pack
each of them to separate XML file) is called the XML Mapping and is just about
serialisation. This issue is much easier and explained in Section 4.4.5.

CHAPTER 4. THE XML CASE STUDY 29

XSD XML

Pa
rs

in
g

M
ap

pi
ng

T
er

m
s

X
SD

C
on

st
ru

ct
or

s

Se
ri

al
is

at
io

n
M

ap
pi

ng
X

M
L

grammar test data

So
rt

s
an

d
Figure 4.5: The changes brought to the original architecture of Geno: input and
output blocks are substituted. Dashed lines represent new blocks relations with
the old architecture.

4.4.1 Grammar input language

The data generator that should be the input of Geno is no more a special BNF-
like plain textual language, but an XML Schema schema according to [3, 7,
37, 40]. It was our intent to change it that way and this task was successfully
completed.

4.4.2 Internal structural changes

All changes that we have brought to the internal structures of Geno (the classes
representing sorts and constructors) belong to debugging issues only and do not
alter the core.

The environment (a special singleton class used for data exchange) has
changed a lot, mainly due to the visualisation we want to develop (see Fig-
ure 4.6).

In the original design all different kinds of sorts were represented by one
class, and the constructors had their onec class too, but the name of any con-
structor could have told a story about some special features (like being a star
constructor, for example). We have inherited this tradition, and enhanced nam-
ing notation as follows:

Affix Meaning Applicability
A- an XML attribute or an attribute group sort, constructor
Aof- all XML attributes of one element sort
-S an iteration, a star sort
-R a repeat, special case of a star sort
-O a choice (or), used when flattening sort
-W a sequence (with), used when flattening sort

Note that some affixes which are applied to sorts only may also be encoun-
tered in constructors names, because those sometimes are composed by adding

CHAPTER 4. THE XML CASE STUDY 30

Figure 4.6: A screenshot: Geno generating terms for XHTML1 Strict: the main
window on the left, the progress window on the right.

a number to its base sort name.
NB: the XML attributes shall not be confused with grammar attributes!

4.4.3 Terms generation algorithm

It was our intent not to change the terms generation algorithm, and we have
kept it this way till now. Introducing some new features does change the way
it behaves, but this is impelled by some mutations made on earlier stages.

4.4.4 Explosion visualisation

When we started experimenting with the new tool, we realised that the final
results are not always comprehensible enough and they definitely do not give
the whole picture (in the case of success we want to know some parameters of
the resulting test data set, in the case of failure we want to know the reason for
it). It turned out to be crucial for us to get the information before the actual
explosion happens, to look on the parameters’ influence without restarting the

CHAPTER 4. THE XML CASE STUDY 31

application, to stop the application without the use of operating system features,
to be able to proceed after the stop, etc.

The visualisation interface now looks like on Figure 4.6. Real term gener-
ation is executed in another thread, so we are able to stop it, to proceed, to
manage it and, of course, to get information out of it easily. As it is shown on
the figure, we have three main groups of number shown: the TOP 10 with the
sorts which have most terms. Usually there is one leader (or a group of leaders)
and all the other sorts have much less terms; on some intermediate stages there
is a set of sorts that keep collecting terms up to some number before that leader
can be supplied with more terms again. The second group is a BOTTOM 10 with
the sorts that have least terms, and the third one shows completely uninhabited
sorts (all sorts belong here when the generation begins and they all should be
gone when it finishes).

If this is not enough, we can specify exactly the name of the sort we want to
track and right on the next step we will have the number of terms that belong
to it. The total number of terms generated so far and the depth (achieved as
well as specified) are also shown to the tester.

4.4.5 XML Serialisation

A serialisation source code example for one of the very short grammars is shipped
with Geno, it is a typical pretty-printer with some switch/case C# code, where
each possible constructor of every sort is treated separately and specifically. Of
course, when one changes the grammar or adds something to it, or even switches
to another grammar, this code should constantly be rewritten.

Luckily for us, the XML provides us with three good aspects:

� All XML elements may be treated homogeneously.

� XML attributes are different from XML elements, but they are treated
homogeneously too.

� There are special APIs for working with the XML in .NET Framework.

The former two let us write very compact code, which has only two types
of treatment: one for all elements and one for all attributes (actually in practice
we need the third one: for special constructors like pcdata—this can be seen in
the code itself, explained below). The last one gives us good tools to implement
that.

The actual code as is one can find in Appendix A.1, and in this section we
will try to highlight the most important issues.

We have one class defined here with the three methods that are used from
the outside. The first one instantiates the XML document (using Document
Object Model, DOM, which provides us with the same features as Xerces), it is
used at the beginning of serialisation process:

CHAPTER 4. THE XML CASE STUDY 32

static public void Start()
{
doc = new System.Xml.XmlDocument();

}

Its counterpart is used at the end of serialisation process, its result is a
concrete XML file saved on a hard disk:

static public void Flush(string dir, int n)

{

StreamWriter outXml =

new StreamWriter(dir+"\\"+fillZero(n)+".xml");

outXml.WriteLine("<?xml version=\"1.0\" encoding=\"UTF-8\" ?>");

outXml.WriteLine("<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 "+

"Strict//EN\" \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">");

outXml.WriteLine(doc.OuterXml);

outXml.Close();

}

fillZero(n) here is a silly method that concatenates zeros to the file name
to give all the same length (for example, 12 will yield 00000012.xml). DOM
contains a special method for saving a file, but it does not provide either a
correct header, nor a document type, so we have had to write it another way.

The last method used from the outside is the printing process executor:

static public void Print (Term t)
{
XmlElement el = doc.CreateElement(t.Op);
if(t.Op=="html")
{
el.SetAttribute("xmlns","http://www.w3.org/1999/xhtml");
el.SetAttribute("lang","en");
}
Print(t.Args, el);
doc.AppendChild(el);

}

Namespace should be constant for all XHTML documents [16], so we post-
pone its reference until the serialisation phase. Actually, this part may be
removed if Geno were used for any other XML Schema schema, but it is not
necessary: in that case we would never happen to have a constructor called
html. However, in that case we would most probably want to write the names-
pace attribute of that schema.

Printing the bunch of subterms (the arguments) is easy:

static private void Print (Term[] ta, XmlElement parent)
{
for(int i = 0;i<ta.Length;i++)
Print(ta[i],parent);

}

CHAPTER 4. THE XML CASE STUDY 33

And the last internal method prints a subterm into a ready parent XML
element object. It also deals with the special kinds of constructors:

� nil—a dumb constructor representing element absence, nothing is added

� pcdata—a dumb constructor representing a text node (mixed content),
“. . . ” is added

� A-—constructor family representing XML attributes

� other dumb constructors of all kinds: mapping issue is described in more
details in Chapter 5

The source code of the method looks therefore as follows:

static public void Print (Term t, XmlElement parent)

{

if (t.Op=="pcdata")

{

parent.AppendChild(doc.CreateTextNode("..."));

return;

}

if (t.Op=="nil")return;

if (t.Op.IndexOf("A-")>-1)

{

if(Env.Me.Real.Contains(t.Op))

parent.SetAttribute(t.Op.Remove(0,2),"");

else

Print(t.Args,parent);

}

else

{

if(Env.Me.Real.Contains(t.Op))

{

XmlElement el1 = doc.CreateElement(t.Op);

Print(t.Args,el1);

parent.AppendChild(el1);

}

else

Print(t.Args,parent);

}

}

The usage of serialisation and the test data generation is very simple too:

foreach(Term t in this.generator)
{
Serialisation.Shared.Start();
Serialisation.Shared.Print(t);
Serialisation.Shared.Flush("path\\", n++);

}

CHAPTER 4. THE XML CASE STUDY 34

4.5 XML Validators

First of all, we use the internal APIs of .NET Framework: it would be strange
not to use them in a .NET-based project. Then, we list all Java data binding
frameworks [27, 34] because of their omnipresence and importance, and give our
short opinion about possibility to use each of them. Some of XML validation
facilities in other languages are listed also.

4.5.1 C# API

The .NET Framework APIs certainly contain means to create, parse, check,
modify and validate XML documents as well as XML Schema schemata. How-
ever, it lacks the ready to use class that we can instantiate with a schema and
run a handy method every time we need to validate an XML document. As
a part of our work we have written such a convenient wrapper in C#. It is
a complicated class having special callback mechanism for reporting validation
errors, but it still works much faster than any JVM-based tool, of course.

The core has been taken from the “Extreme XML :: Working with Names-
paces in XML Schema” tutorial as a command-line tool. It has been adapted to
our needs and transformed into a class that can be instantiated once for an XML
Schema schema and has a method that can be executed to get the validation
result for one XML file against that schema.

The actual code almost fits one page (it can be found in Appendix A.2). In
consists of a definition of one class, XSDValidator with a handful of methods
in it:

public class XSDValidator

{

private XmlSchemaCollection sc = new XmlSchemaCollection();

private bool valid;

public bool warn;

...

}

The properties valid and warn are used to denote the presence of errors and
warnings accordingly. The next important part is a standard callback method:

public void VCallback(object sender, ValidationEventArgs args)

{

if(!this.valid)return;

if(args.Severity == XmlSeverityType.Error)

this.valid = false;

else if(args.Severity == XmlSeverityType.Warning)

this.warn = true;

}

The constructor of the class registers it as a delegate [41]:

CHAPTER 4. THE XML CASE STUDY 35

public XSDValidator(string xsd)
{
if((xsd==null)||(xsd==""))return;
sc.ValidationEventHandler +=
new ValidationEventHandler(VCallback);
sc.Add(null, xsd);

}

null here corresponds to the namespace. If it is given, replace null with a
string (in the real source code we have another constructor that is not presented
here—we will not use namespaces anyway). And the actual method used for
validation looks as follows:

public bool IsXmlValid(string xmlFile)
{
XmlValidatingReader vr =
new XmlValidatingReader(new XmlTextReader(xmlFile));
vr.Schemas.Add(sc);
vr.ValidationType = ValidationType.Schema;
this.valid = true;
this.warn = false;
vr.ValidationEventHandler +=
new ValidationEventHandler(VCallback);
while(vr.Read()&&this.valid);
return this.valid;

}

It creates a validating reader object—a standard XML parser that tries to
build a parse tree according to the validation type specified (the XML Schema
schema in our case) and calls a delegate in a way very similar with the ex-
ception handling mechanism. We try to read the file until it ends or until a
non-conformance is found. The validation result is returned as is, and the pres-
ence of warnings can be understood by looking directly to the object’s warn
variable.

4.5.2 Java XML data binding frameworks

1. Castor, http://www.castor.org
Castor is an open source data binding framework for Java. It is claimed to
be the shortest path between Java objects and XML documents. Castor
provides Java to XML binding, Java to SQL persistence and some more.
Although it can be used in our project, this would involve quite some
amount of programming in Java, which is in no way inside the intended
scope of work.

2. Enhydra Zeus, http://zeus.objectweb.org
Zeus is, in a nutshell, an open source Java-to-XML data binding tool. It
provides means of taking an arbitrary XML document and converting that

http://www.castor.org
http://zeus.objectweb.org

CHAPTER 4. THE XML CASE STUDY 36

document into a Java object representing the XML. That Java object can
then be used and manipulated like any other Java object in the JVM.
Then, once the object has been modified and operated upon, Zeus can be
used to convert the Java object back into an XML representation.

3. Java Architecture for XML Binding (JAXB), http://java.sun.com/xml/
jaxb

A framework that provides a convenient way to bind an XML Schema
schema to its representation in Java code. As it is stated by the authors,
this makes it easy to incorporate XML data and processing functions in
applications based on Java technology without having to know much about
the XML itself.

Since it is not the purpose of our project to write a new validator, we can
take the official Sun Multi-Schema XML Validator 1.2 (MSV from now on),
which is free for download and for use (AS-IS software with limitations on
redistribution). The validator is very nice, stable, has plain text output
that can be easily redirected to grep tool or something alike. However, we
have to admit that it is as slow as a Java-based tool could possibly be. It
cannot validate several XML documents against one XML Schema schema
at once (as our own C#-based tool can). Nevertheless, this validator is
approved for use. Can be downloaded freely from http://developers.
sun.com/dev/coolstuff/schema.

4. JBind, http://jbind.sourceforge.net/

A framework that generates Java code from XML documents (for our
case, can be used to generate a validating parser). Impossible to download
automatically, textual request to the author is sent.

The author has replied that there is a special project where the JBind-
based XML validator is developed, but no ready software is yet available.

5. Quick, http://qare.sourceforge.net/web/2001-12/products

Data binding system for transforming XML into Java objects and Java
objects into XML. Quick builds on QJML, a binding schema which con-
nects XML elements to Java classes. Quick can be used to generate the
Java code for data classes, but it keeps the serialisation code separate from
data classes. Quick includes utilities for transforming DTDs into QJML,
QJML into serialising logic, QJML into HTML documentation, and finally
QJML into data classes. Too complicated, and no validation engine ready
to use.

6. JiBX, http://www.jibx.org

This is yet another Java data binding architecture, it is pretty new, devel-
oped by an expert after several reviews about all the others [34, 35, and
others]. It claims to have the best performance, but due to its young age
has no ready to use validator.

http://java.sun.com/xml/jaxb
http://java.sun.com/xml/jaxb
http://developers.sun.com/dev/coolstuff/schema
http://developers.sun.com/dev/coolstuff/schema
http://jbind.sourceforge.net/
http://qare.sourceforge.net/web/2001-12/products
http://www.jibx.org

CHAPTER 4. THE XML CASE STUDY 37

4.5.3 Validation facilities in other languages

� XSV, http://www.ltg.ed.ac.uk/~ht/xsv-status.html

This is lightweight Python-based validation engine, simple and available
under the GPL. It is intended to use with the CGI and requires additional
packages to be installed (such as LtXML). Request for installation sent to
the helpdesk.

� HaXml, http://www.cs.york.ac.uk/fp/HaXml

An example of utilities collection for using XML in Haskell programming
language. Unfortunately, contains only a DTD-based validator.

� ElCel Technology XML Validator, http://www.elcel.com/products/
xmlvalid.html

The ElCel Technology XML Validator is a free command-line utility built
using OpenTop, which is a new C++ class library that provides the means
to create powerful and robust network-oriented applications and greatly
simplifies their development. It has been designed to highlight some of
the strengths of the underlying XML Toolkit. It is based on DTD.

http://www.ltg.ed.ac.uk/~ht/xsv-status.html
http://www.cs.york.ac.uk/fp/HaXml
http://www.elcel.com/products/xmlvalid.html
http://www.elcel.com/products/xmlvalid.html

Chapter 5

XML Schema Mapping

This chapter mainly concentrates on the XSD Mapping block from Figure 4.5,
on how it operates and how it is internally organised.

5.1 XML Schema vs. (E)BNF

5.1.1 Input language of Geno

The input language of Geno is very simple, but somewhat close to the BNF [30].
Grammar description is signature-oriented: for every sort there is given either a
set of constructors (and a term of the sort may be constructed by any of them):

sort = constructor1(argument-sort1, argument-sort2)
| constructor2(argument-sort3)
| constructor3;

or a single sequence constructor:

sort = (another-sort*);

or a single product constructor:

sort = (another-sort, yet-another-sort);

Any sort name occurrence might be preceded by a bunch of at-
tributes regarding control mechanisms which deal with depth (MaxDepth,
MaxRecDepth, MaxRecUnbalance), and any constructor name occurrence
might be preceded by a bunch of attributes regarding control mechanisms
which deal with combinations (Oneway, Twoway, Unordered, NoDuplicates,
MinLength, MaxLength). These all can be found in the documentation, but
they are also described in Section 3.3 which deals with control mechanisms
implemented in Geno.

38

CHAPTER 5. XML SCHEMA MAPPING 39

Figure 5.1: Datatype system of the XML Schema W3C Recommendation: only
simple types presented. [2].

CHAPTER 5. XML SCHEMA MAPPING 40

5.1.2 XML Schema

Unfortunately, the XML Schema language [2, 3, 7, 8, 11, 12, 25, 36, 37] cannot
be described on one page. However, we can state it is an element-oriented
grammar definition language.

There are simple types which describe how a single value can look like (for
example, strings and integers are simple types). They are used mostly for the
attributes. There are also complex types which tell about from which elements
can their value be constructed and in what order (for example, in XHTML [16]
html has a unique complex type that refers to the elements head and body,
which also belong to their complex types).

Usually an element is defined far from the place where it is used, allowing
several references to the same elements to appear in different places in the
schema. The content of a complex type (called complex content when it has
subelements and simple content if not; attributes are allowed for both) may be
mixed (that means: may have plain text (character data) among its elements).
Every element occurrence not only contains a reference to its definition (it might
contain the actual definition instead), but also occurrence constraints saying how
many of those elements may appear in that place, what their values should be
(fixed attribute) and what are the default values. Complex types can be
declared separately from their place of usage, too.

It may look silly, but the complex types are that simple. There are also
additional features like groups of elements and attributes, which make life even
easier. Unlike them, the simple types are very complex. There are 45 built-in
simple types in the XML Schema standard—see Figure 5.1 [2]. They all can
be used as they are (which rarely happens) or be extended/restricted directly
in the place where they are used. If this is not enough, one can invent its own
atomic, list or union datatypes.

5.1.3 XML Attributes

The XML attributes are somewhat different from the XML elements:

� They may appear only once per described occurrence, no sequences are
allowed.

� They cannot belong to complex types.

� Their order of appearance in not important.

� They may not appear at all (unless explicitly stated otherwise).

5.2 Grammar adaptation

In order to map the complicated structure given by an XML Schema schema to a
rather flat signature description, we need to introduce dummy sorts and dummy
constructors. These are certainly to be eliminated later, on the serialisation

CHAPTER 5. XML SCHEMA MAPPING 41

phase. However, on the first stage we need them for sure. Just to give a simple
example:

A → B?|C

cannot be parsed into the internal representation as is, just because the
iteration (closure, ?) must be the only alternative. Therefore we bring a dummy
sort in:

A → BS |C
BS → B?

Also, Geno cannot understand the brackets in the extended BNF:

A → B, (C|D), E, ((F |G)|H?)

should be automatically transformed to:

A → B,CD,E, FGH

CD → C|D
FGH → FG|HS

FG → F |G
HS → H?

The more complex the given structure is, the more dummy sorts we need
to parse it well. In fact, for each complicated piece of grammar we need some
way to deal with.

More complicated and solid grammar adaptation techniques are given in
[19] and [24], they are described in the related work section.

5.2.1 Documentation

XML Schema standard allows for so-called annotations containing documenta-
tion about the element or complex type where they are encountered. As long as
they do not provide any computer-intelligible information about the grammar,
they are completely discarded.

5.2.2 Element

Obviously, every element becomes a sort. Not true. It gives a name to a sort,
but the actual content of the sort is determined by the complex type of the
element.

CHAPTER 5. XML SCHEMA MAPPING 42

5.2.3 Complex type

If the complex type is encountered as a part of an element, it becomes the sort
with the name of that element, if it is encountered by itself, it gives its name to
the derived sort. The complex type cannot be used in the XML Schema schema
by itself, but without a name (because then it would not be possible to refer to
it).

In practice a complex type consists of either a particle (a sequence or a
choice) or a complex content (that happens usually when the content must be
mixed). The latter case is easy: it yields one constructor for the complex type’s
sort for being mixed and some others for XML attributes (if any).

The former case if, however, not that simple: any sequence produces one
constructor for the complex type’s sort. It has arguments that correspond to
every sequence piece. Any choice produces set of constructors, one for each piece
inside it. The structures that are too complicated must be flattened: additional
dummy sorts are created in order to refactor them.

As an example we take a piece of XHTML grammar [16]:

<xs:element name="head">

<xs:annotation>

<xs:documentation>

content model is "head.misc" combined with a single

title and an optional base element in any order

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:group ref="head.misc"/>

<xs:choice>

<xs:sequence>

<xs:element ref="title"/>

<xs:group ref="head.misc"/>

<xs:sequence minOccurs="0">

<xs:element ref="base"/>

<xs:group ref="head.misc"/>

</xs:sequence>

</xs:sequence>

<xs:sequence>

<xs:element ref="base"/>

<xs:group ref="head.misc"/>

<xs:element ref="title"/>

<xs:group ref="head.misc"/>

</xs:sequence>

</xs:choice>

</xs:sequence>

<xs:attributeGroup ref="i18n"/>

<xs:attribute name="id" type="xs:ID"/>

<xs:attribute name="profile" type="URI"/>

</xs:complexType>

</xs:element>

(Quoted exactly as in [16, lines 571–602])

Or, in somewhat more familiar EBNF notation (hm as a short form for

CHAPTER 5. XML SCHEMA MAPPING 43

head.misc):

head → hm,

((title, hm, (base, hm)?)|(base, hm, title, hm)),
(i18n|id|profile)?

It would be parsed as follows:

head = (head.misc, head-O1, Aof-head);
head-O1 = head-O1-1(head-O1-W1)

| head-O1-2(head-O1-W2);
head-O1-W1 = (title, head.misc, head-O1-W1-W1);
head-O1-W1-W1 = (base, head.misc)

| nil;
head-O1-W2 = (base, head.misc, title, head.misc);
Aof-head = [Unordered, NoDuplicates] (Aof-head-S*);
Aof-head-S = head1(A-i18n)

| A-id
| A-profile
| nil;

This can be understood much easily if one is familiar with our naming
notation: O means sequence (from the word “or”), W means choice (from the
word “with”), A means an attribute, Aof—a set of attributes of one element. nil
is a special constructor that can make nothing out of nothing, but the result can
be a term of any sort. Groups are described below, right after the attributes.
We deal with the occurrence constraints in the last sections.

5.2.4 Attributes

For every element we create a special sort representing all its attributes. It is
an iteration (a star), so this always gives one more sort. Every actual attribute
becomes a constructor of that inner sort, if it is declared inside the parent
element declaration, or it becomes a sort in the place where it is defined and the
constructor with the name of the element and that sort as its only argument,
if it is just referred to. Every attribute sort (the inner one, Aof-element-S) has
an additional nil constructor for the case of no attributes. The outer sort (Aof-
element) is granted the control mechanism parameters limiting its pair-wise
coverage.

If an element has no attributes, no additional sorts are created.
Attributes can be combined into named groups. Referring to an attribute

group is equivalent to referring to all of its attributes. The straightforward
substitution, however, cannot be done because we cannot predict that the point
where the attribute group is defined is earlier in an XML file than its usage.
Therefore, we pull the same trick as with reference to attributes: the constructor
named after the element has an argument of a sort, which corresponds to the
attribute group itself.

CHAPTER 5. XML SCHEMA MAPPING 44

5.2.5 Group

XML Schema enables groups of elements to be defined and named so that the
elements can be used to build up the content models of complex types. Un-
named groups of elements can also be defined, and along with elements in named
groups, they can be constrained to appear in the same order (sequence) as they
are declared. Alternatively, they can be constrained so that only one of the
elements may appear in an instance [16].

In practice almost always a group is a long choice of different elements (or
other groups) which is used more than once throughout the XML document.

A group can only occur standing alone. It can therefore be treated the
same way the reference to the element or complex type is: the definition of a
group yields a sort with all kinds of constructors; the reference to a group yield
an argument of that sort (if used inside the sequence) or a constructor taking
one argument of that sort (if used inside another choice).

5.2.6 maxOccurs="unbounded"

Almost any element in the XML may have minOccurs and maxOccurs attributes
(it seems to be mostly used inside the sequences, however). By default they
both are equal to 1, but can be given any number as well as special “∞” value
called unbounded. Actually, minOccurs=0 and maxOccurs=unbounded means ?
in EBNF, while minOccurs=1 (or default) and maxOccurs=unbounded means +.
For good or bad be it, but unlike the EBNF, XML Schema allows its users to
specify exact minimum and maximum number of element occurrences. Usually
this is a big pain for XML API developers, because then such information must
be stored with any schema element, but it does not give us a fright: the internal
representation of a grammar in Geno stores a lot of grammar attributes any-
way. Among others there are MaxLength, MinLength, which are pretty much
equivalent to what we have in the XML Schema.

In Geno grammar description language [22] we do not have different means
for ? and +, but we have one constructor type which name ends with a star.
More details can be described with grammar attributes.

Suppose we have this element in XML Schema:

<xs:element name="ol">
<xs:complexType>
<xs:sequence>
<xs:element ref="li" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

(Adapted from [16])

In EBNF this would have looked like:

ol → li+

CHAPTER 5. XML SCHEMA MAPPING 45

In the input language of Geno it becomes an attributed grammar:

ol = [MinLength=1]ol*(li);

However, it is nearly impossible to encounter such a peaceful situation in
real life. Even this simplest ordered list element in XHTML1 Strict looked as
follows:

<xs:element name="ol">
<xs:annotation>
<xs:documentation>
Unordered list

</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element ref="li" maxOccurs="unbounded" />

</xs:sequence>
<xs:attributeGroup ref="attrs" />

</xs:complexType>
</xs:element>

(Exactly as in [16])

Let alone the comments, we have a reference to a bunch of attributes here!
That means that the constructor of ol actually takes two parameters, one of
them being attributes and the other being the closure. Thus, we have in EBNF:

ol → li+, attrs

Which yields a data generator description:

ol = ol(attrs, li-S);
li-S = [MinLength=1]li-S*(li);

5.2.7 minOccurs="0"

Actually, we could have done the same thing in this case, if it would not be so:
maxOccurs is 1 by default, that means for us that if only minOccurs is present,
this is not a closure, but a possible non-terminal:

<xs:element name="table">
<xs:complexType>
<xs:sequence>
<xs:element ref="caption" minOccurs="0" />
...

</xs:sequence>
</xs:complexType>

</xs:element>

(Adapted from [16])

CHAPTER 5. XML SCHEMA MAPPING 46

which gives us in an EBNF:

table → caption?, · · ·

or, closer to Geno:

table → captionM , · · ·
captionM → ε|caption

and in the input language of Geno:

table = table(caption-M, ...);
caption-M = nil | caption-M(caption);

where nil is a special dummy constructor that evaluates to nothing (typed
nothing, actually) during the serialisation phase. Lucky enough, this is all we
need for minOccurs: unlike its cousin, it cannot be unbounded.

5.2.8 Arbitrary numbers in minOccurs and maxOccurs

For any other case we can have one general rule: map the numbers to attributed
grammar used in Geno.

<xs:element name="foo">
<xs:complexType>
<xs:sequence>
<xs:element ref="bar" minOccurs="i" maxOccurs="j"/>
...

</xs:sequence>
</xs:complexType>

</xs:element>

where i and j are some natural numbers. This cannot be expressed in the
EBNF, but in the input language of Geno it becomes:

foo = foo(bar-N, ...);
bar-N = [MinLength=i,MaxLength=j]bar-N(bar);

We must admit this is done for completeness’s sake only: we have not seen
any real XML Schema schema that makes use of that opportunity. We must
admit, too, that the possibility to give precise values to any element occur-
rence may be useful for the testers when they realise that a schema does not
work at all with our test data generator (the complex structure drives it out of
memory before any meaningful terms are actually generated) and they need to
restrict the combinatorial generation somehow. For more details please consult
Section 2.3 about control mechanisms.

Chapter 6

Results

6.1 Experiments: directions and details

6.1.1 Chosen scenarios

We have decided to concentrate on three scenarios, namely:

� Huge valid test data set

We want to generate a lot of presumably valid XML files from one XML
Schema schema and to put them into three XML validators: the C#-based
one, the Java-based one and the Python-based one.

� Grammar mutation

We want to mutate the grammar in order to generate lots of invalid XML
files mixed with valid ones, put them into the same three validators in
order to see of they can distinguish between them.

� Point-wise stress testing

We want to use the control mechanisms in such a way that everything
besides the needed point is not explored (minimum amount of terms is
generated) and everything linked with the point of interest is exhausted
(up to the maximal possible depth).

The total summary of how big the grammars and the corresponding test
data sets were is shown on the table below. Depth is defined as on the page 7;
the numbers of sorts and constructors are given to get an impression about how
big the grammars are; the number of terms: generated and belonged to the root
sorts—the latter can be seen as the actual size of a test data set in files:

Depth Sorts Constructors Terms Terms of
reached in the signature total the root sort

Valid 8 234 478 9914261 37240
Mutation 5 234 684 347339 64247
Stress 1000 5 6 1500 499

47

CHAPTER 6. RESULTS 48

It turned out to be infeasible to generate valid test data set for a complex
grammar like the XHTML [16]: in order to make all sorts inhabited, we had
to go till depth 29, which leaves us with almost infinite number of terms to be
generated. If a grammar is too big to be handled as a whole, we may try to slice
it into feasible parts and test them separately (it is somewhat related to multi-
way coverage). In XHTML we do not have always to vary heads and bodys at
the same time. Therefore, we have decided to concentrate on generating bodys
and use the shortest completion algorithm to get one head for all of them. Even
then, we could not cover all the sorts and went down to depth 8.

With grammar mutation technique (ε rule added to each sort) we were able
to generate more (mostly invalid) terms of the root sorts earlier with the depth.
We can easily see the result in the table: the terms of the root sort form larger
part of a whole.

For stress testing we picked up another schema, so that we could concentrate
better on the nesting of one constructor and forget about the rest:

<?xml version="1.0" encoding="ISO-8859-5"?> <xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="root">

<xs:complexType>

<xs:sequence>

<xs:element ref="rec" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="rec">

<xs:complexType>

<xs:sequence>

<xs:element ref="rec" minOccurs="0"/>

<xs:element ref="foo"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="foo">

<xs:complexType mixed="true"/>

</xs:element>

</xs:schema>

Then we tweaked all the control mechanisms in such a way that the test data
generator explored the grammar as deep as possible considering the recursion,
but ignored all items of secondary interest. The great thing is that by doing so
we brought the test data generator down to linear growth (check the table)!

6.1.2 Implementation details

Hardware

We will use the term Windows machine to denote an AMD Athlon 2200+-
based Fujutsu-Siemens personal computer with 1.8GHz CPU, 1Gb memory and
Windows XP Professional installed and the term UNIX machine to denote a

CHAPTER 6. RESULTS 49

Sun UltraSPARC-III+ workstation with two 900MHz CPUs, 4Gb memory and
SunOS 5.8 installed.

.NET-based XML validator in C#

This one was home-made, therefore it did not require any additional strange
movements. It was executed on a Windows machine and produced a log file
with file names and their results. So far it proved to be the fastest one of the
three.

JVM-based Sun XML validator in Java

This validator ships as a JAR file, so we had to re-execute it for each XML
file. It consumes time, which does not make the JVM any faster. Some tests
were executed on the same Windows machine using the batch file generated by
another batch file. This complicated system was necessary to use because of the
operating system’s FOR/IN command. For example, the straightforward way:

FOR %%A IN (c:\generated*.xml)
DO java -jar msv\msv.jar x.xsd %%A
| grep -E "validating|document"
>> result.txt

gives in somewhere between 10000 and 20000 files (depends on the size
of every file). Besides, it silently skips some files (unacceptable for us—this
can ruin the whole experiment). Therefore, actual execution in the batch file
is replaced with the echo shell command that makes another batch file of the
form:

@echo off
java -jar msv\msv.jar x.xsd c:\generated\0000000.xml

| grep -E "validating|document"
java -jar msv\msv.jar x.xsd c:\generated\0000001.xml

| grep -E "validating|document"
java -jar msv\msv.jar x.xsd c:\generated\0000002.xml

| grep -E "validating|document"
...

Surprisingly, this one works perfectly. Alternatively, we may run exper-
iments with MSV on a UNIX server. The batch file uses the ksh’s for/in
loop:

#!/usr/bin/ksh

for xf in generated/*.xml
do java -jar msv/msv.jar x.xsd $xf
| /usr/xpg4/bin/grep -E "validating|document"
>> result.txt

done

CHAPTER 6. RESULTS 50

The UNIX server works a bit slower that the Windows machine, but has
tremendously useful at mechanism, as well as all advantages of a remote system.

XML validator in Python

Windows version of the XSV is shipped as an EXE file intended for CGI use
(which output can still be redirected with the 2> command). UNIX version
comes as a Python module that can be used easily:

#!/usr/local/bin/python
from XSV.driver import runit

class zzz:
def write(self,z):
if z.find("bug")>-1:
self.z=’’
if self.b==1:
self.b=0
self.s=z
if z.find("instanceErrors")>-1:
self.b=1

def __init__(self):
self.b=0

for i in xrange(0,37241):
xmlfile = ’RV/’+fillZero(i)+’.xml’
print "validating", xmlfile
res = runit(xmlfile, ["x.xsd"])
o = zzz()
res[0].printme(o,[],[])
if o.s.split(’"’)[1]==’0’:
print "the document is valid."

else:
print "the document is NOT valid."

All we need is to format the output in the same way the other two validators
use.

6.2 Results: environment and validators

6.2.1 Differences in validators

Lax validation

In some cases the XSV (for example, if it gets an empty XML Schema file),
switches to another mode called lax validation (as opposed to strict validation),

CHAPTER 6. RESULTS 51

which allows it to accept almost anything it can find in XML files. An example
of such a schema follows:

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" />

Unknown element

If the .NET APIs see an element that is nowhere to be found in the given XML
Schema file, it throws a warning (as opposed to an error), which some can
interpret as a positive result. An example of a XML file that can be “valid with
warnings” against the XHTML schema follows:

<?xml version="1.0"

encoding="UTF-8" ?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<nil />

The UNIX version of the XSV always tries to contact the actual URL of
the document type definition and fails.

Duplicate attribute

If we generate an invalid test data which has at least one element with two or
more attributes with the same name (in other words: if we negate NoDuplicate
parameter of combination control), the XSV does not report an error, but
breaks:

<xsv xmlns="http://www.w3.org/2000/05/xsv"

instanceAssessed="false"

schemaDocs="y.xsd"

target="/home/vadim/valid/RV/0000071.xml"

version="XSV 2.7-1 of 2004/04/01 13:40:50">

<bug>validator crash during target reading</bug>

<XMLMessages>Error: Repeated attribute style

in unnamed entity at line 3 char 102 of

file:///home/vadim/valid/RV/0000071.xml

</XMLMessages></xsv>

Note that there is no instanceErrors line in the output, but an
instanceAssessed="false" instead: therefore, XSV tells us it did not suc-
ceed reading the file. From the point where we have found this odd behaviour
on, we consider this result as a negative one.

The C# APIs also react differently by raising an exception XmlException
— again, after noticing that we start treating this exception as a negative val-
idator result.

Stress nesting

The XSV turned out to be vulnerable for point-wise stress testing (upon our own
schema, not the XHTML one). On the 493rd nesting level of the <rec> element

CHAPTER 6. RESULTS 52

the XSV broke, but the other two XML validators did not. The problem is not
in a validator, but in the underlying architecture: no error was reported by the
XSV itself, but by the Python instead. Besides, it did not break under UNIX
(at least, up to 499th nesting level).

6.2.2 Environmental errors

FOR command in Windows

Two errors have been found in this point. The first one is: using the FOR
command for the whole test data set (rarely smaller than 20000) compels halting
the validation process somewhere around the 15000th XML file with the error
message (for Windows XP Professional):

Not enough storage is available to process this command.
Out of memory.

The second one is: it skips about 0.03% of all files if executed with a
bearable amount of files (say, 10000). The skipped part does not seem big, but
with a big number of files this lead to severe consequences. For instance, since
that bug was encountered, we had to log not only the output of the validation,
but also the XML file name.

The log file in such a case could look as follows (real example listed):
...
the document is NOT valid.
validating c:\generated\0011009.xml
the document is NOT valid.
validating c:\generated\0011010.xml
the document is NOT valid.
validating c:\generated\0011012.xml
the document is NOT valid.
validating c:\generated\0011013.xml
the document is NOT valid.
validating c:\generated\0011014.xml
...

You can see that no file called 0011011.xml has been executed: and yes, it
existed.

Chapter 7

Related Work

7.1 XML Conformance Testing

The World Wide Web Consortium itself has an initiative about XML confor-
mance testing [39]. The test data suite contains over 2000 test files and an
associated test report that contains background information on conformance
testing for XML as well as test descriptions for each of the test files included in
this release.

Its analysis and documentation have shown that it was made exclusively by
hands during a discussion in the mailing list. Besides, there is no single XML
Schema schema in it, but DTDs only.

7.2 Testing hypotheses

There is a notion of hypothesis introduced in series of works about algebraic
abstract data types [1, 9, 10, 38]. Hypotheses represent and formalise common
test practices, they usually have the form of “if a property holds for every item
in a subset, it holds for the whole set”. In more practical words it will be: “if a
system under test behaves normally for every test case in a test set, it always
behaves normally”. The strongest hypothesis is that the program is already
correct (it leads to the smallest test set: ∅), the weakest one is associated with
the exhaustive test data set. Usually people use something in between:

� Σ-adequacy hypothesis

This non restrictive hypothesis means that all exported operations of the
program under test are specified [1].

� Regularity hypothesis

This hypothesis translates our depth control (page 7) on the formal ground
of algebraic data types [1].

53

CHAPTER 7. RELATED WORK 54

� Ω-Regularity hypothesis

Stronger version of the same: defined operations are not taken into ac-
count [1].

� Uniformity hypothesis

It states that if a formula is true for some value, it holds always. This
usually leads to replacement of variables of imported sorts by ground terms
(assuming there are already several regularity hypotheses that eliminate
non-imported sorts) [1, 9]. Can be applied to one variable or to a domain.

These hypotheses give the good consistent picture, but they are not ev-
erything that is possible! As an example of informal test hypothesis [38] gives
the following: we can assume that our program is a finite state machine (if the
specification if a FSM, it would be then easier to compare them).

We can see (and use) the hypotheses as a foundation for our control meth-
ods.

7.3 Coverage criteria

Coverage criteria are sets of rules that help to determine whether a test suite
has adequately tested a program and guide the testing process [28]. In general,
they provide an assessing mechanism for a tester to calculate how good the test
suite cover the wanted aspects. We list here some of them that we think relate
to our project.

� Rule coverage

Rule coverage simply means that a test set explores all rules of a gram-
mar [14, 15, 20].

� Branch coverage

This coverage criterion is a generalisation of a rule coverage (that is ap-
plicable only to context-free grammars) [21].

� Position coverage

A minor generalisation of branch coverage by taking parameter positions of
the function symbols into account [21]. Equivalent to the branch coverage.

� Context-dependent branch coverage

Another generalisation taking all possible classes into account: a context-
dependent version of the branch coverage [20, 21].

� Reachability coverage

While context-dependent branch coverage relates only adjacent symbols
in terms, this one, being the obvious generalisation, looks also for remote
pairs of function symbols. [21].

CHAPTER 7. RELATED WORK 55

� Unfolding coverage

This criterion introduces special treatment for recursion [21].

� Two-dimensional approximation coverage

The criterion is used for attribute grammars and to other first-order declar-
ative programs. The two dimensions are syntax and semantics [15].

� Abstract domain coverage

This one proposes that we apply the search algorithm to find a new test
case and add it to the test set only if it improves the coverage, and keep
on repeating that until the full coverage is achieved [15].

� Rule update coverage

Rule updates represent the system reaction to particular events or condi-
tions. If a test set tests every function update of each rule, this criterion
is fulfilled [14].

� Parallel rule coverage

This criterion assures the testing of interaction between rules and there-
fore helps in discovering inconsistent domains [14]. The natural extension
exists called strong parallel rule coverage.

� Modified condition/decision coverage

This criterion wants that every point of entry and exit in the program has
been invoked at least once, every condition in a decision in the program has
taken on all possible outcomes at least once, every decision in the program
has taken all possible outcomes at least once and each condition in a
decision has been shown to independently affect the decision’s outcome [14,
17].

7.4 Miscellaneous

There is a work thread considering formal grammar adaptation techniques. [19]
is a fundamental formal paper in that area, while [24] describes a particular
framework for grammar transformations in SDF. Also, some ongoing work is
about combinatorial test data generation with the same control mechanisms in
the ASF+SDF Meta-Environment (not yet published).

Chapter 8

Conclusion

As the title page says, this Master’s thesis is about the concepts, the implemen-
tation of them and the XML case study. This short chapter will summarise the
contributions to those three aspects of our work.

The major contributions of this project are:

� The infrastructure of the XML-based test data generator is designed and
implemented. Geno has now full support for XML and XML Schema.

� The XML-based case study (XHTML Strict 1.1). Geno has been tried on
a real example of a grammar, and its output was used to test three XML
validators. Bugs were successfully found.

The contributions not of major importance are:

� Generation process visualisation is a completely new extension for Geno.

� Illustration and rationalisation of control mechanisms for combinatorial
test data generation.

Further points of research include, among the others:

� XML Schema schema for XML Schemas

One can treat the “XML Schema schema for XML Schemas” [40] as just
another XML language, for which we can generate test data. In this case,
test data will be XML Schema schemata themselves, and afterwards we
can use them to generate XML files.

� Control mechanisms

Specifying control mechanism parameters with the XML Schema features
seems very promising. On the one hand, we should somehow distinguish
the original grammar entities from the control mechanism arguments that
are introduced by a tester. On the other hand, it may be better not to
mess with the schema file itself and invent another way to specify them.
This issue can also be linked with the next one.

56

CHAPTER 8. CONCLUSION 57

� Full interactiveness

It may be interesting to introduce more interactive explosion visualisation
mechanisms to the existing application. They proved to be very helpful
during this project and we hope to get more of them later.

Appendix A

Source Code (C#)

A.1 Serialisation.cs

using System;

using System.IO;

using System.Xml;

using TDGenerator;

namespace Serialisation {

public class Shared

{

public static XmlDocument doc;

static public void Start()

{

doc = new System.Xml.XmlDocument();

}

static public void Flush(string dir, int n)

{

StreamWriter outXml = new StreamWriter(dir+"\\"+fillZero(n)+".xml");

outXml.WriteLine("<?xml version=\"1.0\" encoding=\"UTF-8\" ?>");

outXml.WriteLine("<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\""

+" \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">");

outXml.WriteLine(doc.OuterXml);

outXml.Close();

}

static private String fillZero(int n)

{

if(n<0) return n.ToString();

if(n<10)return "000000"+n;

if(n<100)return "00000"+n;

if(n<1000)return "0000"+n;

if(n<10000)return "000"+n;

if(n<100000)return "00"+n;

if(n<1000000)return "0"+n;

return n.ToString();

58

APPENDIX A. SOURCE CODE (C#) 59

}

static public void Print (Term t)

{

XmlElement el = doc.CreateElement(t.Op);

if(t.Op=="html")

{

el.SetAttribute("xmlns","http://www.w3.org/1999/xhtml");

el.SetAttribute("xml:lang","en");

el.SetAttribute("lang","en");

}

Print(t.Args, el);

doc.AppendChild(el);

}

static public void Print (Term t, XmlElement parent)

{

if (t.Op=="pcdata")

{

parent.AppendChild(doc.CreateTextNode("..."));

return;

}

if (t.Op=="nil")return;

if (t.Op.IndexOf("A-")>-1)

{

if(Env.Me.Real.Contains(t.Op))

parent.SetAttribute(t.Op.Remove(0,2),"");

else

Print(t.Args,parent);

}

else

{

if(Env.Me.Real.Contains(t.Op))

{

XmlElement el1 = doc.CreateElement(t.Op);

Print(t.Args,el1);

parent.AppendChild(el1);

}

else

Print(t.Args,parent);

}

}

static public void Print (Term[] ta, XmlElement parent)

{

for(int i = 0;i<ta.Length;i++)

Print(ta[i],parent);

}

}

}

A.2 XSDValidator.cs

using System;

using System.IO;

using System.Xml;

APPENDIX A. SOURCE CODE (C#) 60

using System.Xml.Schema;

/// <summary>

/// "Extreme XML :: Working with Namespaces in XML Schema"

/// Extracted by VVZ (as a command-line app)

/// Changed by VVZ (to a useful object)

/// </summary>

namespace TheTool {

public class XSDValidator

{

private XmlSchemaCollection sc = new XmlSchemaCollection();

private bool valid;

public bool warn;

public void ValidationCallback(object sender, ValidationEventArgs args)

{

if(!this.valid)return;

if(args.Severity == XmlSeverityType.Error)

this.valid = false;

else if(args.Severity == XmlSeverityType.Warning)

this.warn = true;

}

public XSDValidator(string xsd)

{

if((xsd==null)||(xsd==""))return;

sc.ValidationEventHandler

+= new ValidationEventHandler(ValidationCallback);

sc.Add(null, xsd);

}

public XSDValidator(string xsd, string ns)

{

if((xsd==null)||(xsd==""))return;

if(ns==null)ns="";

sc.ValidationEventHandler

+= new ValidationEventHandler(ValidationCallback);

sc.Add(ns, xsd);

}

public bool IsXmlValid(string xmlFile)

{

XmlValidatingReader vr

= new XmlValidatingReader(new XmlTextReader(xmlFile));

vr.Schemas.Add(sc);

vr.ValidationType = ValidationType.Schema;

this.valid = true;

this.warn = false;

vr.ValidationEventHandler

+= new ValidationEventHandler(ValidationCallback);

while(vr.Read()&&this.valid);

return this.valid;

}

}//XSDValidator

}//ns

Bibliography

[1] G. Bernot, M.-C. Gaudel, and B. Marre. Software Testing Based on For-
mal Specifications: a Theory and a Tool. Software Engineering Journal,
6(6):387–405, 1991.

[2] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second
Edition. W3C Proposed Edited Recommendation, 18 March 2004. http:
//www.w3.org/TR/2004/PER-xmlschema-2-20040318.

[3] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes. W3C
Recommendation, 2 May 2001. http://www.w3.org/TR/xmlschema-2.

[4] J. Bishop and N. Horspool. C# Concisely. Pearson Addison-Wesley, 2004.

[5] M. R. Blackburn and R. D. Busser. T-VEC: A Tool for Developing Critical
Systems. In Eleventh Annual Conference on Computer Assurance. National
Institute of Standards and Technology, 1996.

[6] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Third Edition). W3C
Recommendation, 04 February 2004. http://www.w3.org/TR/2004/
REC-xml-20040204.

[7] A. Brown, M. Fuchs, J. Robie, and P. Wadler. XML Schema: Formal
Description. W3C Working Draft, 25 September 2001. http://www.w3.
org/TR/2001/WD-xmlschema-formal-20010925.

[8] C. Campbell, A. Malhotra, and P. Walmsley. Requirements for XML
Schema 1.1. W3C Working Draft, 21 January 2003. http://www.w3.org/
TR/2003/WD-xmlschema-11-req-20030121.

[9] P. Dauchy, M.-C. Gaudel, and B. Marre. Using Algebraic Specifications in
Software Testing: a Case Study on the Software of an Automatic Subway.
Journal of Systems and Software, 21(3):229–244, 1993.

[10] R.-K. Doong and P. G. Frankl. The ASTOOT Approach to Testing
Object-Oriented Programs. ACM Transactions on Software Engineering
and Methodology, 3(2):101–130, Apr. 1994.

61

http://www.w3.org/TR/2004/PER-xmlschema-2-20040318
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2001/WD-xmlschema-formal-20010925
http://www.w3.org/TR/2001/WD-xmlschema-formal-20010925
http://www.w3.org/TR/2003/WD-xmlschema-11-req-20030121
http://www.w3.org/TR/2003/WD-xmlschema-11-req-20030121

BIBLIOGRAPHY 62

[11] D. C. Fallside. XML Schema Part 0: Primer. W3C Recommendation, 2
May 2001. http://www.w3.org/TR/xmlschema-0.

[12] D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second
Edition. W3C Proposed Edited Recommendation, 18 March 2004. http:
//www.w3.org/TR/2004/PER-xmlschema-0-20040318.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[14] A. Gargantini and E. Riccobene. ASM-Based Testing: Coverage Criteria
and Automatic Test Sequence. Journal of Universal Computer Science,
7(11):1050–1067, Nov. 2001.

[15] J. Harm and R. Lämmel. Two-dimensional Approximation Coverage. In-
formatica, 24(3), 2000.

[16] M. Ishikawa. XHTMLTM 1.0 in XML Schema. W3C Note, 2 September
2002. http://www.w3.org/TR/xhtml1-schema.

[17] R. Jasper, M. Brennan, K. Williamson, B. Currier, and D. Zimmerman.
Test data generation and feasible path analysis. In Proceedings of the 1994
international symposium on Software testing and analysis, pages 95–107.
ACM Press, 1994.

[18] P. Klint, R. Lämmel, and C. Verhoef. Towards an Engineering Discipline for
Grammarware. Draft, Submitted for journal publication; 32 pages, Aug.17
2003.

[19] R. Lämmel. Grammar Adaptation. In Proceedings of Formal Methods Eu-
rope (FME) 2001, volume 2021 of LNCS, pages 550–570. Springer-Verlag,
2001.

[20] R. Lämmel. Grammar Testing. In H. Hussmann, editor, Proceedings of
Fundamental Approaches to Software Engineering (FASE) 2001, volume
2029 of LNCS, pages 201–216. Springer-Verlag, 2001.

[21] R. Lämmel and J. Harm. Test Case Characterisation by Regular Path
Expressions. In E. Brinksma and J. Tretmans, editors, Proceedings of For-
mal Approaches to Testing of Software (FATES’01), Notes Series NS-01-4,
pages 109–124. BRICS, Aug. 2001.

[22] R. Lämmel and W. Schulte. Controlled Explosion in Grammar-based Test-
ing. Microsoft Research Redmond, internal document, 20 pages, 24 Oct.
2003.

[23] R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery.
Software—Practice & Experience, 31(15):1395–1438, December 2001.

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/2004/PER-xmlschema-0-20040318
http://www.w3.org/TR/2004/PER-xmlschema-0-20040318
http://www.w3.org/TR/xhtml1-schema

BIBLIOGRAPHY 63

[24] R. Lämmel and G. Wachsmuth. Transformation of SDF Syntax Definitions
in the ASF+SDF Meta-Environment. In M. van den Brand and D. Parigot,
editors, Proceedings of the First Workshop on Language Descriptions, Tools
and Applications (LDTA’01), Genova, Italy, April 7, 2001, Satellite event
of ETAPS’2001, volume 44 of ENTCS. Elsevier Science, Apr. 2001.

[25] A. Malhotra and M. Maloney. XML Schema Requirements. W3C Note, 15
February 1999. http://www.w3.org/TR/NOTE-xml-schema-req.

[26] W. McKeeman. Differential Testing for Software. Digital Technical Journal
of Digital Equipment Corporation, 10(1):100–107, 1998.

[27] B. McLaughlin. Java and XML Data Binding. O’Reilly & Associates, May
2002.

[28] A. M. Memon, M. L. Soffa, and M. E. Pollack. Coverage Criteria for
GUI Testing. In Proceedings of the 8th European Software Engineering
Conference held jointly with 9th ACM SIGSOFT International Symposium
on Foundations of software engineering, pages 256–267. ACM Press, 2001.

[29] Microsoft. Microsoft .NET Information. http://www.microsoft.com/net,
2004.

[30] P. Naur. Revised Report on the Algorithmic Language ALGOL 60. Com-
munications of the ACM, 3(5):299–314, May 1960.

[31] J. Siméon and P. Wadler. The essence of XML. In Proceedings of the 30th
symposium on Principles of Programming Languages (POPL’03), Annual
Symposium on Principles of Programming Languages, pages 1–13. ACM
Press, 2003.

[32] E. G. Sirer and B. N. Bershad. Using Production Grammars in Software
Testing. In Proceedings of the 2nd Conference on Domain-Specific Lan-
guages (DSL ’99), October 3–5, 1999, Austin, Texas, USA, pages 1–13,
Berkeley, CA, USA, 1999. USENIX.

[33] D. Slutz. Massive Stochastic Testing for SQL. Technical Report MSR-TR-
98-21, Microsoft Research, Redmond, 1998. A shorter form of the paper
appeared in the Proceedings of the 24th VLDB Conference, New York,
USA, 1998.

[34] D. Sosnoski. XML and Java technologies: Data binding, Part 1: Code
generation approaches—JAXB and more. In developerWorks — XML or
Java Technology. IBM, 2003.

[35] D. Sosnoski. XML and Java technologies: Data binding Part 3: JiBX
architecture. In developerWorks — XML or Java Technology. IBM, 2003.

http://www.w3.org/TR/NOTE-xml-schema-req
http://www.microsoft.com/net

BIBLIOGRAPHY 64

[36] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn.
XML Schema Part 1: Structures Second Edition. W3C Proposed
Edited Recommendation, 18 March 2004. http://www.w3.org/TR/2004/
PER-xmlschema-1-20040318.

[37] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema
Part 1: Structures. W3C Recommendation, 2 May 2001. http://www.w3.
org/TR/xmlschema-1.

[38] J. Tretmans. A Formal Approach to Conformance Testing. In O. Rafiq,
editor, Protocol Test Systems, VI, Proceedings of the IFIP TC6/WG6.1
Sixth International Workshop on Protocol Test systems,, volume C-19 of
IFIP Transactions, pages 257–276. North-Holland, 1994.

[39] W3C. Extensible Markup Language (XML) Conformance Test Suites.
W3C, 10 December 2003. http://www.w3.org/XML/Test.

[40] W3C. XML Schema schema for XML Schemas: Part 1: Structures. W3C,
13 February 2001. http://www.w3.org/2001/XMLSchema.

[41] D. Watkins, M. Hammond, and B. Abrams. Programming in the .NET
Environment. Addison-Wesley, 2002.

http://www.w3.org/TR/2004/PER-xmlschema-1-20040318
http://www.w3.org/TR/2004/PER-xmlschema-1-20040318
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/XML/Test
http://www.w3.org/2001/XMLSchema

	Introduction
	Background
	Testing: terms and definitions
	Conformance testing
	Testing of grammarware

	Combinatorial vs. stochastic testing
	Mechanisms to control explosion
	Depth control
	Recursion control
	Equivalence control
	Balance control
	Combination control
	Context control

	C# .NET-based Test Data Generation
	.NET Framework overview
	Test data generator architecture
	Grammarware testing in practice
	Grammar parsing and representation
	Term generation algorithm
	Serialisation

	Control mechanisms implemented
	Attributes assignable to sorts
	Attributes assignable to constructors

	The XML Case Study
	Introduction into the topic
	XML and XML Schema
	Testing concerns in the XML

	Applying Geno to the XML area
	System under test
	Using Geno for the XML

	Usage
	Possible scenarios
	Postprocessing

	Changes to the Geno's architecture
	Grammar input language
	Internal structural changes
	Terms generation algorithm
	Explosion visualisation
	XML Serialisation

	XML Validators
	C# API
	Java XML data binding frameworks
	Validation facilities in other languages

	XML Schema Mapping
	XML Schema vs. (E)BNF
	Input language of Geno
	XML Schema
	XML Attributes

	Grammar adaptation
	Documentation
	Element
	Complex type
	Attributes
	Group
	maxOccurs="unbounded"
	minOccurs="0"
	Arbitrary numbers in minOccurs and maxOccurs

	Results
	Experiments: directions and details
	Chosen scenarios
	Implementation details

	Results: environment and validators
	Differences in validators
	Environmental errors

	Related Work
	XML Conformance Testing
	Testing hypotheses
	Coverage criteria
	Miscellaneous

	Conclusion
	Source Code (C#)
	Serialisation.cs
	XSDValidator.cs

